中文版 | English
题名

基于磁场驱动的非手性微型机器人磁矩耦合及运动控制研究

其他题名
RESEARCH ON MAGNETIC MOMENT COUPLING AND MOTION CONTROL OF ACHIRAL MICROROBOTS DRIVEN BY MAGNETIC FIELD
姓名
姓名拼音
WANG Biao
学号
12132294
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
郑裕基
导师单位
机械与能源工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  磁性微型机器人在复杂流体中的运动控制促进了其在靶向治疗中的应用。对于具有单一运动形式的微型机器人很难在复杂环境中进行控制,例如,翻越障碍物或穿越狭窄通道。具有多模态运动形式的微型机器人能够在复杂环境中进行多样性的微操作,进而为生物医疗领域提供潜在的应用可能。
  使用光刻-刻蚀-磁控溅射三种微纳加工工艺制备出微型机器人,并对其进行了理化性质的表征。对微型机器人进行了粗糙度、硬度、热稳定性以及生物相容性测试分析,结果表明制备出的微型机器人能够满足在磁场下运动的需求,且具备良好的生物相容性。
  对不同磁矩耦合的微型机器人在非牛顿流体中进行了运动分析。在0.6% w/v 的甲基纤维素溶液中对沿长臂磁化、长轴磁化、短轴磁化和垂直面外磁化的微型机器人在均匀旋转磁场下进行运动控制,结果发现耦合的磁矩如果与旋转主轴之一平行,微型机器人在均匀旋转磁场下没有净位移,沿长臂磁化的微型机器人虽然能够运动产生净位移但对磁场的顺时针和逆时针反转不敏感。
  锥形磁场的控制策略实现了对不同磁矩耦合的微型机器人的有效控制。将均
匀旋转磁场与静态磁场叠加形成锥形磁场,无游泳净推进的微型机器人在锥形磁场的控制下实现了游泳运动,且方向能够得到有效的控制。在斑马鱼胚胎的卵黄中使用锥形磁场实现了非手性微型机器人的运动控制,且在微型机器人运动过程中保持了斑马鱼的存活。
  不同磁矩耦合的微型机器人具有不同的运动模态,以此实现了微型机器人的
多样性操作。磁化方向不同的四种微型机器人在均匀旋转磁场下表现出两种运动模态,且速度和截止频率差异明显,利用这一性质,实现了微型机器人在狭窄流道中的运动以及在Y 形流道中的选择性控制。微型机器人在底面滚动时能够在身体周围产生多个涡旋,实现对多个聚苯乙烯微球的非接触式运载。沿长臂磁化的微型机器人在均匀旋转磁场下的运动方向由磁化边的朝向所引导,利用这一原理,实现了两个长臂磁化微型机器人的协同运动以及微型机器人群的三级分离。这些多样性的微型机器人操作对于未来在疏通血管、转移病灶、运输易碎物质等方面具有巨大的应用前景。
其他摘要

   Motion control of magnetic microrobots in complex fluids promotes their use in targeted therapies. It is difficult for microrobots with a single form of motion to be controlled in complex environments, for example, over obstacles or through narrow channels. Microrobots with multimodal forms of locomotion can perform diverse micromanipulations in complex environments, which offer potential applications in the biomedical field.

  Microrobots were fabricated using photolithography, etching, and magnetron sputtering techniques, and their physicochemical properties were characterized. The roughness, hardness, thermal stability, and biocompatibility of the microrobots were analyzed, and the results showed that the prepared microrobots can meet the requirements for motion under magnetic field and have good biocompatibility.

   The locomotion of microrobots with different magnetic moment couplings was analyzed in non-Newtonian fluids. The motion control of microrobots with long-arm magnetization, long-axis magnetization, short-axis magnetization, and out-of-plane magnetization was investigated in a uniform rotating magnetic field in a 0.6% w/v methylcellulose solution. The results showed that if the coupled magnetic moment is parallel to one of the rotating axes, the microrobots have no net displacement in the uniform rotating magnetic field. Microrobots with long-arm magnetization can generate a net displacement but are insensitive to the clockwise and counterclockwise reversals of the magnetic field.

    A conical magnetic field control strategy was implemented to effectively control microrobots with different magnetic moment couplings. A conical magnetic field was generated by superimposing a uniform rotating magnetic field with a static magnetic field. Microrobots with no net propulsion were able to achieve swimming motion under the control of the conical magnetic field, and their direction could be effectively controlled. The conical magnetic field was successfully employed to control the motion of achiral microrobots in zebrafish embryo yolk while maintaining zebrafish survival during the microrobot motion process.

