[1] Energy Institute. Statistical review of world energy[R]. 72nd edition. 2023. https://www.energyinst.org/statistical-review.
[2] 钟化鑫. 基于清洁能源发展的中国一次能源消费预测研究[D]. 北京: 中国石油大学技术经济与管理硕士学位论文, 2022: 1-2.
[3] SHAFIEE S, TOPAL E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189.
[4] ROGELJ J, DEN ELZEN M, HÖHNE N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C[J]. Nature, 2016, 534(7609): 631-639.
[5] MONASTERSKY R. Global carbon dioxide levels near worrisome milestone[J]. Nature, 2013, 497(7447): 13-14.
[6] QIAO J L, LIU Y Y, ZHANG J J. Electrochemical reduction of carbon dioxide: fundamentals and technologies[M]. Boca Raton: CRC Press, 2016.
[7] 周明灿, 刘伟. 碳减排与生物质资源利用[J]. 化工设计, 2022, 32(05): 11-14+31+11.
[8] CHEN R M, LI J Y, WANG J L, et al. Continuous NO upcycling into ammonia promoted by SO2 in flue gas: Poison can be a gift[J]. Environmental Science & Technology, 2023, 57(32): 12127-12134.
[9] GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. BioScience, 2003, 53(4): 341-356.
[10] CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196.
[11] DUCA M, KOPER M T M. Powering denitrification: the perspectives of electrocatalytic nitrate reduction[J]. Energy & Environmental Science, 2012, 5(12): 9726-9742.
[12] YANG W P, WANG J L, CHEN R M, et al. Reaction mechanism and selectivity regulation of photocatalytic nitrate reduction for wastewater purification: progress and challenges[J]. Journal of Materials Chemistry A, 2022, 10(34): 17357-17376.
[13] TUGAOEN H O N, GARCIA-SEGURA S, HRISTOVSKI K, et al. Challenges in photocatalytic reduction of nitrate as a water treatment technology[J]. Science of The Total Environment, 2017, 599-600: 1524-1551.
[14] WANG Z X, RICHARDS D, SINGH N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction[J]. Catalysis Science & Technology, 2021, 11(3): 705-725.
[15] WANG Y T, WANG C H, LI M Y, et al. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges[J]. Chemical Society Reviews, 2021, 50(12): 6720-6733.
[16] XU H, MA Y Y, CHEN J, et al. Electrocatalytic reduction of nitrate – a step towards a sustainable nitrogen cycle[J]. Chemical Society Reviews, 2022, 51(7): 2710-2758.
[17] WANG Y T, ZHOU W, JIA R R, et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia[J]. Angewandte Chemie International Edition, 2020, 59(13): 5350-5354.
[18] LI P P, JIN Z Y, FANG Z W, et al. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate[J]. Energy & Environmental Science, 2021, 14(6): 3522-3531.
[19] WU Z Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nature Communications, 2021, 12(1): 2870.
[20] CARVALHO O Q, MARKS R, NGUYEN H K K, et al. Role of electronic structure on nitrate reduction to ammonium: a periodic journey[J]. Journal of the American Chemical Society, 2022, 144(32): 14809-14818.
[21] CHEN F Y, WU Z Y, GUPTA S, et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst[J]. Nature Nanotechnology, 2022, 17(7): 759-767.
[22] ALLUISETTI G E, ALMARAZ A E, AMOREBIETA V T, et al. Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N2, N2O, NO+, and NH3[J]. Journal of the American Chemical Society, 2004, 126(41): 13432-13442.
[23] BUUML, CHEL K H, MORETTO H-H, et al. Industrial inorganic chemistry[M]. 1. Aufl. Weinheim: Wiley-VCH, 2008.
[24] 刘建国, 安振涛, 张倩, 等. 硝酸羟胺的热稳定性评估及热分解机理研究[J]. 材料导报, 2017, 31(04): 145-152.
[25] DE LUNA P, HAHN C, HIGGINS D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
[26] MACFARLANE D R, CHEREPANOV P V, CHOI J, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205.
