[1] ZEGHOUD S, BEN AMOR I, ALNAZZA ALHAMAD A, et al. Osteoporosis therapy using nanoparticles: a review [J]. Annals of Medicine and Surgery, 2024, 86(1): 284-291.
[2] BECK G R, JR., HA S W, CAMALIER C E, et al. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo [J]. Nanomedicine, 2012, 8(6): 793-803.
[3] HERNLUND E, SVEDBOM A, IVERGåRD M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA) [J]. Arch Osteoporos, 2013, 8(1): 136.
[4] STAPLETON M, SAWAMOTO K, ALMéCIGA-DíAZ C J, et al. Development of Bone Targeting Drugs [J]. International Journal of Molecular Sciences, 2017, 18(7): 1345.
[5] RACHNER T D, KHOSLA S, HOFBAUER L C. Osteoporosis: now and the future [J]. The Lancet, 2011, 377(9773): 1276-87.
[6] HOU X, ZAKS T, LANGER R, et al. Lipid nanoparticles for mRNA delivery [J]. Nat Rev Mater, 2021, 6(12): 1078-94.
[7] ROHNER E, YANG R, FOO K S, et al. Unlocking the promise of mRNA therapeutics [J]. Nature Biotechnology, 2022, 40(11): 1586-600.
[8] POLACK F P, THOMAS S J, KITCHIN N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine [J]. N Engl J Med, 2020, 383(27): 2603-15.
[9] NI H, HATIT M Z C, ZHAO K, et al. Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo [J]. Nature Communications, 2022, 13(1): 4766.
[10] YANG T, POENISCH M, KHANAL R, et al. Therapeutic HNF4A mRNA attenuates liver fibrosis in a preclinical model [J]. J Hepatol, 2021, 75(6): 1420-33.
[11] DE LA VEGA R E, VAN GRIENSVEN M, ZHANG W, et al. Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2 [J]. Sci Adv, 2022, 8(7): eabl6242.
[12] CARVALHO T. mRNA vaccine effective against RSV respiratory disease [J]. Nat Med, 2023, 29(4): 755-6.
[13] LORENTZEN C L, HAANEN J B, MET Ö, et al. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment [J]. Lancet Oncol, 2022, 23(10): e450-e8.
[14] GUAN S, ROSENECKER J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems [J]. Gene Ther, 2017, 24(3): 133-43.
[15] SAHIN U, KARIKó K, TüRECI Ö. mRNA-based therapeutics — developing a new class of drugs [J]. Nature Reviews Drug Discovery, 2014, 13(10): 759-80.
[16] ZONG Y, LIN Y, WEI T, et al. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy [J]. Advanced Materials, 2023, 35(51): 2303261.
[17] WENG Y, LI C, YANG T, et al. The challenge and prospect of mRNA therapeutics landscape [J]. Biotechnol Adv, 2020, 40: 107534.
[18] BADEN L R, EL SAHLY H M, ESSINK B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J]. N Engl J Med, 2021, 384(5): 403-16.
[19] LV X, GAO F, CAO X. Skeletal interoception in bone homeostasis and pain [J]. Cell Metabolism, 2022, 34(12): 1914-31.
[20] RIDDLE R C, CLEMENS T L. Bone Cell Bioenergetics and Skeletal Energy Homeostasis [J]. Physiol Rev, 2017, 97(2): 667-98.
[21] ZHOU R, GUO Q, XIAO Y, et al. Endocrine role of bone in the regulation of energy metabolism [J]. Bone Res, 2021, 9(1): 25.
[22] MéNDEZ-FERRER S, MICHURINA T V, FERRARO F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche [J]. Nature, 2010, 466(7308): 829-34.
[23] KARSENTY G, OURY F. Biology without walls: the novel endocrinology of bone [J]. Annu Rev Physiol, 2012, 74: 87-105.
[24] DESPARS G, ST-PIERRE Y. Bidirectional interactions between bone metabolism and hematopoiesis [J]. Exp Hematol, 2011, 39(8): 809-16.
[25] WOJTYS E M. Bone Health [J]. Sports Health, 2020, 12(5): 423-4.