     Microrobots with different magnetic moment couplings exhibit multimodal motions, enabling diverse micromanipulations. Four types of microrobots with different magnetization directions exhibit two distinct locomotion modes under a uniform rotating magnetic field, with significant differences in speed and step-out frequency. This property is used to achieve microrobot locomotion in narrow channels and selective control in Y-shaped channels. Rolling microrobots generate multiple vortices around their bodies, enabling non-contact transportation of multiple polystyrene microspheres. The locomotion direction of long-arm magnetized microrobots in a uniform rotating magnetic field is guided by the orientation of the magnetized arm. This principle is utilized to achieve cooperative motion of two long-arm magnetized microrobots and three-level separation of microrobot swarms. These diverse microrobot manipulations hold immense potential for future applications in tasks such as vascular recanalization, tumor targeting, and transportation of fragile materials.
 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN esti mates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. C A: a cancer journal for clinicians, 2021, 71(3): 209-249.
[2] NAIR P R. Delivering combination chemotherapies and targeting oncogenic path ways via polymeric drug delivery systems[J]. Polymers, 2019, 11(4): 630.
[3] ZHAO M, LIU M. New avenues for nanoparticle-related therapies[J]. Nanoscale Re search Letters, 2018, 13(1): 136.
[4] KWON I K, LEE S C, HAN B, et al. Analysis on the current status of targeted drug d elivery to tumors[J]. Journal of Controlled Release, 2012, 164(2): 108-114.
[5] RUENRAROENGSAK P, COOK J M, FLORENCE A T. Nanosystem drug targeting: fac ing up to complex realities[J]. Journal of Controlled Release, 2010, 141(3): 265-27 6.
[6] FEYNMAN R. There’s plenty of room at the bottom[M]//Feynman and computat ion. CRC Press, 2018: 63-76.
[7] NGUYEN V D, MIN H K, KIM H Y, et al. Primary macrophage-based microrobots: a n effective tumor therapy in vivo by dual-targeting function and near-infrared-tri ggered drug release[J].ACS Nano, 2021, 15(5): 8492-8506.
[8] GO G, YOO A, NGUYEN K T, et al. Multifunctional microrobot with real-time visual ization and magnetic resonance imaging for chemoembolization therapy of liver cancer[J]. Science Advances, 2022, 8(46): eabq8545.
[9] WANG Q, WANG B, YU J, et al. Reconfigurable magnetic microswarm for thrombo lysis under ultrasound imaging[C]//2020 IEEE international conference on robotic s and automation(ICRA). IEEE, 2020: 10285-10291.
[10] SOTO F, WANG J, AHMED R, et al. Medical micro/nanorobots in precision medici ne[J].Advanced Science, 2020, 7(21): 2002203.
[11] CHIKERE N, OZKAN-AYDIN Y. Harnessing Flagella Dynamics for Enhanced Robot Locomotion at Low Reynolds Number[J]. IEEE Robotics and Automation Letters, 2024.
[12] PURCELL E M. Life at low Reynolds number[J]. American Journal of Physics, 197 7, 45(1):3-11.
[13] CHEANG U K, MESHKATI F, KIM D, et al. Minimal geometric requirements for mi cro-propulsion via magnetic rotation[J]. Physical Review E, 2014, 90(3): 033007.
[14] TOTTORI S, NELSON B J. Controlled Propulsion of Two-Dimensional Microswim mers in a Precessing Magnetic Field[J]. Small, 2018, 14(24): 1800722.
[15] SONG X, CHEN Z, ZHANG X, et al. Magnetic tri-bead microrobot assisted near-i nfrared triggered combined photothermal and chemotherapy of cancer cells[J]. Scientific Reports, 2021,11(1): 7907.
[16] CHEN Z, SONG X, MU X, et al. 2D Magnetic Microswimmers for Targeted Cell Tr ansport and 3D Cell Culture Structure Construction[J]. ACS Applied Materials & I nterfaces, 2023, 15(7): 8840-8853.
[17] SONG X, QIAN R, LI T, et al. Imaging-guided biomimetic M1 macrophage memb rane camouflaged magnetic nanorobots for photothermal immunotargeting can cer therapy[J]. ACS Applied Materials & Interfaces, 2022, 14(51): 56548-56559.
