[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN esti mates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. C A: a cancer journal for clinicians, 2021, 71(3): 209-249.
[2] NAIR P R. Delivering combination chemotherapies and targeting oncogenic path ways via polymeric drug delivery systems[J]. Polymers, 2019, 11(4): 630.
[3] ZHAO M, LIU M. New avenues for nanoparticle-related therapies[J]. Nanoscale Re search Letters, 2018, 13(1): 136.
[4] KWON I K, LEE S C, HAN B, et al. Analysis on the current status of targeted drug d elivery to tumors[J]. Journal of Controlled Release, 2012, 164(2): 108-114.
[5] RUENRAROENGSAK P, COOK J M, FLORENCE A T. Nanosystem drug targeting: fac ing up to complex realities[J]. Journal of Controlled Release, 2010, 141(3): 265-27 6.
[6] FEYNMAN R. There’s plenty of room at the bottom[M]//Feynman and computat ion. CRC Press, 2018: 63-76.
[7] NGUYEN V D, MIN H K, KIM H Y, et al. Primary macrophage-based microrobots: a n effective tumor therapy in vivo by dual-targeting function and near-infrared-tri ggered drug release[J].ACS Nano, 2021, 15(5): 8492-8506.
[8] GO G, YOO A, NGUYEN K T, et al. Multifunctional microrobot with real-time visual ization and magnetic resonance imaging for chemoembolization therapy of liver cancer[J]. Science Advances, 2022, 8(46): eabq8545.
[9] WANG Q, WANG B, YU J, et al. Reconfigurable magnetic microswarm for thrombo lysis under ultrasound imaging[C]//2020 IEEE international conference on robotic s and automation(ICRA). IEEE, 2020: 10285-10291.
[10] SOTO F, WANG J, AHMED R, et al. Medical micro/nanorobots in precision medici ne[J].Advanced Science, 2020, 7(21): 2002203.
[11] CHIKERE N, OZKAN-AYDIN Y. Harnessing Flagella Dynamics for Enhanced Robot Locomotion at Low Reynolds Number[J]. IEEE Robotics and Automation Letters, 2024.
[12] PURCELL E M. Life at low Reynolds number[J]. American Journal of Physics, 197 7, 45(1):3-11.
[13] CHEANG U K, MESHKATI F, KIM D, et al. Minimal geometric requirements for mi cro-propulsion via magnetic rotation[J]. Physical Review E, 2014, 90(3): 033007.
[14] TOTTORI S, NELSON B J. Controlled Propulsion of Two-Dimensional Microswim mers in a Precessing Magnetic Field[J]. Small, 2018, 14(24): 1800722.
[15] SONG X, CHEN Z, ZHANG X, et al. Magnetic tri-bead microrobot assisted near-i nfrared triggered combined photothermal and chemotherapy of cancer cells[J]. Scientific Reports, 2021,11(1): 7907.
[16] CHEN Z, SONG X, MU X, et al. 2D Magnetic Microswimmers for Targeted Cell Tr ansport and 3D Cell Culture Structure Construction[J]. ACS Applied Materials & I nterfaces, 2023, 15(7): 8840-8853.
[17] SONG X, QIAN R, LI T, et al. Imaging-guided biomimetic M1 macrophage memb rane camouflaged magnetic nanorobots for photothermal immunotargeting can cer therapy[J]. ACS Applied Materials & Interfaces, 2022, 14(51): 56548-56559.
[18] BARBOT A, DECANINI D, HWANG G. On-chip microfluidic multimodal swimmer t oward 3D navigation[J]. Scientific Reports, 2016, 6(1): 19041.
[19] SITTI M, CEYLAN H, HU W, et al. Biomedical applications of untethered mobile milli/microrobots[J]. Proceedings of the IEEE, 2015, 103(2): 205-224.
[20] BOZUYUK U, WREDE P, YILDIZ E, et al. Roadmap for Clinical Translation of Mobil e Microrobotics[J]. Advanced Materials, 2024: 2311462.