[26] SOMMERFELDT D W, RUBIN C T. Biology of bone and how it orchestrates the form and function of the skeleton [J]. Eur Spine J, 2001, 10 Suppl 2(Suppl 2): S86-95.
[27] KIM J M, LIN C, STAVRE Z, et al. Osteoblast-Osteoclast Communication and Bone Homeostasis [J]. Cells, 2020, 9(9): 2073.
[28] NG K W, ROMAS E, DONNAN L, et al. Bone biology [J]. Baillieres Clin Endocrinol Metab, 1997, 11(1): 1-22.
[29] UDAGAWA N, TAKAHASHI N, JIMI E, et al. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand [J]. Bone, 1999, 25(5): 517-23.
[30] BOYLE W J, SIMONET W S, LACEY D L. Osteoclast differentiation and activation [J]. Nature, 2003, 423(6937): 337-42.
[31] TEITELBAUM S L. Bone resorption by osteoclasts [J]. Science, 2000, 289(5484): 1504-8.
[32] POOLE K E, VAN BEZOOIJEN R L, LOVERIDGE N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation [J]. Faseb j, 2005, 19(13): 1842-4.
[33] BIANCO P, RIMINUCCI M, GRONTHOS S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications [J]. Stem Cells, 2001, 19(3): 180-92.
[34] SIMONET W S, LACEY D L, DUNSTAN C R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density [J]. Cell, 1997, 89(2): 309-19.
[35] MING J, CRONIN S J F, PENNINGER J M. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy [J]. Frontiers in Oncology, 2020, 10: 1283.
[36] LACEY D L, TIMMS E, TAN H L, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation [J]. Cell, 1998, 93(2): 165-76.
[37] TAT S K, PELLETIER J P, VELASCO C R, et al. New perspective in osteoarthritis: the OPG and RANKL system as a potential therapeutic target? [J]. Keio J Med, 2009, 58(1): 29-40.
[38] ROCHETTE L, MELOUX A, RIGAL E, et al. The Role of Osteoprotegerin and Its Ligands in Vascular Function [J]. International Journal of Molecular Sciences, 2019, 20(3): 705.
[39] CLOHISY D R, RAMNARAINE M L, SCULLY S, et al. Osteoprotegerin inhibits tumor-induced osteoclastogenesis and bone tumor growth in osteopetrotic mice [J]. J Orthop Res, 2000, 18(6): 967-76.
[40] CHUNG S T, GEERTS D, ROSEMAN K, et al. Osteoprotegerin mediates tumor-promoting effects of Interleukin-1beta in breast cancer cells [J]. Mol Cancer, 2017, 16(1): 27.
[41] WANG Y, LIU Y, HUANG Z, et al. The roles of osteoprotegerin in cancer, far beyond a bone player [J]. Cell Death Discovery, 2022, 8(1): 252.
[42] BAUD'HUIN M, DUPLOMB L, TELETCHEA S, et al. Osteoprotegerin: multiple partners for multiple functions [J]. Cytokine Growth Factor Rev, 2013, 24(5): 401-9.
[43] MIN H, MORONY S, SAROSI I, et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis [J]. J Exp Med, 2000, 192(4): 463-74.
[44] BOLON B, CARTER C, DARIS M, et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis [J]. Mol Ther, 2001, 3(2): 197-205.
[45] SöZEN T, ÖZıŞıK L, BAŞARAN N. An overview and management of osteoporosis [J]. Eur J Rheumatol, 2017, 4(1): 46-56.
[46] CENTER J R, NGUYEN T V, SCHNEIDER D, et al. Mortality after all major types of osteoporotic fracture in men and women: an observational study [J]. Lancet, 1999, 353(9156): 878-82.
[47] 国家卫生健康委发布中国骨质疏松症流行病学调查结果 [Z]. 中国疾病预防控制中心. 2018-10-20
[48] CHEN L R, KO N Y, CHEN K H. Medical Treatment for Osteoporosis: From Molecular to Clinical Opinions [J]. Int J Mol Sci, 2019, 20(9): 2213.
[49] IñIGUEZ-ARIZA N M, CLARKE B L. Bone biology, signaling pathways, and therapeutic targets for osteoporosis [J]. Maturitas, 2015, 82(2): 245-55.