[18] BARBOT A, DECANINI D, HWANG G. On-chip microfluidic multimodal swimmer t oward 3D navigation[J]. Scientific Reports, 2016, 6(1): 19041.
[19] SITTI M, CEYLAN H, HU W, et al. Biomedical applications of untethered mobile milli/microrobots[J]. Proceedings of the IEEE, 2015, 103(2): 205-224.
[20] BOZUYUK U, WREDE P, YILDIZ E, et al. Roadmap for Clinical Translation of Mobil e Microrobotics[J]. Advanced Materials, 2024: 2311462.
[21] FISCHER P, GHOSH A. Magnetically actuated propulsion at low Reynolds numbe rs: towards nanoscale control[J]. Nanoscale, 2011, 3(2): 557-563.
[22] WANG W, CASTRO L A, HOYOS M, et al. Autonomous motion of metallic micror ods propelled by ultrasound[J]. ACS Nano, 2012, 6(7): 6122-6132.
[23] KAGAN D, BENCHIMOL M J, CLAUSSEN J C, et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue pene tration and deformation[J]. Angewandte Chemie (International ed. in English), 2 012, 51(30): 7519.
[24] SCHATTLING P S, RAMOS-DOCAMPO M A, SALGUEIRINO V, et al. Double-fuele d Janus swimmers with magnetotactic behavior[J]. ACS Nano, 2017, 11(4): 3973- 3983.
[25] MA X, JANNASCH A, ALBRECHT U R, et al. Enzyme-powered hollow mesoporou s Janus nanomotors[J]. Nano Letters, 2015, 15(10): 7043-7050.
[26] SENGUPTA S, SPIERING M M, DEY K K, et al. DNA polymerase as a molecular mo tor and pump[J]. ACS Nano, 2014, 8(3): 2410-2418.
[27] AUBRY M, WANG W A, GUYODO Y, et al. Engineering E. coli for magnetic contro l and the spatial localization of functions[J]. ACS Synthetic Biology, 2020, 9(11): 3 030-3041.
[28] MITTELSTEIN D R, YE J, SCHIBBER E F, et al. Selective ablation of cancer cells wit h low intensity pulsed ultrasound[J]. Applied Physics Letters, 2020, 116(1).
[29] DIN M O, DANINO T, PRINDLE A, et al. Synchronized cycles of bacterial lysis for i n vivo delivery[J]. Nature, 2016, 536(7614): 81-85.
[30] DIN M O, MARTIN A, RAZINKOV I, et al. Interfacing gene circuits with microelect ronics through engineered population dynamics[J]. Science Advances, 2020, 6(2 1): eaaz8344.
[31] ZHENG L, CHEN L G, HUANG H B, et al. An overview of magnetic micro-robot sy stems for biomedical applications[J]. Microsystem Technologies, 2016, 22: 2371- 2387.
[32] HOU Y, WANG H, FU R, et al. A review on microrobots driven by optical and ma gnetic fields[J]. Lab on a Chip, 2023, 23(5): 848-868.
[33] SHEN H, CAI S, WANG Z, et al. Magnetically driven microrobots: Recent progress and future development[J]. Materials & Design, 2023, 227: 111735.
[34] WANG Z, MU X, TAN L, et al. A rolled-up-based fabrication method of 3D helical microrobots[J]. Frontiers in Robotics and AI, 2022, 9: 1063987.
[35] CHEN J, HU H, WANG Y. Magnetic-driven 3D-printed biodegradable swimming microrobots[J]. Smart Materials and Structures, 2023, 32(8): 085014.
[36] LIU X, WANG C, ZHANG Z. Biohybrid microrobots driven by sperm[J]. Untethere d Small Scale Robots for Biomedical Applications, 2023: 63-75.
[37] HONDA T, ARAI K, ISHIYAMA K. Micro swimming mechanisms propelled by exte rnal magnetic fields[J]. IEEE Transactions on Magnetics, 1996, 32(5): 5085-5087.
[38] KOEPELE C A, GUIX M, BI C, et al. 3D-printed microrobots with integrated struct ural color for identification and tracking[J]. Advanced Intelligent Systems, 2020, 2(5): 1900147.
[39] HUANG T Y, QIU F, TUNG H W, et al. Cooperative manipulation and transport of microobjects using multiple helical microcarriers[J]. Rsc Advances, 2014, 4(51): 2 6771-26776.
