[1] CAO Z, SIMON T, WEI S, et al. Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
[2] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of European Conference on Computer Vision (ECCV). Springer, 2016.
[3] WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition [J]. IEEE transactions on pattern analysis machine intelligence, 2020, 43(10): 3349-64.
[4] TOSHEV A, SZEGEDY C. DeepPose: Human pose estimation via deep neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014.
[5] WEI S-E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016.
[6] XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking[C]//Proceedings of European conference on computer vision (ECCV). 2018.
[7] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016.
[8] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. Advances in neural information processing systems, 2017, 30.
[9] ZHENG C, ZHU S, MENDIETA M, et al. 3d human pose estimation with spatial and temporal transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021.
[10] ZHANG T, WANG J, XU L, et al. Fall detection by wearable sensor and one-class SVM algorithm[C]//Proceedings of the International Conference on Intelligent Computing (ICIC). Springer, 2006.
[11] PRASANTH H, CABAN M, KELLER U, et al. Wearable sensor-based real-time gait detection: A systematic review [J]. Sensors, 2021, 21(8): 2727.
[12] SADREAZAMI H, BOLIC M, RAJAN S. Fall detection using standoff radar-based sensing and deep convolutional neural network [J]. IEEE Transactions on Circuits Systems, 2019, 67(1): 197-201.
[13] MARTíNEZ-VILLASEñOR L, PONCE H, PEREZ-DANIEL K. Deep learning for multimodal fall detection[C]//Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019.
[14] HAN S, MAO H, DALLY W. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding [J]. arXiv preprint arXiv:1510.00149, 2015.
[15] JADERBERG M, VEDALDI A, ZISSERMAN A. Speeding up convolutional neural networks with low rank expansions [J]. arXiv preprint arXiv:1405.3866, 2014.
[16] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [J]. arXiv preprint arXiv:1503.02531, 2015.
[17] COURBARIAUX M, BENGIO Y, DAVID J-P. Binaryconnect: Training deep neural networks with binary weights during propagations [J]. Advances in neural information processing systems, 2015, 28.
[18] LI F, LIU B, WANG X, et al. Ternary weight networks [J]. arXiv preprint arXiv:1605.04711, 2016.
[19] WEN W, WU C, WANG Y, et al. Learning structured sparsity in deep neural networks [J]. Advances in neural information processing systems, 2016, 29.
[20] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition [J]. Computer Science, 2014.
[21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural computation, 1997, 9(8): 1735-80.
[22] CARREIRA J, AGRAWAL P, FRAGKIADAKI K, et al. Human pose estimation with iterative error feedback[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016.
[23] SUN X, SHANG J, LIANG S, et al. Compositional human pose regression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
[24] LUVIZON D C, TABIA H, PICARD D. Human pose regression by combining indirect part detection and contextual information [J]. Computers Graphics, 2019, 85: 15-22.
[25] CHEN X, YUILLE A. Articulated pose estimation by a graphical model with image dependent pairwise relations [J]. Advances in neural information processing systems, 2014, 27.
[26] CHEN Y, SHEN C, WEI X-S, et al. Adversarial posenet: A structure-aware convolutional network for human pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2017.
[27] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [J]. Advances in neural information processing systems, 2014, 27.
[28] CHU X, YANG W, OUYANG W, et al. Multi-context attention for human pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
[29] MARTINEZ J, HOSSAIN R, ROMERO J, et al. A simple yet effective baseline for 3d human pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
[30] TOMPSON J J, JAIN A, LECUN Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation [J]. Advances in neural information processing systems, 2014, 27.
[31] PFISTER T, CHARLES J, ZISSERMAN A. Flowing convnets for human pose estimation in videos[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2015.
[32] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015.
[33] CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
[34] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016.
[35] NEWELL A, HUANG Z, DENG J. Associative embedding: End-to-end learning for joint detection and grouping [J]. Advances in neural information processing systems, 2017, 30.
[36] ZHANG X, ZOU J, HE K, et al. Accelerating very deep convolutional networks for classification and detection [J]. IEEE transactions on pattern analysis machine intelligence 2015, 38(10): 1943-55.
[37] LEBEDEV V, GANIN Y, RAKHUBA M, et al. Speeding-up convolutional neural networks using fine-tuned cp-decomposition [J]. arXiv preprint arXiv:1412.6553, 2014.
[38] KIM Y-D, PARK E, YOO S, et al. Compression of deep convolutional neural networks for fast and low power mobile applications [J]. arXiv preprint arXiv:1511.06530, 2015.
[39] NOVIKOV A, PODOPRIKHIN D, OSOKIN A, et al. Tensorizing neural networks [J]. Advances in neural information processing systems, 2015, 28.
[40] OPHOFF T, VAN BEECK K, GOEDEMé T. Exploring RGB+ Depth fusion for real-time object detection [J]. Sensors, 2019, 19(4): 866.
[41] OPHOFF T, VAN BEECK K, GOEDEMé T. Exploring RGB + Depth fusion for real-time object detection [J]. Sensors, 2019, 19(4): 866.
