中文版 | English
题名

NON-HALF PROPAGATING DEGREES OF FREEDOM IN EXTENDED PROCA-NUEVO

其他题名
Extended Proca-Nuevo 理论中不传播半整数自由度
姓名
姓名拼音
WANG Xinmiao
学号
12132943
学位类型
硕士
学位专业
070201 理论物理
学科门类/专业学位类别
07 理学
导师
SEBASTIAN GARCIA SAENZ
导师单位
物理系
论文答辩日期
2024-05-15
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Generalized Proca is a theory describing massive spin-1 field which by construction avoids Ostrogradsky ghost by keeping the equation of motion at most second order. Such theory have rich application potential in both cosmology and astrophysics. For a massive spin-1 field in $D$-dimensional spacetime, the degrees of freedom should be $D-1$. Following the same construction way of massive gravity, Proca-Nuevo is proposed as an alternative vector theory that can be shown inequivalent to Generalized Proca. Later Extend Proca-Nuevo is proposed in order to combine both Generalized Proca and Proca-Nuevo, which cover all Proca-Nuevo interaction and part of Generalized Proca. By construction, such theorem should have the same degrees of freedom as Generalized Proca, however, there is a calculation that shows it may be the first counter-example as a Lorentz parity invariant theory propagating half degrees of freedom. In this thesis, the reason why a parity and Lorentz invariant theory cannot propagate half degrees of freedom will be discussed. The primary and secondary constraints of the theory would be calculated both in the Lagrangian and Hamiltonian formalism showing their second class nature. Such two constraints will ensure the correct propagating degrees of freedom. The proof would include a general analysis in two-dimensional spacetime and the minimal model in arbitrary dimension case. The methods used in the proof may have application to the coupling theory of Extended Proca-Nuevo with gravity.

关键词
语种
英语
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] ABBOTT B P, ABBOTT R, ABBOTT T, et al. Observation of gravitational waves from a binaryblack hole merger[J]. Physical review letters, 2016, 116(6): 061102.
[2] COLLABORATION E H T, et al. First M87 event horizon telescope results. IV. Imaging thecentral supermassive black hole[A]. 2019.
[3] ABBOTT B P, ABBOTT R, ABBOTT T, et al. GW170817: observation of gravitational wavesfrom a binary neutron star inspiral[J]. Physical review letters, 2017, 119(16): 161101.
[4] WEINBERG S. The cosmological constant problem[J]. Reviews of modern physics, 1989, 61(1): 1.
[5] MARTIN J. Everything you always wanted to know about the cosmological constant problem(but were afraid to ask)[J]. Comptes Rendus Physique, 2012, 13(6-7): 566-665.
[6] DI VALENTINO E, MENA O, PAN S, et al. In the realm of the Hubble tension—a review ofsolutions[J]. Classical and Quantum Gravity, 2021, 38(15): 153001.
[7] SHANKARANARAYANAN S, JOHNSON J P. Modified theories of gravity: Why, how andwhat?[J]. General Relativity and Gravitation, 2022, 54(5): 44.
[8] HEISENBERG L. Generalization of the Proca action[J]. Journal of Cosmology and Astropar ticle Physics, 2014, 2014(05): 015.
[9] DE RHAM C, POZSGAY V. New class of Proca interactions[J]. Physical Review D, 2020, 102(8): 083508.
[10] DE RHAM C, GARCIA-SAENZ S, HEISENBERG L, et al. Cosmology of Extended Proca Nuevo[J]. Journal of Cosmology and Astroparticle Physics, 2022, 2022(03): 053.
[11] DE RHAM C, GABADADZE G, TOLLEY A J. Ghost free massive gravity in the Stückelberglanguage[J]. Physics Letters B, 2012, 711(2): 190-195.
[12] DE RHAM C, GABADADZE G, TOLLEY A J. Helicity decomposition of ghost-free massivegravity[J]. Journal of High Energy Physics, 2011, 2011(11): 1-35.