[21] FISCHER P, GHOSH A. Magnetically actuated propulsion at low Reynolds numbe rs: towards nanoscale control[J]. Nanoscale, 2011, 3(2): 557-563.
[22] WANG W, CASTRO L A, HOYOS M, et al. Autonomous motion of metallic micror ods propelled by ultrasound[J]. ACS Nano, 2012, 6(7): 6122-6132.
[23] KAGAN D, BENCHIMOL M J, CLAUSSEN J C, et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue pene tration and deformation[J]. Angewandte Chemie (International ed. in English), 2 012, 51(30): 7519.
[24] SCHATTLING P S, RAMOS-DOCAMPO M A, SALGUEIRINO V, et al. Double-fuele d Janus swimmers with magnetotactic behavior[J]. ACS Nano, 2017, 11(4): 3973- 3983.
[25] MA X, JANNASCH A, ALBRECHT U R, et al. Enzyme-powered hollow mesoporou s Janus nanomotors[J]. Nano Letters, 2015, 15(10): 7043-7050.
[26] SENGUPTA S, SPIERING M M, DEY K K, et al. DNA polymerase as a molecular mo tor and pump[J]. ACS Nano, 2014, 8(3): 2410-2418.
[27] AUBRY M, WANG W A, GUYODO Y, et al. Engineering E. coli for magnetic contro l and the spatial localization of functions[J]. ACS Synthetic Biology, 2020, 9(11): 3 030-3041.
[28] MITTELSTEIN D R, YE J, SCHIBBER E F, et al. Selective ablation of cancer cells wit h low intensity pulsed ultrasound[J]. Applied Physics Letters, 2020, 116(1).
[29] DIN M O, DANINO T, PRINDLE A, et al. Synchronized cycles of bacterial lysis for i n vivo delivery[J]. Nature, 2016, 536(7614): 81-85.
[30] DIN M O, MARTIN A, RAZINKOV I, et al. Interfacing gene circuits with microelect ronics through engineered population dynamics[J]. Science Advances, 2020, 6(2 1): eaaz8344.
[31] ZHENG L, CHEN L G, HUANG H B, et al. An overview of magnetic micro-robot sy stems for biomedical applications[J]. Microsystem Technologies, 2016, 22: 2371- 2387.
[32] HOU Y, WANG H, FU R, et al. A review on microrobots driven by optical and ma gnetic fields[J]. Lab on a Chip, 2023, 23(5): 848-868.
[33] SHEN H, CAI S, WANG Z, et al. Magnetically driven microrobots: Recent progress and future development[J]. Materials & Design, 2023, 227: 111735.
[34] WANG Z, MU X, TAN L, et al. A rolled-up-based fabrication method of 3D helical microrobots[J]. Frontiers in Robotics and AI, 2022, 9: 1063987.
[35] CHEN J, HU H, WANG Y. Magnetic-driven 3D-printed biodegradable swimming microrobots[J]. Smart Materials and Structures, 2023, 32(8): 085014.
[36] LIU X, WANG C, ZHANG Z. Biohybrid microrobots driven by sperm[J]. Untethere d Small Scale Robots for Biomedical Applications, 2023: 63-75.
[37] HONDA T, ARAI K, ISHIYAMA K. Micro swimming mechanisms propelled by exte rnal magnetic fields[J]. IEEE Transactions on Magnetics, 1996, 32(5): 5085-5087.
[38] KOEPELE C A, GUIX M, BI C, et al. 3D-printed microrobots with integrated struct ural color for identification and tracking[J]. Advanced Intelligent Systems, 2020, 2(5): 1900147.
[39] HUANG T Y, QIU F, TUNG H W, et al. Cooperative manipulation and transport of microobjects using multiple helical microcarriers[J]. Rsc Advances, 2014, 4(51): 2 6771-26776.
[40] HUANG T Y, SAKAR M S, MAO A, et al. 3D printed microtransporters: Compoun d micromachines for spatiotemporally controlled delivery of therapeutic agents [J]. Advanced Materials(Deerfield Beach, Fla.), 2015, 27(42): 6644.