[27] LEWIS RICHARD J, UEURA K, LIU X, et al. Highly efficient catalytic production of oximes from ketones using in situ–generated H2O2[J]. Science, 2022, 376(6593): 615-620.
[28] KRZYWDA P M, PARADELO RODRÍGUEZ A, CINO L, et al. Electroreduction of NO3− on tubular porous Ti electrodes[J]. Catalysis Science & Technology, 2022, 12(10): 3281-3288.
[29] SHEN J, BIRDJA Y Y, KOPER M T M. Electrocatalytic nitrate reduction by a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode[J]. Langmuir, 2015, 31(30): 8495-8501.
[30] GARCÍA M, HONORES J, QUEZADA D, et al. Nitrite reduction on a multimetallic porphyrin/polyoxotungstate layer-by-layer modified electrodes[J]. Electrochimica Acta, 2016, 192: 61-71.
[31] JIANG Z, WANG Y M, LIN Z C, et al. Molecular electrocatalysts for rapid and selective reduction of nitrogenous waste to ammonia[J]. Energy & Environmental Science, 2023, 16(5): 2239-2246.
[32] WU Y S, JIANG Z, LIN Z C, et al. Direct electrosynthesis of methylamine from carbon dioxide and nitrate[J]. Nature Sustainability, 2021, 4(8): 725-730.
[33] WU Y S, JIANG Z, LU X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784): 639-642.
[34] ZHANG X, WANG Y, GU M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nature Energy, 2020, 5(9): 684-692.
[35] YUAN Y B, LI H, JIANG Z, et al. Deciphering the selectivity descriptors of heterogeneous metal phthalocyanine electrocatalysts for hydrogen peroxide production[J]. Chemical Science, 2022, 13(37): 11260-11265.
[36] LIANG H W, BRÜLLER S, DONG R H, et al. Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution[J]. Nature Communications, 2015, 6(1): 7992.
[37] YAO F B, YANG Q, ZHONG Y, et al. Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: Factors, kinetics, and mechanism[J]. Water Research, 2019, 157: 191-200.
[38] VAN LANGEVELDE P H, KATSOUNAROS I, KOPER M T M. Electrocatalytic nitrate reduction for sustainable ammonia production[J]. Joule, 2021, 5(2): 290-294.
[39] FANNING J C. The chemical reduction of nitrate in aqueous solution[J]. Coordination Chemistry Reviews, 2000, 199(1): 159-179.
[40] LUO Y T, XIE K, OU P F, et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts[J]. Nature Catalysis, 2023, 6(10): 939-948.
[41] 金梦. 高效催化剂的构筑及其电催化含氮分子研究[D]. 安徽: 中国科学技术大学材料物理与化学学科博士学位论文, 2023: 17-18.
[42] UYEDA C, PETERS J C. Selective nitrite reduction at heterobimetallic CoMg complexes[J]. Journal of the American Chemical Society, 2013, 135(32): 12023-12031.
[43] BOTHNER-BY A, FRIEDMAN L. The reaction of nitrous acid with hydroxylamine[J]. The Journal of Chemical Physics, 1952, 20(3): 459-462.
[44] WASMUS S, VASINI E J, KRAUSA M, et al. DEMS-cyclic voltammetry investigation of the electrochemistry of nitrogen compounds in 0.5 M potassium hydroxide[J]. Electrochimica Acta, 1994, 39(1): 23-31.
[45] ROSCA V, DUCA M, DE GROOT M T, et al. Nitrogen cycle electrocatalysis[J]. Chemical Reviews, 2009, 109(6): 2209-2244.
[46] YAGIL G, ANBAR M. The formation of peroxynitrite by oxidation of chloramine, hydroxylamine and nitrohydroxamate[J]. Journal of Inorganic and Nuclear Chemistry, 1964, 26(3): 453-460.
[47] HUGHES M N, NICKLIN H G. Autoxidation of hydroxylamine in alkaline solutions[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1971(0): 164-168.
[48] BARI S E, AMOREBIETA V T, GUTIéRREZ M M, et al. Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds[J]. Journal of Inorganic Biochemistry, 2010, 104(1): 30-36.