[50] LEE D, HEO D N, KIM H J, et al. Inhibition of Osteoclast Differentiation and Bone Resorption by Bisphosphonate-conjugated Gold Nanoparticles [J]. Sci Rep, 2016, 6: 27336.
[51] ROSSINI M, ADAMI S, VIAPIANA O, et al. Circulating γδ T cells and the risk of acute-phase response after zoledronic acid administration [J]. J Bone Miner Res, 2012, 27(1): 227-30.
[52] ANAGNOSTIS P, PASCHOU S A, MINTZIORI G, et al. Drug holidays from bisphosphonates and denosumab in postmenopausal osteoporosis: EMAS position statement [J]. Maturitas, 2017, 101: 23-30.
[53] CUMMINGS S R, SAN MARTIN J, MCCLUNG M R, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis [J]. N Engl J Med, 2009, 361(8): 756-65.
[54] ELLIS G K, BONE H G, CHLEBOWSKI R, et al. Randomized Trial of Denosumab in Patients Receiving Adjuvant Aromatase Inhibitors for Nonmetastatic Breast Cancer [J]. Journal of Clinical Oncology, 2008, 26(30): 4875-82.
[55] ROSSINI M, ADAMI G, ADAMI S, et al. Safety issues and adverse reactions with osteoporosis management [J]. Expert Opin Drug Saf, 2016, 15(3): 321-32.
[56] KUŽMA M, JACKULIAK P, KILLINGER Z, et al. Parathyroid Hormone-Related Changes of Bone Structure [J]. Physiol Res, 2021, 70(Suppl 1): S3-s11.
[57] ASLAN D, ANDERSEN M D, GEDE L B, et al. Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans [J]. Scand J Clin Lab Invest, 2012, 72(1): 14-22.
[58] JIANG Y, ZHAO J J, MITLAK B H, et al. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure [J]. J Bone Miner Res, 2003, 18(11): 1932-41.
[59] NEER R M, ARNAUD C D, ZANCHETTA J R, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis [J]. N Engl J Med, 2001, 344(19): 1434-41.
[60] JOSEPHSON K, RICARDO A, SZOSTAK J W. mRNA display: from basic principles to macrocycle drug discovery [J]. Drug Discov Today, 2014, 19(4): 388-99.
[61] QIN S, TANG X, CHEN Y, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases [J]. Signal Transduct Target Ther, 2022, 7(1): 166.
[62] DAMASE T R, SUKHOVERSHIN R, BOADA C, et al. The Limitless Future of RNA Therapeutics [J]. Front Bioeng Biotechnol, 2021, 9: 628137.
[63] LIN S, KUANG M. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives [J]. Nature Reviews Gastroenterology & Hepatology, 2024: 267-281.
[64] HAJJ K A, WHITEHEAD K A. Tools for translation: non-viral materials for therapeutic mRNA delivery [J]. Nature Reviews Materials, 2017, 2(10): 17056.
[65] YANG Z, SHI J, XIE J, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation [J]. Nat Biomed Eng, 2020, 4(1): 69-83.
[66] PAUNOVSKA K, LOUGHREY D, DAHLMAN J E. Drug delivery systems for RNA therapeutics [J]. Nature Reviews Genetics, 2022, 23(5): 265-80.
[67] HUANG P, DENG H, WANG C, et al. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery [J]. Adv Mater, 2023: e2307822.
[68] ZHANG Y, SUN C, WANG C, et al. Lipids and Lipid Derivatives for RNA Delivery [J]. Chem Rev, 2021, 121(20): 12181-277.
[69] LI Z, LIU Z, WU J, et al. Cell-Derived Vesicles for mRNA Delivery [J]. Pharmaceutics, 2022, 14(12): 2699.
[70] CHAUDHARY N, WEISSMAN D, WHITEHEAD K A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation [J]. Nature Reviews Drug Discovery, 2021, 20(11): 817-38.
[71] FAN T, ZHANG M, YANG J, et al. Therapeutic cancer vaccines: advancements, challenges, and prospects [J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 450.
[72] PATEL M R, BAUER T M, JIMENO A, et al. A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab [J]. Journal of Clinical Oncology, 2020, 38(15_suppl): 3092.