[40] HUANG T Y, SAKAR M S, MAO A, et al. 3D printed microtransporters: Compoun d micromachines for spatiotemporally controlled delivery of therapeutic agents [J]. Advanced Materials(Deerfield Beach, Fla.), 2015, 27(42): 6644.
[41] DONG X, SITTI M. Controlling two-dimensional collective formation and cooper ative behavior of magnetic microrobot swarms[J]. The International Journal of R obotics Research, 2020,39(5): 617-638.
[42] XIE H, SUN M, FAN X, et al. Reconfigurable magnetic microrobot swarm: Multim ode transformation, locomotion, and manipulation[J]. Science Robotics, 2019, 4 (28): eaav8006.
[43] CHEANG U K, DEJAN M, CHOI J, et al. Towards model-based control of achiral m icroswimmers[C]//Dynamic Systems and Control Conference: Vol. 46193. Americ an Society of Mechanical Engineers, 2014: V002T33A002.
[44] CHEANG U K, KIM H, MILUTINOVIĆ D, et al. Feedback control of an achiral robot ic microswimmer[J]. Journal of Bionic Engineering, 2017, 14(2): 245-259.
[45] WANG Q, YANG L, YU J, et al. Characterizing dynamic behaviors of three-particle paramagnetic microswimmer near a solid surface[J]. Robotics and Biomimetics, 2017, 4: 1-11.
[46] MESHKATI F, FU H C. Modeling rigid magnetically rotated microswimmers: Rotat ion axes,bistability, and controllability[J]. Physical Review E, 2014, 90(6): 063006.
[47] MIRZAE Y, DUBROVSKI O, KENNETH O, et al. Geometric constraints and optimiz ation in externally driven propulsion[J]. Science Robotics, 2018, 3(17): eaas8713.
[48] XIONG J, SONG X, CAI Y, et al. Stop-flow lithography for the continuous product ion of Degradable hydrogel achiral Crescent microswimmers[J]. Micromachines, 2022, 13(5): 798.
[49] MU X, WANG Z, ZHONG Y, et al. Development of 2D MOF-based microrobots u nder an nealing treatment and their biomedical application[J]. Industrial & Engi neering Chemistry Research, 2021, 60(26): 9465-9474.
[50] LI J, LI X, LUO T, et al. Development of a magnetic microrobot for carrying and d elivering targeted cells[J]. Science Robotics, 2018, 3(19): eaat8829.
[51] DILLER E, SITTI M. Three-dimensional programmable assembly by untethered m agnetic robotic micro-grippers[J]. Advanced Functional Materials, 2014, 24(28): 4397-4404.
[52] ZHENG Z, WANG H, DONG L, et al. Ionic shape-morphing microrobotic end-effe ctors for environmentally adaptive targeting, releasing, and sampling[J]. Nature Communications, 2021,12(1): 411.
[53] WANG Q, CHAN K F, SCHWEIZER K, et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery[J]. Scienc e Advances, 2021, 7(9):eabe5914.
[54] LI D, NIU F, LI J, et al. Gradient-enhanced electromagnetic actuation system with a new core shape design for microrobot manipulation[J]. IEEE Transactions on In dustrial Electronics,2019, 67(6): 4700-4710.
[55] LI T, LI J, ZHANG H, et al. Magnetically propelled fish-like nanoswimmers[J]. Sma ll, 2016,12(44): 6098-6105.
[56] XING L, LIAO P, MO H, et al. Preformation Characterization of a Torque-Driven M agnetic Microswimmer With Multi-Segment Structure[J]. IEEE Access, 2021, 9: 29 279-29292.
[57] REN Z, HU W, DONG X, et al. Multi-functional soft-bodied jellyfish-like swimmin g[J]. Nature Communications, 2019, 10(1): 2703.
[58] YANG X, SHANG W, LU H, et al. An agglutinate magnetic spray transforms inani mate objects into millirobots for biomedical applications[J]. Science Robotics, 20 20, 5(48): eabc8191.
[59] JIN D, YU J, YUAN K, et al. Mimicking the structure and function of ant bridges i n a recon-figurable microswarm for electronic applications[J]. ACS Nano, 2019, 1 3(5): 5999-6007.