[49] SOLER-JOFRA A, PéREZ J, VAN LOOSDRECHT M C M. Hydroxylamine and the nitrogen cycle: A review[J]. Water Research, 2021, 190: 116723.
[50] ZHANG X, WANG Y T, WANG Y B, et al. Recent advances in electrocatalytic nitrite reduction[J]. Chemical Communications, 2022, 58(17): 2777-2787.
[51] ZHANG H R, WANG H J, CAO X Q, et al. Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion[J]. Advanced Materials, 2024, 36(16): 2312746.
[52] DIMA G E, DE VOOYS A C A, KOPER M T M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions[J]. Journal of Electroanalytical Chemistry, 2003, 554-555: 15-23.
[53] LIU H Z, PARK J, CHEN Y F, et al. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia[J]. ACS Catalysis, 2021, 11(14): 8431-8442.
[54] CONTRERAS E, NIXON R, LITTS C, et al. Plasmon-assisted ammonia electrosynthesis[J]. Journal of the American Chemical Society, 2022, 144(24): 10743-10751.
[55] ZHAO Y L, LIU Y, ZHANG Z J, et al. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia[J]. Nano Energy, 2022, 97: 107124.
[56] IARCHUK A, DUTTA A, BROEKMANN P. Novel Ni foam catalysts for sustainable nitrate to ammonia electroreduction[J]. Journal of Hazardous Materials, 2022, 439: 129504.
[57] DENG X H, YANG Y P, WANG L, et al. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A cm−2[J]. Advanced Science, 2021, 8(7): 2004523.
[58] WANG Y H, SUN M Z, ZHOU J W, et al. Atomic coordination environment engineering of bimetallic alloy nanostructures for efficient ammonia electrosynthesis from nitrate[J]. Proceedings of the National Academy of Sciences, 2023, 120(32): e2306461120.
[59] WANG Y H, XU A N, WANG Z Y, et al. Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption[J]. Journal of the American Chemical Society, 2020, 142(12): 5702-5708.
[60] SONG Z M, LIU Y, ZHONG Y Z, et al. Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect[J]. Advanced Materials, 2022, 34(36): 2204306.
[61] JIANG M H, TAO A Y, HU Y, et al. Crystalline modulation engineering of Ru nanoclusters for boosting ammonia electrosynthesis from dinitrogen or nitrate[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17470-17478.
[62] WU Y D, CHEN W, JIANG Y M, et al. Electrocatalytic synthesis of nylon-6 precursor at almost 100 % yield[J]. Angewandte Chemie International Edition, 2023, 62(30): e202305491.
[63] KONG X D, NI J, SONG Z M, et al. Synthesis of hydroxylamine from air and water via a plasma-electrochemical cascade pathway[J]. Nature Sustainability, 2024, xx(xx): xx.https://doi.org/10.1038/s41893-024-01330-w.
[64] WEI X X, CHEN C, FU X Z, et al. Oxygen vacancies-rich metal oxide for electrocatalytic nitrogen cycle[J]. Advanced Energy Materials, 2024, 14(1): 2303027.
[65] JIA R R, WANG Y T, WANG C H, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2[J]. ACS Catalysis, 2020, 10(6): 3533-3540.
[66] JIA S H, WU L M, TAN X X, et al. Synthesis of hydroxylamine via ketone-mediated nitrate electroreduction[J]. Journal of the American Chemical Society, 2024, 146(15): 10934-10942.
[67] YE S H, CHEN Z D, ZHANG G K, et al. Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide[J]. Energy & Environmental Science, 2022, 15(2): 760-770.
[68] LUO Y J, CHEN K, SHEN P, et al. B-doped MoS2 for nitrate electroreduction to ammonia[J]. Journal of Colloid and Interface Science, 2023, 629: 950-957.
[69] WU Y M, ZHAO J H, WANG C H, et al. Electrosynthesis of a nylon-6 precursor from cyclohexanone and nitrite under ambient conditions[J]. Nature Communications, 2023, 14(1): 3057.