[73] WILSON E, GOSWAMI J, BAQUI A H, et al. Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults [J]. New England Journal of Medicine, 2023, 389(24): 2233-44.
[74] HU X, KARTHIGEYAN K P, HERBEK S, et al. Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine [J]. The Journal of Infectious Diseases, 2024: jiad593.
[75] KRANZ L M, DIKEN M, HAAS H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy [J]. Nature, 2016, 534(7607): 396-401.
[76] MACKENSEN A, KOENECKE C, HAANEN J, et al. 958 BNT211: a phase I/II trial to evaluate safety and efficacy of CLDN6 CAR-T cells and vaccine-mediated in vivo expansion in patients with CLDN6-positive advanced solid tumors [J]. Journal for ImmunoTherapy of Cancer, 2021, 9(Suppl 2): A1008.
[77] GILLMORE J D, GANE E, TAUBEL J, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis [J]. New England Journal of Medicine, 2021, 385(6): 493-502.
[78] WU J, WU W, ZHOU B, et al. Chimeric antigen receptor therapy meets mRNA technology [J]. Trends in Biotechnology, 2024, 42(2): 228-40.
[79] KOEBERL D, SCHULZE A, SONDHEIMER N, et al. Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia [J]. Nature, 2024.
[80] CHENG X, LEE R J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery [J]. Adv Drug Deliv Rev, 2016, 99(Pt A): 129-37.
[81] PONTI F, CAMPOLUNGO M, MELCHIORI C, et al. Cationic lipids for gene delivery: many players, one goal [J]. Chem Phys Lipids, 2021, 235: 105032.
[82] DOKKA S, TOLEDO D, SHI X, et al. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes [J]. Pharm Res, 2000, 17(5): 521-5.
[83] SOENEN S J, BRISSON A R, DE CUYPER M. Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model [J]. Biomaterials, 2009, 30(22): 3691-701.
[84] FILION M C, PHILLIPS N C. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells [J]. Biochim Biophys Acta, 1997, 1329(2): 345-56.
[85] LAPPALAINEN K, JääSKELäINEN I, SYRJäNEN K, et al. Comparison of cell proliferation and toxicity assays using two cationic liposomes [J]. Pharm Res, 1994, 11(8): 1127-31.
[86] SEMPLE S C, KLIMUK S K, HARASYM T O, et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures [J]. Biochim Biophys Acta, 2001, 1510(1-2): 152-66.
[87] HAFEZ I M, MAURER N, CULLIS P R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids [J]. Gene Ther, 2001, 8(15): 1188-96.
[88] ZUHORN I S, BAKOWSKY U, POLUSHKIN E, et al. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency [J]. Molecular therapy : the journal of the American Society of Gene Therapy, 2005, 11(5): 801-10.
[89] CIANI L, RISTORI S, SALVATI A, et al. DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery: zeta potential measurements and electron spin resonance spectra [J]. Biochim Biophys Acta, 2004, 1664(1): 70-9.
[90] SRISIRI W, SISSON T M, O'BRIEN D F, et al. Polymerization of the Inverted Hexagonal Phase [J]. Journal of the American Chemical Society, 1997, 119(21): 4866-73.
[91] KAUFFMAN K J, DORKIN J R, YANG J H, et al. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs [J]. Nano Letters, 2015, 15(11): 7300-6.
[92] HATTORI Y, SUZUKI S, KAWAKAMI S, et al. The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route [J]. J Control Release, 2005, 108(2-3): 484-95.
[93] MENG C, CHEN Z, LI G, et al. Nanoplatforms for mRNA Therapeutics [J]. Advanced Therapeutics, 2021, 4(1): 2000099.
[94] POZZI D, MARCHINI C, CARDARELLI F, et al. Transfection efficiency boost of cholesterol-containing lipoplexes [J]. Biochim Biophys Acta, 2012, 1818(9): 2335-43.
[95] PAUNOVSKA K, GIL C J, LOKUGAMAGE M P, et al. Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery [J]. ACS Nano, 2018, 12(8): 8341-9.
[96] PATEL S, ASHWANIKUMAR N, ROBINSON E, et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA [J]. Nat Commun, 2020, 11(1): 983.