[42] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
[43] FANG H-S, XIE S, TAI Y-W, et al. RMPE: Regional multi-person pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
[44] LI Y, ZHANG S, WANG Z, et al. Tokenpose: Learning keypoint tokens for human pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021.
[45] LUVIZON D C, PICARD D, TABIA H. 2d/3d pose estimation and action recognition using multitask deep learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
[46] LEE K, LEE I, LEE S. Propagating lstm: 3d pose estimation based on joint interdependency. [C]// Proceedings of European Conference on Computer Vision (ECCV). Springer, 2018.
[47] LIN K, WANG L, LIU Z. End-to-end human pose and mesh reconstruction with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021.
[48] ZENG A, SUN X, HUANG F, et al. SRNet: Improving generalization in 3d human pose estimation with a split-and-recombine approach[C]// Proceedings of European Conference on Computer Vision (ECCV). Springer, 2020.
[49] WANG K, CAO G T, MENG D, et al. Automatic fall detection of human in video using combination of features[C]//Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016.
[50] CHEN Y T, LIN Y C, FANG W H, et al. A hybrid human fall detection scheme[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP). IEEE, 2010.
[51] WANG S K, CHEN L, ZHOU Z X, et al. Human fall detection in surveillance video based on PCANet [J]. Multimedia Tools and Applications, 2016, 75(19): 11603-13.
[52] ASIF U, MASHFORD B S, CAVALLAR S V, et al. Privacy Preserving Human Fall Detection using Video Data[C]//Proceedings of the Workshop Machine Learning for Health (ML4H) at Conference and Workshop on Neural Information Processing Systems (NeurIPS). 2019.
[53] FENG Q, GAO C Q, WANG L, et al. Spatio-temporal fall event detection in complex scenes using attention guided LSTM [J]. Pattern Recognition Letters, 2020, 130: 242-9.
[54] HARROU F, ZERROUKI N, SUN Y, et al. Vision-Based Fall Detection System for Improving Safety of Elderly People [J]. Ieee Instrumentation & Measurement Magazine, 2017, 20(6): 49-55.
[55] NúñEZ-MARCOS A, AZKUNE G, ARGANDA-CARRERAS I. Vision-Based Fall Detection with Convolutional Neural Networks [J]. Wireless Communications & Mobile Computing, 2017.
[56] ZERROUKI N, HARROU F, HOUACINE A, et al. Fall Detection Using Supervised Machine Learning Algorithms: A Comparative Study[C]// Proceedings of the International Conference on Modelling, Identification and Control (ICMIC). 2016.
[57] BHANDARI S, BABAR N, GUPTA P, et al. A Novel Approach for Fall Detection in Home Environment[C]//Proceedings of the IEEE 6th Global Conference on Consumer Electronics (GCCE). IEEE, 2017.
[58] LIU W, BAO Q, SUN Y, et al. Recent advances of monocular 2d and 3d human pose estimation: a deep learning perspective [J]. ACM Computing Surveys, 2022, 55(4): 1-41.
[59] DIAZ-ARIAS A, SHIN D, MESSMORE M, et al. On the role of depth predictions for 3D human pose estimation[C]//Proceedings of the Future Technologies Conference. Springer, 2022.
[60] CHEN Y, DU R, LUO K, et al. Fall detection system based on real-time pose estimation and SVM[C]//Proceedings of the IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). IEEE, 2021.
[61] CHENG Y, HUANG G, ZHEN P, et al. An anomaly comprehension neural network for surveillance videos on terminal devices[C]//Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2020.
[62] CHENG Y, LI G, WONG N, et al. DEEPEYE: A deeply tensor-compressed neural network for video comprehension on terminal devices [J]. ACM Transactions on Embedded Computing Systems, 2020, 19(3): 1-25.
[63] CHENG Y, YANG Y, CHEN H-B, et al. S3-Net: A fast scene understanding network by single-shot segmentation for autonomous driving [J]. ACM Transactions on Intelligent Systems Technology, 2021, 12(5): 1-19.
[64] CHéRON G, LAPTEV I, SCHMID C. P-CNN: Pose-based cnn features for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015.
[65] GUTIéRREZ J, RODRíGUEZ V, MARTIN S. Comprehensive review of vision-based fall detection systems [J]. Sensors, 2021, 21(3): 947.
[66] LU N, WU Y, FENG L, et al. Deep learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data [J]. IEEE Journal of Biomedical Health Informatics, 2018, 23(1): 314-23.
[67] PAPANDREOU G, ZHU T, CHEN L-C, et al. Personlab: Person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model[C]// Proceedings of European Conference on Computer Vision (ECCV). Springer, 2020.
[68] NUNEZ J C, CABIDO R, PANTRIGO J J, et al. Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition [J]. Pattern Recognition, 2018, 76: 80-94.
[69] LI S, MAN C, SHEN A, et al. A fall detection network by 2d/3d spatio-temporal joint models with tensor compression on edge [J]. ACM Transactions on Embedded Computing Systems, 2022, 21(6): 1-19.
[70] GUAN Z, LI S, CHENG Y, et al. A video-based fall detection network by spatio-temporal joint-point model on edge devices[C]//Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021.
修改评论