[70] QIU W X, XIE M H, WANG P F, et al. Size-defined Ru nanoclusters supported by TiO2 nanotubes enable low-concentration nitrate electroreduction to ammonia with suppressed hydrogen evolution[J]. Small, 2023, 19(30): 2300437.
[71] YU M, HUANG H, HU J, et al. Vanadium defect-engineering in molybdenum disulfide for electrochemical nitrate reduction[J]. Journal of Materials Chemistry A, 2022, 10(45): 23990-23997.
[72] GARCIA-SEGURA S, VIEIRA DOS SANTOS E, MARTíNEZ-HUITLE C A. Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: A mini review[J]. Electrochemistry Communications, 2015, 59: 52-55.
[73] TENNE R, PATEL K, HASHIMOTO K, et al. Efficient electrochemical reduction of nitrate to ammonia using conductive diamond film electrodes[J]. Journal of Electroanalytical Chemistry, 1993, 347(1): 409-415.
[74] KUANG P J, NATSUI K, EINAGA Y. Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate[J]. Chemosphere, 2018, 210: 524-530.
[75] LACASA E, CAñIZARES P, LLANOS J, et al. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media[J]. Journal of Hazardous Materials, 2012, 213-214: 478-484.
[76] KANG W D, YAN L M, TANG J H, et al. Electrochemical activation of graphite electrode for nitrate reduction: Energetic performance and application potential[J]. Applied Catalysis B: Environmental, 2023, 329: 122553.
[77] LI Y, XIAO S, LI X, et al. A robust metal-free electrocatalyst for nitrate reduction reaction to synthesize ammonia[J]. Materials Today Physics, 2021, 19: 100431.
[78] LI R, GAO T T, WANG P F, et al. The origin of selective nitrate-to-ammonia electroreduction on metal-free nitrogen-doped carbon aerogel catalysts[J]. Applied Catalysis B: Environmental, 2023, 331: 122677.
[79] HARMON N J, ROONEY C L, TAO Z X, et al. Intrinsic catalytic activity of carbon nanotubes for electrochemical nitrate reduction[J]. ACS Catalysis, 2022, 12(15): 9135-9142.
[80] XIANG T Y, LIANG Y T, ZENG Y X, et al. Transition metal single-atom catalysts for the electrocatalytic nitrate reduction: Mechanism, synthesis, characterization, application, and prospects[J]. Small, 2023, 19(41): 2303732.
[81] XU Y T, XIE M Y, ZHONG H Q, et al. In situ clustering of single-atom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction[J]. ACS Catalysis, 2022, 12(14): 8698-8706.
[82] XUE Y H, YU Q H, MA Q, et al. Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)-N3C1 sites[J]. Environmental Science & Technology, 2022, 56(20): 14797-14807.
[83] CHENG X F, HE J H, JI H Q, et al. Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia[J]. Advanced Materials, 2022, 34(36): 2205767.
[84] YIN H B, PENG Y, LI J H. Electrocatalytic reduction of nitrate to ammonia via a Au/Cu single atom alloy catalyst[J]. Environmental Science & Technology, 2023, 57(8): 3134-3144.
[85] XIE M H, TANG S H, LI Z, et al. Intermetallic single-atom alloy In–Pd bimetallene for neutral electrosynthesis of ammonia from nitrate[J]. Journal of the American Chemical Society, 2023, 145(25): 13957-13967.
[86] LI H L, ANDERSON W C, CHAMBERS J Q, et al. Electrocatalytic reduction of nitrate in sodium hydroxide solution in the presence of low-valent cobalt-cyclam species[J]. Inorganic Chemistry, 1989, 28(5): 863-868.
[87] XU S, ASHLEY D C, KWON H-Y, et al. A flexible, redox-active macrocycle enables the electrocatalytic reduction of nitrate to ammonia by a cobalt complex[J]. Chemical Science, 2018, 9(22): 4950-4958.
[88] XU S, KWON H-Y, ASHLEY D C, et al. Intramolecular hydrogen bonding facilitates electrocatalytic reduction of nitrite in aqueous solutions[J]. Inorganic Chemistry, 2019, 58(14): 9443-9451.
