[1] ABBOTT B P, ABBOTT R, ABBOTT T, et al. Observation of gravitational waves from a binaryblack hole merger[J]. Physical review letters, 2016, 116(6): 061102.
[2] COLLABORATION E H T, et al. First M87 event horizon telescope results. IV. Imaging thecentral supermassive black hole[A]. 2019.
[3] ABBOTT B P, ABBOTT R, ABBOTT T, et al. GW170817: observation of gravitational wavesfrom a binary neutron star inspiral[J]. Physical review letters, 2017, 119(16): 161101.
[4] WEINBERG S. The cosmological constant problem[J]. Reviews of modern physics, 1989, 61(1): 1.
[5] MARTIN J. Everything you always wanted to know about the cosmological constant problem(but were afraid to ask)[J]. Comptes Rendus Physique, 2012, 13(6-7): 566-665.
[6] DI VALENTINO E, MENA O, PAN S, et al. In the realm of the Hubble tension—a review ofsolutions[J]. Classical and Quantum Gravity, 2021, 38(15): 153001.
[7] SHANKARANARAYANAN S, JOHNSON J P. Modified theories of gravity: Why, how andwhat?[J]. General Relativity and Gravitation, 2022, 54(5): 44.
[8] HEISENBERG L. Generalization of the Proca action[J]. Journal of Cosmology and Astropar ticle Physics, 2014, 2014(05): 015.
[9] DE RHAM C, POZSGAY V. New class of Proca interactions[J]. Physical Review D, 2020, 102(8): 083508.
[10] DE RHAM C, GARCIA-SAENZ S, HEISENBERG L, et al. Cosmology of Extended Proca Nuevo[J]. Journal of Cosmology and Astroparticle Physics, 2022, 2022(03): 053.
[11] DE RHAM C, GABADADZE G, TOLLEY A J. Ghost free massive gravity in the Stückelberglanguage[J]. Physics Letters B, 2012, 711(2): 190-195.
[12] DE RHAM C, GABADADZE G, TOLLEY A J. Helicity decomposition of ghost-free massivegravity[J]. Journal of High Energy Physics, 2011, 2011(11): 1-35.
[13] DE RHAM C, MATAS A. Ostrogradsky in theories with multiple fields[J]. Journal of Cosmol ogy and Astroparticle Physics, 2016, 2016(06): 041.
[14] HEISENBERG L, KASE R, TSUJIKAWA S. Beyond generalized Proca theories[J]. PhysicsLetters B, 2016, 760: 617-626.
[15] HEISENBERG L, KASE R, TSUJIKAWA S. Absence of solid angle deficit singularities inbeyond-generalized Proca theories[J]. Physical Review D, 2016, 94(12): 123513.
[16] KIMURA R, NARUKO A, YOSHIDA D. Extended vector-tensor theories[J]. Journal of Cos mology and Astroparticle Physics, 2017, 2017(01): 002.
[17] SEIFERT M D. Lorentz-violating gravity and the bootstrap procedure[J]. Classical and Quan tum Gravity, 2020, 37(6): 065022.
[18] CADAVID A G, RODRÍGUEZ Y. A systematic procedure to build the beyond generalizedProca field theory[J]. Physics Letters B, 2019, 798: 134958.
[19] ALLYS E, PETER P, RODRIGUEZ Y. Generalized SU (2) proca theory[J]. Physical ReviewD, 2016, 94(8): 084041.
[20] JIMENEZ J B, HEISENBERG L. Generalized multi-Proca fields[J]. Physics Letters B, 2017,770: 16-26.
[21] RODRÍGUEZ Y, NAVARRO A A. Non-Abelian S-term dark energy and inflation[J]. Physicsof the dark universe, 2018, 19: 129-136.
[22] DÍEZ V E, GORDING B, MÉNDEZ-ZAVALETA J A, et al. Maxwell-Proca theory: Definitionand construction[J]. Physical Review D, 2020, 101(4): 045009.
[23] DÍEZ V E, GORDING B, MÉNDEZ-ZAVALETA J A, et al. Complete theory of Maxwell andProca fields[J]. Physical Review D, 2020, 101(4): 045008.
[24] GÓMEZ L G, RODRÍGUEZ Y. Stability conditions in the generalized S U (2) Proca theory[J].Physical Review D, 2019, 100(8): 084048.