[13] DE RHAM C, MATAS A. Ostrogradsky in theories with multiple fields[J]. Journal of Cosmol ogy and Astroparticle Physics, 2016, 2016(06): 041.
[14] HEISENBERG L, KASE R, TSUJIKAWA S. Beyond generalized Proca theories[J]. PhysicsLetters B, 2016, 760: 617-626.
[15] HEISENBERG L, KASE R, TSUJIKAWA S. Absence of solid angle deficit singularities inbeyond-generalized Proca theories[J]. Physical Review D, 2016, 94(12): 123513.
[16] KIMURA R, NARUKO A, YOSHIDA D. Extended vector-tensor theories[J]. Journal of Cos mology and Astroparticle Physics, 2017, 2017(01): 002.
[17] SEIFERT M D. Lorentz-violating gravity and the bootstrap procedure[J]. Classical and Quan tum Gravity, 2020, 37(6): 065022.
[18] CADAVID A G, RODRÍGUEZ Y. A systematic procedure to build the beyond generalizedProca field theory[J]. Physics Letters B, 2019, 798: 134958.
[19] ALLYS E, PETER P, RODRIGUEZ Y. Generalized SU (2) proca theory[J]. Physical ReviewD, 2016, 94(8): 084041.
[20] JIMENEZ J B, HEISENBERG L. Generalized multi-Proca fields[J]. Physics Letters B, 2017,770: 16-26.
[21] RODRÍGUEZ Y, NAVARRO A A. Non-Abelian S-term dark energy and inflation[J]. Physicsof the dark universe, 2018, 19: 129-136.
[22] DÍEZ V E, GORDING B, MÉNDEZ-ZAVALETA J A, et al. Maxwell-Proca theory: Definitionand construction[J]. Physical Review D, 2020, 101(4): 045009.
[23] DÍEZ V E, GORDING B, MÉNDEZ-ZAVALETA J A, et al. Complete theory of Maxwell andProca fields[J]. Physical Review D, 2020, 101(4): 045008.
[24] GÓMEZ L G, RODRÍGUEZ Y. Stability conditions in the generalized S U (2) Proca theory[J].Physical Review D, 2019, 100(8): 084048.
[25] CADAVID A G, RODRIGUEZ Y, GÓMEZ L G. Generalized SU (2) Proca theory reconstructedand beyond[J]. Physical Review D, 2020, 102(10): 104066.
[26] CADAVID A G, NIETO C M, RODRÍGUEZ Y. Decoupling-limit consistency of the general ized SU (2) Proca theory[J]. Physical Review D, 2022, 105(10): 104051.
[27] MARTÍNEZ J N, RODRÍGUEZ J F, RODRÍGUEZ Y, et al. Particle-like solutions in the gen eralized SU (2) Proca theory[J]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(04): 032.
[28] GÓMEZ G, RODRÍGUEZ J F. New non-Abelian Reissner-Nordström black hole solutions inthe generalized SU (2) Proca theory and some astrophysical implications[J]. Physical ReviewD, 2023, 108(2): 024069.
[29] AMADO A, HAGHANI Z, MOHAMMADI A, et al. Quantum corrections to the generalizedProca theory via a matter field[J]. Physics Letters B, 2017, 772: 141-151.
[30] DE RHAM C, MELVILLE S, TOLLEY A J, et al. Massive Galileon positivity bounds[J].Journal of High Energy Physics, 2017, 2017(9): 1-32.
[31] DE RHAM C, MELVILLE S, TOLLEY A J. Improved positivity bounds and massive gravity[J]. Journal of High Energy Physics, 2018, 2018(4): 1-30.
[32] DE RHAM C, MELVILLE S, TOLLEY A J, et al. Positivity bounds for massive spin-1 andspin-2 fields[J]. Journal of High Energy Physics, 2019, 2019(3): 1-37.
[33] RUF M S, STEINWACHS C F. Renormalization of generalized vector field models in curvedspacetime[J]. Physical Review D, 2018, 98(2): 025009.