[41] DONG X, SITTI M. Controlling two-dimensional collective formation and cooper ative behavior of magnetic microrobot swarms[J]. The International Journal of R obotics Research, 2020,39(5): 617-638.
[42] XIE H, SUN M, FAN X, et al. Reconfigurable magnetic microrobot swarm: Multim ode transformation, locomotion, and manipulation[J]. Science Robotics, 2019, 4 (28): eaav8006.
[43] CHEANG U K, DEJAN M, CHOI J, et al. Towards model-based control of achiral m icroswimmers[C]//Dynamic Systems and Control Conference: Vol. 46193. Americ an Society of Mechanical Engineers, 2014: V002T33A002.
[44] CHEANG U K, KIM H, MILUTINOVIĆ D, et al. Feedback control of an achiral robot ic microswimmer[J]. Journal of Bionic Engineering, 2017, 14(2): 245-259.
[45] WANG Q, YANG L, YU J, et al. Characterizing dynamic behaviors of three-particle paramagnetic microswimmer near a solid surface[J]. Robotics and Biomimetics, 2017, 4: 1-11.
[46] MESHKATI F, FU H C. Modeling rigid magnetically rotated microswimmers: Rotat ion axes,bistability, and controllability[J]. Physical Review E, 2014, 90(6): 063006.
[47] MIRZAE Y, DUBROVSKI O, KENNETH O, et al. Geometric constraints and optimiz ation in externally driven propulsion[J]. Science Robotics, 2018, 3(17): eaas8713.
[48] XIONG J, SONG X, CAI Y, et al. Stop-flow lithography for the continuous product ion of Degradable hydrogel achiral Crescent microswimmers[J]. Micromachines, 2022, 13(5): 798.
[49] MU X, WANG Z, ZHONG Y, et al. Development of 2D MOF-based microrobots u nder an nealing treatment and their biomedical application[J]. Industrial & Engi neering Chemistry Research, 2021, 60(26): 9465-9474.
[50] LI J, LI X, LUO T, et al. Development of a magnetic microrobot for carrying and d elivering targeted cells[J]. Science Robotics, 2018, 3(19): eaat8829.
[51] DILLER E, SITTI M. Three-dimensional programmable assembly by untethered m agnetic robotic micro-grippers[J]. Advanced Functional Materials, 2014, 24(28): 4397-4404.
[52] ZHENG Z, WANG H, DONG L, et al. Ionic shape-morphing microrobotic end-effe ctors for environmentally adaptive targeting, releasing, and sampling[J]. Nature Communications, 2021,12(1): 411.
[53] WANG Q, CHAN K F, SCHWEIZER K, et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery[J]. Scienc e Advances, 2021, 7(9):eabe5914.
[54] LI D, NIU F, LI J, et al. Gradient-enhanced electromagnetic actuation system with a new core shape design for microrobot manipulation[J]. IEEE Transactions on In dustrial Electronics,2019, 67(6): 4700-4710.
[55] LI T, LI J, ZHANG H, et al. Magnetically propelled fish-like nanoswimmers[J]. Sma ll, 2016,12(44): 6098-6105.
[56] XING L, LIAO P, MO H, et al. Preformation Characterization of a Torque-Driven M agnetic Microswimmer With Multi-Segment Structure[J]. IEEE Access, 2021, 9: 29 279-29292.
[57] REN Z, HU W, DONG X, et al. Multi-functional soft-bodied jellyfish-like swimmin g[J]. Nature Communications, 2019, 10(1): 2703.
[58] YANG X, SHANG W, LU H, et al. An agglutinate magnetic spray transforms inani mate objects into millirobots for biomedical applications[J]. Science Robotics, 20 20, 5(48): eabc8191.
[59] JIN D, YU J, YUAN K, et al. Mimicking the structure and function of ant bridges i n a recon-figurable microswarm for electronic applications[J]. ACS Nano, 2019, 1 3(5): 5999-6007.
[60] YE C, LIU J, WU X, et al. Hydrophobicity influence on swimming performance of magnetically driven miniature helical swimmers[J]. Micromachines, 2019, 10(3): 175.