[25] CADAVID A G, RODRIGUEZ Y, GÓMEZ L G. Generalized SU (2) Proca theory reconstructedand beyond[J]. Physical Review D, 2020, 102(10): 104066.
[26] CADAVID A G, NIETO C M, RODRÍGUEZ Y. Decoupling-limit consistency of the general ized SU (2) Proca theory[J]. Physical Review D, 2022, 105(10): 104051.
[27] MARTÍNEZ J N, RODRÍGUEZ J F, RODRÍGUEZ Y, et al. Particle-like solutions in the gen eralized SU (2) Proca theory[J]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(04): 032.
[28] GÓMEZ G, RODRÍGUEZ J F. New non-Abelian Reissner-Nordström black hole solutions inthe generalized SU (2) Proca theory and some astrophysical implications[J]. Physical ReviewD, 2023, 108(2): 024069.
[29] AMADO A, HAGHANI Z, MOHAMMADI A, et al. Quantum corrections to the generalizedProca theory via a matter field[J]. Physics Letters B, 2017, 772: 141-151.
[30] DE RHAM C, MELVILLE S, TOLLEY A J, et al. Massive Galileon positivity bounds[J].Journal of High Energy Physics, 2017, 2017(9): 1-32.
[31] DE RHAM C, MELVILLE S, TOLLEY A J. Improved positivity bounds and massive gravity[J]. Journal of High Energy Physics, 2018, 2018(4): 1-30.
[32] DE RHAM C, MELVILLE S, TOLLEY A J, et al. Positivity bounds for massive spin-1 andspin-2 fields[J]. Journal of High Energy Physics, 2019, 2019(3): 1-37.
[33] RUF M S, STEINWACHS C F. Renormalization of generalized vector field models in curvedspacetime[J]. Physical Review D, 2018, 98(2): 025009.
[34] ERRASTI DÍEZ V, MARINKOVIC M K. Symplectic quantization of multifield generalizedProca electrodynamics[J]. Physical Review D, 2022, 105(10): 105022.
[35] LOVELOCK D. The four-dimensionality of space and the Einstein tensor[J]. Journal of Math ematical Physics, 1972, 13(6): 874-876.
[36] SOTIRIOU T P, FARAONI V. f (R) theories of gravity[J]. Reviews of Modern Physics, 2010,82(1): 451.
[37] HORNDESKI G W. Second-order scalar-tensor field equations in a four-dimensional space[J].International Journal of Theoretical Physics, 1974, 10: 363-384.
[38] DE RHAM C. Massive gravity[J]. Living reviews in relativity, 2014, 17(1): 1-189.
[39] HEISENBERG L. A systematic approach to generalisations of General Relativity and theircosmological implications[J]. Physics Reports, 2019, 796: 1-113.
[40] DEFFAYET C, GÜMRÜKÇÜOĞLU A E, MUKOHYAMA S, et al. A no-go theorem for gen eralized vector Galileons on flat spacetime[J]. Journal of High Energy Physics, 2014, 2014(4):1-15.
[41] DEFFAYET C, DESER S, ESPOSITO-FARESE G. Arbitrary p-form Galileons[J]. PhysicalReview D, 2010, 82(6): 061501.
[42] DEFFAYET C, MUKOHYAMA S, SIVANESAN V. On p-form theories with gauge invariantsecond order field equations[J]. Physical Review D, 2016, 93(8): 085027.
[43] DE FELICE A, HEISENBERG L, KASE R, et al. Screening fifth forces in generalized Procatheories[J]. Physical Review D, 2016, 93(10): 104016.
[44] HEISENBERG L. Scalar-vector-tensor gravity theories[J]. Journal of Cosmology and Astropar ticle Physics, 2018, 2018(10): 054.
[45] GARCIA-SAENZ S. On the coupling of generalized Proca fields to degenerate scalar-tensortheories[J]. Universe, 2021, 7(6): 190.
[46] JIMÉNEZ J B, DURRER R, HEISENBERG L, et al. Stability of Horndeski vector-tensorinteractions[J]. Journal of Cosmology and Astroparticle Physics, 2013, 2013(10): 064.
[47] EMAMI R, MUKOHYAMA S, NAMBA R, et al. Stable solutions of inflation driven by vectorfields[J]. Journal of Cosmology and Astroparticle Physics, 2017, 2017(03): 058.