[97] KULKARNI J A, WITZIGMANN D, LEUNG J, et al. On the role of helper lipids in lipid nanoparticle formulations of siRNA [J]. Nanoscale, 2019, 11(45): 21733-9.
[98] RYALS R C, PATEL S, ACOSTA C, et al. The effects of PEGylation on LNP based mRNA delivery to the eye [J]. PLoS One, 2020, 15(10): e0241006.
[99] KNOP K, HOOGENBOOM R, FISCHER D, et al. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives [J]. Angew Chem Int Ed Engl, 2010, 49(36): 6288-308.
[100] ZHU X, TAO W, LIU D, et al. Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery In Vitro and In Vivo [J]. Theranostics, 2017, 7(7): 1990-2002.
[101] KIM J, EYGERIS Y, GUPTA M, et al. Self-assembled mRNA vaccines [J]. Adv Drug Deliv Rev, 2021, 170: 83-112.
[102] LI B, ZHANG X, DONG Y. Nanoscale platforms for messenger RNA delivery [J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(2): e1530.
[103] MIAO L, LIN J, HUANG Y, et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver [J]. Nat Commun, 2020, 11(1): 2424.
[104] HOU X, ZHANG X, ZHAO W, et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis [J]. Nat Nanotechnol, 2020, 15(1): 41-6.
[105] WITTRUP A, AI A, LIU X, et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown [J]. Nat Biotechnol, 2015, 33(8): 870-6.
[106] REHMAN Z U, ZUHORN I S, HOEKSTRA D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances [J]. Journal of Controlled Release, 2013, 166(1): 46-56.
[107] CASEY J R, GRINSTEIN S, ORLOWSKI J. Sensors and regulators of intracellular pH [J]. Nat Rev Mol Cell Biol, 2010, 11(1): 50-61.
[108] VAIDYANATHAN S, ORR B G, BANASZAK HOLL M M. Role of Cell Membrane-Vector Interactions in Successful Gene Delivery [J]. Acc Chem Res, 2016, 49(8): 1486-93.
[109] KOLTOVER I, SALDITT T, RäDLER J O, et al. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery [J]. Science, 1998, 281(5373): 78-81.
[110] SIMBERG D, WEISMAN S, TALMON Y, et al. DOTAP (and other cationic lipids): chemistry, biophysics, and transfection [J]. Crit Rev Ther Drug Carrier Syst, 2004, 21(4): 257-317.
[111] HEYES J, PALMER L, BREMNER K, et al. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids [J]. J Control Release, 2005, 107(2): 276-87.
[112] MICHEL T, LUFT D, ABRAHAM M K, et al. Cationic Nanoliposomes Meet mRNA: Efficient Delivery of Modified mRNA Using Hemocompatible and Stable Vectors for Therapeutic Applications [J]. Mol Ther Nucleic Acids, 2017, 8: 459-68.
[113] TRUONG B, ALLEGRI G, LIU X B, et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency [J]. Proc Natl Acad Sci U S A, 2019, 116(42): 21150-9.
[114] YIN H, SONG C Q, SURESH S, et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing [J]. Nat Biotechnol, 2017, 35(12): 1179-87.
[115] AKINC A, MAIER M A, MANOHARAN M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J]. Nat Nanotechnol, 2019, 14(12): 1084-7.
[116] ROBINSON E, MACDONALD K D, SLAUGHTER K, et al. Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis [J]. Mol Ther, 2018, 26(8): 2034-46.
[117] MAIER M A, JAYARAMAN M, MATSUDA S, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics [J]. Mol Ther, 2013, 21(8): 1570-8.
[118] KENJO E, HOZUMI H, MAKITA Y, et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice [J]. Nature Communications, 2021, 12(1): 7101.
[119] NI H, HATIT M Z C, ZHAO K, et al. Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo [J]. Nat Commun, 2022, 13(1): 4766.
[120] ZHANG X, LI B, LUO X, et al. Biodegradable Amino-Ester Nanomaterials for Cas9 mRNA Delivery in Vitro and in Vivo [J]. ACS Appl Mater Interfaces, 2017, 9(30): 25481-7.
[121] KAUFFMAN K J, DORKIN J R, YANG J H, et al. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs [J]. Nano Lett, 2015, 15(11): 7300-6.