[61] XU T, HAO Z, HUANG C, et al. Multimodal locomotion control of needle-like mic rorobots assembled by ferromagnetic nanoparticles[J]. IEEE/ASME Transactions on Mechatronics, 2022,27(6): 4327-4338.
[62] XU T, HUANG C, LAI Z, et al. Independent control strategy of multiple magnetic flexible millirobots for position control and path following[J]. IEEE Transactions o n Robotics, 2022,38(5): 2875-2887.
[63] ZHAO H, LI J, CHEN Z, et al. Design of a Versatile Microrobot for Cargo Delivery [J].IEEE/ASME Transactions on Mechatronics, 2023: 1-12.
[64] YAN X, ZHOU Q, VINCENT M, et al. Multifunctional biohybrid magnetite microro bots for imaging-guided therapy[J]. Science Robotics, 2017, 2(12): eaaq1155.
[65] YU J, JIN D, CHAN K F, et al. Active generation and magnetic actuation of micror obotic swarms in bio-fluids[J]. Nature Communications, 2019, 10(1): 5631.
[66] SU L, JIN D, WANG Y, et al. Modularized microrobot with lock-and-detachable m odules for targeted cell delivery in bile duct[J]. Science Advances, 2023, 9(50): ea dj0883.
[67] XING J, YIN T, LI S, et al. Sequential magneto-actuated and optics-triggered bio microrobots for targeted cancer therapy[J]. Advanced Functional Materials, 202 1, 31(11): 2008262.
[68] WU Z, ZHANG Y, AI N, et al. Magnetic mobile microrobots for upstream and do wnstream navigation in biofluids with variable flow rate[J]. Advanced Intelligent Systems, 2022, 4(7):2100266.
[69] BELL D J, LEUTENEGGER S, HAMMAR K, et al. Flagella-like propulsion for micror obots using a nanocoil and a rotating electromagnetic field[C]//Proceedings 200 7 IEEE international conference on robotics and automation. IEEE, 2007: 1128-11 33.
[70] TOTTORI S, ZHANG L, QIU F, et al. Magnetic helical micromachines: fabrication, c ontrolled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6): 81 1-816.
[71] CHEANG U K, ROY D, LEE J H, et al. Fabrication and magnetic control of bacteria -inspired robotic microswimmers[J]. Applied Physics Letters, 2010, 97(21).
[72] DONALD B R, LEVEY C G, MCGRAY C D, et al. An untethered, electrostatic, global -ly controllable MEMS micro-robot[J]. Journal of microelectromechanical system s, 2006, 15(1):1-15.
[73] KIM D H, CHEANG U K, KŐHIDAI L, et al. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: A tool for fabricat ion of micro-biorobots[J]. Applied Physics Letters, 2010, 97(17).
[74] MAGDANZ V, KHALIL I S, SIMMCHEN J, et al. IRONSperm: Sperm-templated soft magnetic microrobots[J]. Science Advances, 2020, 6(28): eaba5855.
[75] LAUBACK S, MATTIOLI K R, MARRAS A E, et al. Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers[J]. Nature Com munications, 2018,9(1): 1446.
[76] PAWASHE C, FLOYD S, SITTI M. Multiple magnetic microrobot control using elec trostatic anchoring[J]. Applied Physics Letters, 2009, 94(16).
[77] FLOYD S, DILLER E, PAWASHE C, et al. Control methodologies for a heterogeneo us group of untethered magnetic micro-robots[J]. The International Journal of R obotics Research, 2011,30(13): 1553-1565.
[78] BACHMANN F, GILTINAN J, CODUTTI A, et al. Opportunities and utilization of br anching and step-out behavior in magnetic microswimmers with a nonlinear res ponse[J]. Applied Physics Letters, 2021, 118(17).
[79] FAN X, JIANG Y, LI M, et al. Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces[J]. Science Advances, 2022, 8(37): eabq1677.
[80] TUNG H W, PEYER K E, SARGENT D F, et al. Noncontact manipulation using a tra nsversely magnetized rolling robot[J]. Applied Physics Letters, 2013, 103(11).