[60] YE C, LIU J, WU X, et al. Hydrophobicity influence on swimming performance of magnetically driven miniature helical swimmers[J]. Micromachines, 2019, 10(3): 175.
[61] XU T, HAO Z, HUANG C, et al. Multimodal locomotion control of needle-like mic rorobots assembled by ferromagnetic nanoparticles[J]. IEEE/ASME Transactions on Mechatronics, 2022,27(6): 4327-4338.
[62] XU T, HUANG C, LAI Z, et al. Independent control strategy of multiple magnetic flexible millirobots for position control and path following[J]. IEEE Transactions o n Robotics, 2022,38(5): 2875-2887.
[63] ZHAO H, LI J, CHEN Z, et al. Design of a Versatile Microrobot for Cargo Delivery [J].IEEE/ASME Transactions on Mechatronics, 2023: 1-12.
[64] YAN X, ZHOU Q, VINCENT M, et al. Multifunctional biohybrid magnetite microro bots for imaging-guided therapy[J]. Science Robotics, 2017, 2(12): eaaq1155.
[65] YU J, JIN D, CHAN K F, et al. Active generation and magnetic actuation of micror obotic swarms in bio-fluids[J]. Nature Communications, 2019, 10(1): 5631.
[66] SU L, JIN D, WANG Y, et al. Modularized microrobot with lock-and-detachable m odules for targeted cell delivery in bile duct[J]. Science Advances, 2023, 9(50): ea dj0883.
[67] XING J, YIN T, LI S, et al. Sequential magneto-actuated and optics-triggered bio microrobots for targeted cancer therapy[J]. Advanced Functional Materials, 202 1, 31(11): 2008262.
[68] WU Z, ZHANG Y, AI N, et al. Magnetic mobile microrobots for upstream and do wnstream navigation in biofluids with variable flow rate[J]. Advanced Intelligent Systems, 2022, 4(7):2100266.
[69] BELL D J, LEUTENEGGER S, HAMMAR K, et al. Flagella-like propulsion for micror obots using a nanocoil and a rotating electromagnetic field[C]//Proceedings 200 7 IEEE international conference on robotics and automation. IEEE, 2007: 1128-11 33.
[70] TOTTORI S, ZHANG L, QIU F, et al. Magnetic helical micromachines: fabrication, c ontrolled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6): 81 1-816.
[71] CHEANG U K, ROY D, LEE J H, et al. Fabrication and magnetic control of bacteria -inspired robotic microswimmers[J]. Applied Physics Letters, 2010, 97(21).
[72] DONALD B R, LEVEY C G, MCGRAY C D, et al. An untethered, electrostatic, global -ly controllable MEMS micro-robot[J]. Journal of microelectromechanical system s, 2006, 15(1):1-15.
[73] KIM D H, CHEANG U K, KŐHIDAI L, et al. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: A tool for fabricat ion of micro-biorobots[J]. Applied Physics Letters, 2010, 97(17).
[74] MAGDANZ V, KHALIL I S, SIMMCHEN J, et al. IRONSperm: Sperm-templated soft magnetic microrobots[J]. Science Advances, 2020, 6(28): eaba5855.
[75] LAUBACK S, MATTIOLI K R, MARRAS A E, et al. Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers[J]. Nature Com munications, 2018,9(1): 1446.
[76] PAWASHE C, FLOYD S, SITTI M. Multiple magnetic microrobot control using elec trostatic anchoring[J]. Applied Physics Letters, 2009, 94(16).
[77] FLOYD S, DILLER E, PAWASHE C, et al. Control methodologies for a heterogeneo us group of untethered magnetic micro-robots[J]. The International Journal of R obotics Research, 2011,30(13): 1553-1565.
[78] BACHMANN F, GILTINAN J, CODUTTI A, et al. Opportunities and utilization of br anching and step-out behavior in magnetic microswimmers with a nonlinear res ponse[J]. Applied Physics Letters, 2021, 118(17).
[79] FAN X, JIANG Y, LI M, et al. Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces[J]. Science Advances, 2022, 8(37): eabq1677.
[80] TUNG H W, PEYER K E, SARGENT D F, et al. Noncontact manipulation using a tra nsversely magnetized rolling robot[J]. Applied Physics Letters, 2013, 103(11).
[81] WANG X, HU C, SCHURZ L, et al. Surface-chemistry-mediated control of individ ual magnetic helical microswimmers in a swarm[J]. ACS Nano, 2018, 12(6): 6210- 6217.