[89] KWON H-Y, BRALEY S E, MADRIAGA J P, et al. Electrocatalytic nitrate reduction with Co-based catalysts: comparison of DIM, TIM and cyclam ligands[J]. Dalton Transactions, 2021, 50(35): 12324-12331.
[90] BRALEY S E, KWON H-Y, XU S, et al. Buffer assists electrocatalytic nitrite reduction by a cobalt macrocycle complex[J]. Inorganic Chemistry, 2022, 61(33): 12998-13006.
[91] CHEBOTAREVA N, NYOKONG T. Metallophthalocyanine catalysed electroreduction of nitrate and nitrite ions in alkaline media[J]. Journal of Applied Electrochemistry, 1997, 27(8): 975-981.
[92] GHOSH M, BRALEY S E, EZHOV R, et al. A spectroscopically observed iron nitrosyl intermediate in the reduction of nitrate by a surface-conjugated electrocatalyst[J]. Journal of the American Chemical Society, 2022, 144(39): 17824-17831.
[93] LI Y, REN L H, LI Z Y, et al. Harnessing nickel phthalocyanine-based electrochemical CNT sponges for ammonia synthesis from nitrate in contaminated water[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 53884-53892.
[94] ADALDER A, PAUL S, BARMAN N, et al. Controlling the metal–ligand coordination environment of manganese phthalocyanine in 1D–2D heterostructure for enhancing nitrate reduction to ammonia[J]. ACS Catalysis, 2023, 13(20): 13516-13527.
[95] SARKAR S, ADALDER A, PAUL S, et al. Iron phthalocyanine hollow architecture enabled ammonia production via nitrate reduction to achieve 100% Faradaic efficiency[J]. Applied Catalysis B: Environmental, 2024, 343: 123580.
[96] ZHANG R, LI C, CUI H L, et al. Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells[J]. Nature Communications, 2023, 14(1): 8036.
[97] WU Q L, ZHU F F, WALLACE G, et al. Electrocatalysis of nitrogen pollution: Transforming nitrogen waste into high-value chemicals[J]. Chemical Society Reviews, 2024, 53(2): 557-565.
[98] WU X F, FENG Y M, XU G D, et al. Numerical investigations on charge motion and combustion of natural gas-enhanced ammonia in marine pre-chamber lean-burn engine with dual-fuel combustion system[J]. International Journal of Hydrogen Energy, 2023, 48(30): 11476-11492.
[99] CHEN W D, YANG X Y, CHEN Z D, et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion[J]. Advanced Functional Materials, 2023, 33(29): 2300512.
[100] 周黎旸, 张超群, 周强. 盐酸羟胺的合成与生产方法[J]. 化工生产与技术, 2021, 27(06): 12-14+18.
[101] ZONG B N, SUN B, CHENG S B, et al. Green production technology of the monomer of nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379-384.
[102] GOOTZEN J F E, PEETERS P G J M, DUKERS J M B, et al. The electrocatalytic reduction of NO3− on Pt, Pd and Pt + Pd electrodes activated with Ge[J]. Journal of Electroanalytical Chemistry, 1997, 434(1): 171-183.
[103] PéREZ-GALLENT E, FIGUEIREDO M C, KATSOUNAROS I, et al. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions[J]. Electrochimica Acta, 2017, 227: 77-84.
[104] CHEN C, ZHU X R, WEN X J, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions[J]. Nature Chemistry, 2020, 12(8): 717-724.
[105] JIANG M H, ZHU M F, WANG M J, et al. Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis[J]. ACS Nano, 2023, 17(4): 3209-3224.
[106] FENG Y G, YANG H, ZHANG Y, et al. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction[J]. Nano Letters, 2020, 20(11): 8282-8289.
[107] ZHANG X R, ZHU X R, BO S W, et al. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst[J]. Nature Communications, 2022, 13(1): 5337.
[108] GENG J, JI S H, JIN M, et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites[J]. Angewandte Chemie International Edition, 2023, 62(6): e202210958.
[109] CORBIN D R, SCHWARZ S, SONNICHSEN G C. Methylamines synthesis: A review[J]. Catalysis Today, 1997, 37(2): 71-102.