[81] WANG X, HU C, SCHURZ L, et al. Surface-chemistry-mediated control of individ ual magnetic helical microswimmers in a swarm[J]. ACS Nano, 2018, 12(6): 6210- 6217.
[82] ZHAO H, YE M, NELSON B J, et al. A Selectively Controllable Triple-Helical Micro motor [J]. IEEE Robotics and Automation Letters, 2024, 9(5): 4742-4749.
[83] CERON S, GARDI G, PETERSEN K, et al. Programmable self-organization of heter ogeneous microrobot collectives[J]. Proceedings of the National Academy of Sci ences, 2023, 120(24):e2221913120.
[84] GU H, HANEDAN E, BOEHLER Q, et al. Artificial microtubules for rapid and collec tive transport of magnetic microcargoes[J]. Nature Machine Intelligence, 2022, (8): 678-684.
[85] DOGANGIL G, ERGENEMAN O, ABBOTT J J, et al. Toward targeted retinal drug d elivery with wireless magnetic microrobots[C]//2008 IEEE/RSJ International Conf erence on Intelligent Robots and Systems. IEEE, 2008: 1921-1926.
[86] SERVANT A, QIU F, MAZZA M, et al. Controlled in vivo swimming of a swarm of bacteria like microrobotic flagella[J]. Advanced Materials, 2015, 27(19): 2981-298 8.
[87] CHARREYRON S L, BOEHLER Q, DANUN A N, et al. A magnetically navigated mic ro cannula for subretinal injections[J]. IEEE transactions on Biomedical Engineeri ng, 2020, 68(1):119-129.
[88] WREDE P, DEGTYARUK O, KALVA S K, et al. Real-time 3D optoacoustic tracking o f cell sized magnetic microrobots circulating in the mouse brain vasculature[J]. Science Advances,2022, 8(19): eabm9132.
[89] AZIZ A, HOLTHOF J, MEYER S, et al. Dual ultrasound and photoacoustic tracking of magnetically driven micromotors: from in vitro to in vivo[J]. Advanced Health care Materials, 2021,10(22): 2101077.
[90] AZIZ A, MEDINA-SÁNCHEZ M, KOUKOURAKIS N, et al. Real-time IR tracking of s ingle reflective micromotors through scattering tissues[J]. Advanced Functional Materials, 2019, 29(51): 1905272.
[91] MOROZOV K I, MIRZAE Y, KENNETH O, et al. Dynamics of arbitrary shaped prop ellers driven by a rotating magnetic field[J]. Physical Review Fluids, 2017, 2(4): 04 4202.
[92] LEE S H, WU T. Drag Force on a Sphere Moving in Low-Reynolds-Number Pipe F lows[J].Journal of Mechanics, 2011, 23(4): 423-432.
[93] PEYER K E, ZHANG L, NELSON B J. Bio-inspired magnetic swimming microrobots for biomedical applications[J]. Nanoscale, 2013, 5(4): 1259-1272.
[94] THOMSON W, Baron Kelvin. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light[M]. Cambridge University Press, 2010: 436-467.
[95] SACHS J, MOROZOV K I, KENNETH O, et al. Role of symmetry in driven propulsi on at low Reynolds number[J]. Physical Review E, 2018, 98(6): 063105.
[96] CHEN Z, WANG Z, QUASHIE JR D, et al. Propulsion of magnetically actuated achi ral planar microswimmers in Newtonian and non-Newtonian fluids[J]. Scientific Reports, 2021, 11(1):21190.
[97] BRADFORD Y M, TORO S, RAMACHANDRAN S, et al. Zebrafish models of huma n disease:gaining insight into human disease at ZFIN[J]. ILAR journal, 2017, 58 (1): 4-16.
[98] DUYGU Y C, CHEANG U K, LESHANSKY A M, et al. Propulsion of Planar V-Shape d Microswimmers in a Conically Rotating Magnetic Field[J]. Advanced Intelligent Systems,2023: 2300496.
[99] YANG L, YU J, YANG S, et al. A survey on swarm microrobotics[J]. IEEE Transactio ns on Robotics, 2021, 38(3): 1531-1551.
修改评论