[122] FENTON O S, KAUFFMAN K J, MCCLELLAN R L, et al. Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery [J]. Adv Mater, 2016, 28(15): 2939-43.
[123] FENTON O S, KAUFFMAN K J, KACZMAREK J C, et al. Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes [J]. Adv Mater, 2017, 29(33): 1606944.
[124] FENTON O S, KAUFFMAN K J, MCCLELLAN R L, et al. Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs [J]. Angew Chem Int Ed Engl, 2018, 57(41): 13582-6.
[125] LI M, LI S, HUANG Y, et al. Secreted Expression of mRNA-Encoded Truncated ACE2 Variants for SARS-CoV-2 via Lipid-Like Nanoassemblies [J]. Adv Mater, 2021, 33(34): e2101707.
[126] LI M, HUANG Y, WU J, et al. A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice [J]. Mater Horiz, 2023, 10(2): 466-72.
[127] HUANG Y, WU J, LI S, et al. Quaternization drives spleen-to-lung tropism conversion for mRNA-loaded lipid-like nanoassemblies [J]. Theranostics, 2024, 14(2): 830-42.
[128] XIE W, CHEN B, WONG J. Evolution of the market for mRNA technology [J]. Nat Rev Drug Discov, 2021, 20(10): 735-6.
[129] GREN S T, GRIP O. Role of Monocytes and Intestinal Macrophages in Crohn's Disease and Ulcerative Colitis [J]. Inflamm Bowel Dis, 2016, 22(8): 1992-8.
[130] PEI Y, YEO Y. Drug delivery to macrophages: Challenges and opportunities [J]. Journal of Controlled Release, 2016, 240: 202-11.
[131] HE W, KAPATE N, SHIELDS C W, et al. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases [J]. Advanced Drug Delivery Reviews, 2020, 165-166: 15-40.
[132] HARIZAJ A, DE SMEDT S C, LENTACKER I, et al. Physical transfection technologies for macrophages and dendritic cells in immunotherapy [J]. Expert Opinion on Drug Delivery, 2021, 18(2): 229-47.
[133] ZHANG X, EDWARDS J P, MOSSER D M. The Expression of Exogenous Genes in Macrophages: Obstacles and Opportunities [M]. Methods Mol Biol, 2009, 531: 123-43.
[134] PATEL P, IBRAHIM N M, CHENG K. The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA [J]. Trends in Pharmacological Sciences, 2021, 42(6): 448-60.
[135] LI B, LUO X, DENG B, et al. An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo [J]. Nano Letters, 2015, 15(12): 8099-107.
[136] JIANG C, MEI M, LI B, et al. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo [J]. Cell Research, 2017, 27(3): 440-3.
[137] ZENG C, HOU X, YAN J, et al. Leveraging mRNA Sequences and Nanoparticles to Deliver SARS-CoV-2 Antigens In Vivo [J]. Adv Mater, 2020, 32(40): e2004452.
[138] MUTTACH F, MUTHMANN N, RENTMEISTER A. Synthetic mRNA capping [J]. Beilstein J Org Chem, 2017, 13: 2819-32.
[139] SUN H, LI K, LIU C, et al. Regulation and functions of non-m(6)A mRNA modifications [J]. Nat Rev Mol Cell Biol, 2023, 24(10): 714-31.
[140] NOMBELA P, MIGUEL-LóPEZ B, BLANCO S. The role of m(6)A, m(5)C and Ψ RNA modifications in cancer: Novel therapeutic opportunities [J]. Mol Cancer, 2021, 20(1): 18.
[141] SULTANA N, HADAS Y, SHARKAR M T K, et al. Optimization of 5' Untranslated Region of Modified mRNA for Use in Cardiac or Hepatic Ischemic Injury [J]. Mol Ther Methods Clin Dev, 2020, 17: 622-33.
[142] MAUGER D M, CABRAL B J, PRESNYAK V, et al. mRNA structure regulates protein expression through changes in functional half-life [J]. Proc Natl Acad Sci U S A, 2019, 116(48): 24075-83.
[143] PASSMORE L A, COLLER J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression [J]. Nat Rev Mol Cell Biol, 2022, 23(2): 93-106.
修改评论