[34] ERRASTI DÍEZ V, MARINKOVIC M K. Symplectic quantization of multifield generalizedProca electrodynamics[J]. Physical Review D, 2022, 105(10): 105022.
[35] LOVELOCK D. The four-dimensionality of space and the Einstein tensor[J]. Journal of Math ematical Physics, 1972, 13(6): 874-876.
[36] SOTIRIOU T P, FARAONI V. f (R) theories of gravity[J]. Reviews of Modern Physics, 2010,82(1): 451.
[37] HORNDESKI G W. Second-order scalar-tensor field equations in a four-dimensional space[J].International Journal of Theoretical Physics, 1974, 10: 363-384.
[38] DE RHAM C. Massive gravity[J]. Living reviews in relativity, 2014, 17(1): 1-189.
[39] HEISENBERG L. A systematic approach to generalisations of General Relativity and theircosmological implications[J]. Physics Reports, 2019, 796: 1-113.
[40] DEFFAYET C, GÜMRÜKÇÜOĞLU A E, MUKOHYAMA S, et al. A no-go theorem for gen eralized vector Galileons on flat spacetime[J]. Journal of High Energy Physics, 2014, 2014(4):1-15.
[41] DEFFAYET C, DESER S, ESPOSITO-FARESE G. Arbitrary p-form Galileons[J]. PhysicalReview D, 2010, 82(6): 061501.
[42] DEFFAYET C, MUKOHYAMA S, SIVANESAN V. On p-form theories with gauge invariantsecond order field equations[J]. Physical Review D, 2016, 93(8): 085027.
[43] DE FELICE A, HEISENBERG L, KASE R, et al. Screening fifth forces in generalized Procatheories[J]. Physical Review D, 2016, 93(10): 104016.
[44] HEISENBERG L. Scalar-vector-tensor gravity theories[J]. Journal of Cosmology and Astropar ticle Physics, 2018, 2018(10): 054.
[45] GARCIA-SAENZ S. On the coupling of generalized Proca fields to degenerate scalar-tensortheories[J]. Universe, 2021, 7(6): 190.
[46] JIMÉNEZ J B, DURRER R, HEISENBERG L, et al. Stability of Horndeski vector-tensorinteractions[J]. Journal of Cosmology and Astroparticle Physics, 2013, 2013(10): 064.
[47] EMAMI R, MUKOHYAMA S, NAMBA R, et al. Stable solutions of inflation driven by vectorfields[J]. Journal of Cosmology and Astroparticle Physics, 2017, 2017(03): 058.
[48] DE FELICE A, HEISENBERG L, KASE R, et al. Cosmology in generalized Proca theories[J].Journal of Cosmology and Astroparticle Physics, 2016, 2016(06): 048.
[49] DE FELICE A, HEISENBERG L, KASE R, et al. Effective gravitational couplings for cosmo logical perturbations in generalized Proca theories[J]. Physical Review D, 2016, 94(4): 044024.
[50] HEISENBERG L, KASE R, TSUJIKAWA S. Anisotropic cosmological solutions in massivevector theories[J]. Journal of Cosmology and Astroparticle Physics, 2016, 2016(11): 008.
[51] NAKAMURA S, KASE R, TSUJIKAWA S. Cosmology in beyond-generalized Proca theories[J]. Physical Review D, 2017, 95(10): 104001.
[52] NAKAMURA S, DE FELICE A, KASE R, et al. Constraints on massive vector dark energymodels from integrated Sachs-Wolfe-galaxy cross-correlations[J]. Physical Review D, 2019,99(6): 063533.
[53] KASE R, TSUJIKAWA S. Dark energy in scalar-vector-tensor theories[J]. Journal of Cosmol ogy and Astroparticle Physics, 2018, 2018(11): 024.
[54] DOMÈNECH G, MUKOHYAMA S, NAMBA R, et al. Vector disformal transformation ofgeneralized Proca theory[J]. Physical Review D, 2018, 98(6): 064037.