[48] DE FELICE A, HEISENBERG L, KASE R, et al. Cosmology in generalized Proca theories[J].Journal of Cosmology and Astroparticle Physics, 2016, 2016(06): 048.
[49] DE FELICE A, HEISENBERG L, KASE R, et al. Effective gravitational couplings for cosmo logical perturbations in generalized Proca theories[J]. Physical Review D, 2016, 94(4): 044024.
[50] HEISENBERG L, KASE R, TSUJIKAWA S. Anisotropic cosmological solutions in massivevector theories[J]. Journal of Cosmology and Astroparticle Physics, 2016, 2016(11): 008.
[51] NAKAMURA S, KASE R, TSUJIKAWA S. Cosmology in beyond-generalized Proca theories[J]. Physical Review D, 2017, 95(10): 104001.
[52] NAKAMURA S, DE FELICE A, KASE R, et al. Constraints on massive vector dark energymodels from integrated Sachs-Wolfe-galaxy cross-correlations[J]. Physical Review D, 2019,99(6): 063533.
[53] KASE R, TSUJIKAWA S. Dark energy in scalar-vector-tensor theories[J]. Journal of Cosmol ogy and Astroparticle Physics, 2018, 2018(11): 024.
[54] DOMÈNECH G, MUKOHYAMA S, NAMBA R, et al. Vector disformal transformation ofgeneralized Proca theory[J]. Physical Review D, 2018, 98(6): 064037.
[55] OLIVEROS A, JARABA M A. Inflation driven by massive vector fields with derivative self interactions[J]. International Journal of Modern Physics D, 2019, 28(04): 1950064.
[56] DE FELICE A, GENG C Q, POOKKILLATH M C, et al. Reducing the H0 tension with gen eralized Proca theory[J]. Journal of Cosmology and Astroparticle Physics, 2020, 2020(08):038.
[57] MINAMITSUJI M. Disformal transformation of stationary and axisymmetric solutions in mod ified gravity[J]. Physical Review D, 2020, 102(12): 124017.
[58] HEISENBERG L, VILLARRUBIA-ROJO H. Proca in the sky[J]. Journal of Cosmology andAstroparticle Physics, 2021, 2021(03): 032.
[59] GARNICA J C, GOMEZ L G, NAVARRO A A, et al. Constant-Roll Inflation in the GeneralizedSU (2) Proca Theory[J]. Annalen der Physik, 2022, 534(2): 2100453.
[60] GENG C Q, HSU Y T, LU J R, et al. A dark energy model from generalized Proca theory[J].Physics of the Dark Universe, 2021, 32: 100819.
[61] OESTREICHER A, CAPUANO L, MATARRESE S, et al. Kinetic field theory: Generic ef fects of alternative gravity theories on non-linear cosmic density-fluctuations[J]. Journal ofCosmology and Astroparticle Physics, 2023, 2023(07): 029.
[62] CHAGOYA J, SABIDO M, SILVA-GARCÍA A. Vector-tensor gravity from a broken gaugesymmetry[J]. Classical and Quantum Gravity, 2023, 40(9): 095007.
[63] CHAGOYA J, NIZ G, TASINATO G. Black holes and Abelian symmetry breaking[J]. Classicaland Quantum Gravity, 2016, 33(17): 175007.
[64] MINAMITSUJI M. Solutions in the generalized Proca theory with the nonminimal coupling tothe Einstein tensor[J]. Physical Review D, 2016, 94(8): 084039.
[65] CISTERNA A, HASSAINE M, OLIVA J, et al. Static and rotating solutions for Vector-Galileontheories[J]. Physical Review D, 2016, 94(10): 104039.
[66] CHAGOYA J, NIZ G, TASINATO G. Black holes and neutron stars in vector galileons[J].Classical and Quantum Gravity, 2017, 34(16): 165002.
[67] HEISENBERG L, KASE R, MINAMITSUJI M, et al. Black holes in vector-tensor theories[J].Journal of Cosmology and Astroparticle Physics, 2017, 2017(08): 024.
[68] HEISENBERG L, KASE R, MINAMITSUJI M, et al. Hairy black-hole solutions in generalizedProca theories[J]. Physical Review D, 2017, 96(8): 084049.
[69] KASE R, MINAMITSUJI M, TSUJIKAWA S. Relativistic stars in vector-tensor theories[J].Physical Review D, 2018, 97(8): 084009.