[110] TAO Z X, WU Y S, WU Z S, et al. Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine[J]. Journal of Energy Chemistry, 2022, 65: 367-370.
[111] JOUNY M, LV J J, CHENG T, et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis[J]. Nature Chemistry, 2019, 11(9): 846-851.
[112] TAO Z X, ROONEY C L, LIANG Y Y, et al. Accessing organonitrogen compounds via C-N coupling in electrocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2021, 143(47): 19630-19642.
[113] LI M Y, WU Y M, ZHAO B-H, et al. Electrosynthesis of amino acids from NO and α-keto acids using two decoupled flow reactors[J]. Nature Catalysis, 2023, 6(10): 906-915.
[114] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
[115] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[116] PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations[J]. The Journal of Chemical Physics, 1996, 105(22): 9982-9985.
[117] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775.
[118] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15)
[119] WANG V, XU N, LIU J-C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.
[120] MATHEW K, SUNDARARAMAN R, LETCHWORTH-WEAVER K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. The Journal of Chemical Physics, 2014, 140(8)
[121] MATHEW K, KOLLURU V S C, MULA S, et al. Implicit self-consistent electrolyte model in plane-wave density-functional theory[J]. The Journal of Chemical Physics, 2019, 151(23)
[122] NøRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
[123] FORTUNE W B, MELLON M G. Determination of iron with o-phenanthroline: A spectrophotometric study[J]. Industrial & Engineering Chemistry Analytical Edition, 1938, 10(2): 60-64.
[124] KONG X D, LIU Y, LI P, et al. Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts[J]. Applied Catalysis B-Environmental, 2020, 268: 118452.
[125] LIN Z C, JIANG Z, YUAN Y B, et al. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction[J]. Chinese Journal of Catalysis, 2022, 43(1): 104-109.
[126] REN S X, LEES E W, HUNT C, et al. Catalyst aggregation matters for immobilized molecular CO2RR electrocatalysts[J]. Journal of the American Chemical Society, 2023, 145(8): 4414-4420.
[127] DE VOLDER M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science, 2013, 339(6119): 535-539.
[128] FANG L, LU S, WANG S, et al. Defect engineering on electrocatalysts for sustainable nitrate reduction to ammonia: Fundamentals and regulations[J]. Chemistry – A European Journal, 30(20): e202303249.
[129] FANG J Y, ZHENG Q Z, LOU Y Y, et al. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature[J]. Nature Communications, 2022, 13(1): 7899.
[130] MATSUI T, SUZUKI S, KATAYAMA Y, et al. In situ attenuated total reflection infrared spectroscopy on electrochemical ammonia oxidation over Pt electrode in alkaline aqueous solutions[J]. Langmuir, 2015, 31(42): 11717-11723.
[131] YALAZAN H, AKYüZ D, SERDAROĞLU V, et al. Novel peripheral tetra-substituted phthalocyanines containing methoxylated chalcone group: Synthesis, spectral, electrochemical and spectroelectrochemical properties[J]. Journal of Organometallic Chemistry, 2020, 912: 121181.
[132] ZAGAL J H. Metallophthalocyanines as catalysts in electrochemical reactions[J]. Coordination Chemistry Reviews, 1992, 119: 89-136.
[133] WU Y S, JIANG J B, WENG Z, et al. Electroreduction of CO2 catalyzed by a heterogenized Zn–porphyrin complex with a redox-innocent metal center[J]. ACS Central Science, 2017, 3(8): 847-852.
[134] YAN Y D, WANG R Y, ZHENG Q, et al. Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics[J]. Nature Communications, 2023, 14(1): 7987.
[135] ADARAKATTI P S, CRAPNELL R D, BANKS C E. Electroanalytical overview: The sensing of hydroxylamine[J]. Analytical Methods, 2023, 15(22): 2709-2720.
[136] WU J C, XU L T, KONG Z J, et al. Integrated tandem electrochemical-chemical-electrochemical coupling of biomass and nitrate to sustainable alanine[J]. Angewandte Chemie International Edition, 2023, 62(45): e202311196.
修改评论