[55] OLIVEROS A, JARABA M A. Inflation driven by massive vector fields with derivative self interactions[J]. International Journal of Modern Physics D, 2019, 28(04): 1950064.
[56] DE FELICE A, GENG C Q, POOKKILLATH M C, et al. Reducing the H0 tension with gen eralized Proca theory[J]. Journal of Cosmology and Astroparticle Physics, 2020, 2020(08):038.
[57] MINAMITSUJI M. Disformal transformation of stationary and axisymmetric solutions in mod ified gravity[J]. Physical Review D, 2020, 102(12): 124017.
[58] HEISENBERG L, VILLARRUBIA-ROJO H. Proca in the sky[J]. Journal of Cosmology andAstroparticle Physics, 2021, 2021(03): 032.
[59] GARNICA J C, GOMEZ L G, NAVARRO A A, et al. Constant-Roll Inflation in the GeneralizedSU (2) Proca Theory[J]. Annalen der Physik, 2022, 534(2): 2100453.
[60] GENG C Q, HSU Y T, LU J R, et al. A dark energy model from generalized Proca theory[J].Physics of the Dark Universe, 2021, 32: 100819.
[61] OESTREICHER A, CAPUANO L, MATARRESE S, et al. Kinetic field theory: Generic ef fects of alternative gravity theories on non-linear cosmic density-fluctuations[J]. Journal ofCosmology and Astroparticle Physics, 2023, 2023(07): 029.
[62] CHAGOYA J, SABIDO M, SILVA-GARCÍA A. Vector-tensor gravity from a broken gaugesymmetry[J]. Classical and Quantum Gravity, 2023, 40(9): 095007.
[63] CHAGOYA J, NIZ G, TASINATO G. Black holes and Abelian symmetry breaking[J]. Classicaland Quantum Gravity, 2016, 33(17): 175007.
[64] MINAMITSUJI M. Solutions in the generalized Proca theory with the nonminimal coupling tothe Einstein tensor[J]. Physical Review D, 2016, 94(8): 084039.
[65] CISTERNA A, HASSAINE M, OLIVA J, et al. Static and rotating solutions for Vector-Galileontheories[J]. Physical Review D, 2016, 94(10): 104039.
[66] CHAGOYA J, NIZ G, TASINATO G. Black holes and neutron stars in vector galileons[J].Classical and Quantum Gravity, 2017, 34(16): 165002.
[67] HEISENBERG L, KASE R, MINAMITSUJI M, et al. Black holes in vector-tensor theories[J].Journal of Cosmology and Astroparticle Physics, 2017, 2017(08): 024.
[68] HEISENBERG L, KASE R, MINAMITSUJI M, et al. Hairy black-hole solutions in generalizedProca theories[J]. Physical Review D, 2017, 96(8): 084049.
[69] KASE R, MINAMITSUJI M, TSUJIKAWA S. Relativistic stars in vector-tensor theories[J].Physical Review D, 2018, 97(8): 084009.
[70] DE FELICE A, HEISENBERG L, TSUJIKAWA S. Observational constraints on generalizedProca theories[J]. Physical Review D, 2017, 95(12): 123540.
[71] NAKAMURA S, KASE R, TSUJIKAWA S. Suppression of matter couplings with a vectorfield in generalized Proca theories[J]. Physical Review D, 2017, 96(8): 084005.
[72] KASE R, MINAMITSUJI M, TSUJIKAWA S. Black holes in quartic-order beyond-generalizedProca theories[J]. Physics Letters B, 2018, 782: 541-550.
[73] RAHMAN M, SEN A A. Astrophysical signatures of black holes in generalized Proca theories[J]. Physical Review D, 2019, 99(2): 024052.
[74] KASE R, MINAMITSUJI M, TSUJIKAWA S, et al. Black hole perturbations in vector-tensortheories: the odd-mode analysis[J]. Journal of Cosmology and Astroparticle Physics, 2018,2018(02): 048.