[70] DE FELICE A, HEISENBERG L, TSUJIKAWA S. Observational constraints on generalizedProca theories[J]. Physical Review D, 2017, 95(12): 123540.
[71] NAKAMURA S, KASE R, TSUJIKAWA S. Suppression of matter couplings with a vectorfield in generalized Proca theories[J]. Physical Review D, 2017, 96(8): 084005.
[72] KASE R, MINAMITSUJI M, TSUJIKAWA S. Black holes in quartic-order beyond-generalizedProca theories[J]. Physics Letters B, 2018, 782: 541-550.
[73] RAHMAN M, SEN A A. Astrophysical signatures of black holes in generalized Proca theories[J]. Physical Review D, 2019, 99(2): 024052.
[74] KASE R, MINAMITSUJI M, TSUJIKAWA S, et al. Black hole perturbations in vector-tensortheories: the odd-mode analysis[J]. Journal of Cosmology and Astroparticle Physics, 2018,2018(02): 048.
[75] KASE R, MINAMITSUJI M, TSUJIKAWA S. Neutron stars with a generalized Proca hair andspontaneous vectorization[J]. Physical Review D, 2020, 102(2): 024067.
[76] GARCIA-SAENZ S, HELD A, ZHANG J. Destabilization of black holes and stars by general ized Proca fields[J]. Physical Review Letters, 2021, 127(13): 131104.
[77] BRIHAYE Y, HARTMANN B, KLEIHAUS B, et al. Horndeski-Proca stars with vector hair[J]. Physical Review D, 2022, 105(4): 044050.
[78] FLEURY P, ALMEIDA J P B, PITROU C, et al. On the stability and causality of scalar-vectortheories[J]. Journal of Cosmology and Astroparticle Physics, 2014, 2014(11): 043.
[79] BABICHEV E, CHARMOUSIS C. Dressing a black hole with a time-dependent Galileon[J].Journal of High Energy Physics, 2014, 2014(8): 1-10.
[80] HENNEAUX M, TEITELBOIM C. Quantization of gauge systems[M]. Princeton universitypress, 1992.
[81] GOLOVNEV A. On the role of constraints and degrees of freedom in the Hamiltonian formal ism[J]. Universe, 2023, 9(2): 101.
[82] DÍEZ V E. (Extended) Proca-Nuevo under the two-dimensional loupe[A]. 2022. arXiv:2212.02549.
[83] TASINATO G. Cosmic acceleration from Abelian symmetry breaking[J]. Journal of HighEnergy Physics, 2014, 2014(4): 1-13.
[84] COMELLI D, CRISOSTOMI M, KOYAMA K, et al. New branches of massive gravity[J].Physical Review D, 2015, 91(12): 121502.
[85] DE RHAM C, GABADADZE G, TOLLEY A J. Resummation of massive gravity[J]. PhysicalReview Letters, 2011, 106(23): 231101.
[86] DE RHAM C, TOLLEY A J, ZHOU S Y. The Λ2 limit of massive gravity[J]. Journal of HighEnergy Physics, 2016, 2016(4): 1-35.
[87] DE RHAM C, FASIELLO M, TOLLEY A J. Stable FLRW solutions in generalized massivegravity[J]. International Journal of Modern Physics D, 2014, 23(13): 1443006.
[88] HASSAN S F, ROSEN R A. Resolving the ghost problem in nonlinear massive gravity[J].Physical review letters, 2012, 108(4): 041101.
[89] GOLOVNEV A, SMIRNOV F. Dealing with ghost-free massive gravity without explicit squareroots of matrices[J]. Physics Letters B, 2017, 770: 209-212.
[90] DE RHAM C, ENGELBRECHT L, HEISENBERG L, et al. Positivity bounds in vector theories[J]. Journal of High Energy Physics, 2022, 2022(12): 1-40.
[91] JIMÉNEZ J B, DE RHAM C, HEISENBERG L. Generalized Proca & its constraint algebra[J].Physics Letters B, 2020, 802: 135244.
[92] HASSAN S F, ROSEN R A. Confirmation of the secondary constraint and absence of ghost inmassive gravity and bimetric gravity[J]. Journal of High Energy Physics, 2012, 2012(4): 1-16.
[93] ANAGNOSTOPOULOS F K, SARIDAKIS E N. Observational constraints on extended Proca Nuevo gravity and cosmology[J]. Journal of Cosmology and Astroparticle Physics, 2024, 2024(04): 051.
修改评论