[82] ZHAO H, YE M, NELSON B J, et al. A Selectively Controllable Triple-Helical Micro motor [J]. IEEE Robotics and Automation Letters, 2024, 9(5): 4742-4749.
[83] CERON S, GARDI G, PETERSEN K, et al. Programmable self-organization of heter ogeneous microrobot collectives[J]. Proceedings of the National Academy of Sci ences, 2023, 120(24):e2221913120.
[84] GU H, HANEDAN E, BOEHLER Q, et al. Artificial microtubules for rapid and collec tive transport of magnetic microcargoes[J]. Nature Machine Intelligence, 2022, (8): 678-684.
[85] DOGANGIL G, ERGENEMAN O, ABBOTT J J, et al. Toward targeted retinal drug d elivery with wireless magnetic microrobots[C]//2008 IEEE/RSJ International Conf erence on Intelligent Robots and Systems. IEEE, 2008: 1921-1926.
[86] SERVANT A, QIU F, MAZZA M, et al. Controlled in vivo swimming of a swarm of bacteria like microrobotic flagella[J]. Advanced Materials, 2015, 27(19): 2981-298 8.
[87] CHARREYRON S L, BOEHLER Q, DANUN A N, et al. A magnetically navigated mic ro cannula for subretinal injections[J]. IEEE transactions on Biomedical Engineeri ng, 2020, 68(1):119-129.
[88] WREDE P, DEGTYARUK O, KALVA S K, et al. Real-time 3D optoacoustic tracking o f cell sized magnetic microrobots circulating in the mouse brain vasculature[J]. Science Advances,2022, 8(19): eabm9132.
[89] AZIZ A, HOLTHOF J, MEYER S, et al. Dual ultrasound and photoacoustic tracking of magnetically driven micromotors: from in vitro to in vivo[J]. Advanced Health care Materials, 2021,10(22): 2101077.
[90] AZIZ A, MEDINA-SÁNCHEZ M, KOUKOURAKIS N, et al. Real-time IR tracking of s ingle reflective micromotors through scattering tissues[J]. Advanced Functional Materials, 2019, 29(51): 1905272.
[91] MOROZOV K I, MIRZAE Y, KENNETH O, et al. Dynamics of arbitrary shaped prop ellers driven by a rotating magnetic field[J]. Physical Review Fluids, 2017, 2(4): 04 4202.
[92] LEE S H, WU T. Drag Force on a Sphere Moving in Low-Reynolds-Number Pipe F lows[J].Journal of Mechanics, 2011, 23(4): 423-432.
[93] PEYER K E, ZHANG L, NELSON B J. Bio-inspired magnetic swimming microrobots for biomedical applications[J]. Nanoscale, 2013, 5(4): 1259-1272.
[94] THOMSON W, Baron Kelvin. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light[M]. Cambridge University Press, 2010: 436-467.
[95] SACHS J, MOROZOV K I, KENNETH O, et al. Role of symmetry in driven propulsi on at low Reynolds number[J]. Physical Review E, 2018, 98(6): 063105.
[96] CHEN Z, WANG Z, QUASHIE JR D, et al. Propulsion of magnetically actuated achi ral planar microswimmers in Newtonian and non-Newtonian fluids[J]. Scientific Reports, 2021, 11(1):21190.
[97] BRADFORD Y M, TORO S, RAMACHANDRAN S, et al. Zebrafish models of huma n disease:gaining insight into human disease at ZFIN[J]. ILAR journal, 2017, 58 (1): 4-16.
[98] DUYGU Y C, CHEANG U K, LESHANSKY A M, et al. Propulsion of Planar V-Shape d Microswimmers in a Conically Rotating Magnetic Field[J]. Advanced Intelligent Systems,2023: 2300496.
[99] YANG L, YU J, YANG S, et al. A survey on swarm microrobotics[J]. IEEE Transactio ns on Robotics, 2021, 38(3): 1531-1551.

所在学位评定分委会
力学
国内图书分类号
TP242
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766181
专题工学院_机械与能源工程系
工学院
推荐引用方式
GB/T 7714
王彪. 基于磁场驱动的非手性微型机器人磁矩耦合及运动控制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132294-王彪-机械与能源工程系(5325KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王彪]的文章
百度学术
百度学术中相似的文章
[王彪]的文章
必应学术
必应学术中相似的文章
[王彪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。