[75] KASE R, MINAMITSUJI M, TSUJIKAWA S. Neutron stars with a generalized Proca hair andspontaneous vectorization[J]. Physical Review D, 2020, 102(2): 024067.
[76] GARCIA-SAENZ S, HELD A, ZHANG J. Destabilization of black holes and stars by general ized Proca fields[J]. Physical Review Letters, 2021, 127(13): 131104.
[77] BRIHAYE Y, HARTMANN B, KLEIHAUS B, et al. Horndeski-Proca stars with vector hair[J]. Physical Review D, 2022, 105(4): 044050.
[78] FLEURY P, ALMEIDA J P B, PITROU C, et al. On the stability and causality of scalar-vectortheories[J]. Journal of Cosmology and Astroparticle Physics, 2014, 2014(11): 043.
[79] BABICHEV E, CHARMOUSIS C. Dressing a black hole with a time-dependent Galileon[J].Journal of High Energy Physics, 2014, 2014(8): 1-10.
[80] HENNEAUX M, TEITELBOIM C. Quantization of gauge systems[M]. Princeton universitypress, 1992.
[81] GOLOVNEV A. On the role of constraints and degrees of freedom in the Hamiltonian formal ism[J]. Universe, 2023, 9(2): 101.
[82] DÍEZ V E. (Extended) Proca-Nuevo under the two-dimensional loupe[A]. 2022. arXiv:2212.02549.
[83] TASINATO G. Cosmic acceleration from Abelian symmetry breaking[J]. Journal of HighEnergy Physics, 2014, 2014(4): 1-13.
[84] COMELLI D, CRISOSTOMI M, KOYAMA K, et al. New branches of massive gravity[J].Physical Review D, 2015, 91(12): 121502.
[85] DE RHAM C, GABADADZE G, TOLLEY A J. Resummation of massive gravity[J]. PhysicalReview Letters, 2011, 106(23): 231101.
[86] DE RHAM C, TOLLEY A J, ZHOU S Y. The Λ2 limit of massive gravity[J]. Journal of HighEnergy Physics, 2016, 2016(4): 1-35.
[87] DE RHAM C, FASIELLO M, TOLLEY A J. Stable FLRW solutions in generalized massivegravity[J]. International Journal of Modern Physics D, 2014, 23(13): 1443006.
[88] HASSAN S F, ROSEN R A. Resolving the ghost problem in nonlinear massive gravity[J].Physical review letters, 2012, 108(4): 041101.
[89] GOLOVNEV A, SMIRNOV F. Dealing with ghost-free massive gravity without explicit squareroots of matrices[J]. Physics Letters B, 2017, 770: 209-212.
[90] DE RHAM C, ENGELBRECHT L, HEISENBERG L, et al. Positivity bounds in vector theories[J]. Journal of High Energy Physics, 2022, 2022(12): 1-40.
[91] JIMÉNEZ J B, DE RHAM C, HEISENBERG L. Generalized Proca & its constraint algebra[J].Physics Letters B, 2020, 802: 135244.
[92] HASSAN S F, ROSEN R A. Confirmation of the secondary constraint and absence of ghost inmassive gravity and bimetric gravity[J]. Journal of High Energy Physics, 2012, 2012(4): 1-16.
[93] ANAGNOSTOPOULOS F K, SARIDAKIS E N. Observational constraints on extended Proca Nuevo gravity and cosmology[J]. Journal of Cosmology and Astroparticle Physics, 2024, 2024(04): 051.

所在学位评定分委会
物理学
国内图书分类号
O412.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766182
专题理学院_物理系
推荐引用方式
GB/T 7714
Wang XM. NON-HALF PROPAGATING DEGREES OF FREEDOM IN EXTENDED PROCA-NUEVO[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132943-王鑫淼-物理系.pdf(878KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王鑫淼]的文章
百度学术
百度学术中相似的文章
[王鑫淼]的文章
必应学术
必应学术中相似的文章
[王鑫淼]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。