中文版 | English
题名

可电离脂质纳米制剂的制备及其用于递送骨保护素mRNA的研究

其他题名
PREPARATION OF IONIZABLE LIPID NANO-PARTICLES FOR DELIVERY OF OSTEOPRO-TEGERIN MRNA
姓名
姓名拼音
WANG Ning
学号
12133156
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
李斌
导师单位
南方科技大学医学院
论文答辩日期
2024-05-07
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着全球人口老龄化的加剧,如何安全有效治疗骨质疏松成了临床所面临的重大挑战之一。近年来,mRNA疫苗在预防新型冠状病毒疫情传播方面取得巨大成功,mRNA技术获得了前所未有的关注。越来越多的科研工作者开始尝试使用mRNA疗法解决困扰医学界许久的难题,或者通过mRNA疗法来替代传统的治疗手段。本研究通过合成、筛选和优化制备了一种具有高递送效率的可电离脂质纳米递送系统,并尝试递送编码人骨保护素的mRNA,以探讨mRNA疗法治疗小鼠骨质疏松症的可行性。

本研究首先通过筛选不同类型的阳离子表面活性剂,鉴定出一种具有mRNA递送活性的表面活性剂。随后,通过组合设计合成了一系列兼具表面活性剂和脂样结构特征的可电离脂质化合物,并从中筛选出含有可电离仲胺和两条不对称烷基链的表面活性剂衍生的先导脂质化合物。该脂质化合物与辅助脂质通过逐级配方优化后,能够与mRNA自组装形成稳定且分散度较小的可电离脂质纳米粒。体外活性测试结果显示该脂质纳米粒拥有较好的mRNA递送活性(可将mRNA高效递送至常规转染细胞甚至是难以转染的巨噬细胞)、稳定性和生物相容性。进一步体内实验证明,负载人骨保护素mRNA的脂质纳米粒通过尾静脉注射至小鼠体内后,可在小鼠血液中检测到人骨保护素的表达,这为后续使用mRNA疗法治疗骨质疏松症奠定了基础。

总之,本研究制备了可高效负载和递送mRNA的可电离脂质纳米粒。同时,本研究通过静脉注射可电离脂质纳米粒,可将编码人骨保护素的mRNA递送至小鼠体内,并成功检测到人骨保护素的表达。这些研究证明了mRNA疗法在骨质疏松治疗领域的应用潜力。

其他摘要

With the increasing aging of the global population, how to treat osteoporosis safely and effectively has become one of the major challenges facing clinical practice. In recent years, with the great success of mRNA vaccines in preventing the spread of the COVID-19 pandemic, mRNA technology has received unprecedented attention. More and more researchers are trying to use mRNA therapy to solve the problems that have plagued the medical community for a long time, or to refresh the traditional treatment through mRNA therapy. This study has prepared high-efficiency ionizable lipid nanoparticles via synthesis, screening, as well as optimization, and has attempted to use such delivery system to deliver mRNA encoding human osteoprotegerin protein. We anticipate that these studies can be used to demonstrate the feasibility of mRNA therapy to treat osteoporosis in mice.

For the first step, a surfactant with mRNA delivery activity was identified through screening of different types of cationic surfactants. Subsequently, a series of ionizable lipid-like compounds with structural features of surfactants and lipid-like compounds were synthesized via combinatorial design. A surfactant-derived lead lipid with a secondary amine head group and two asymmetric alkyl chains was screened out. Through a stepwise optimization of formulation parameters, the surfactant-derived lipid could self-assemble with helper lipids into monodisperse and stable lipid nanoparticles. The in vitro results have showed that the lipid nanoparticles excellent good mRNA delivery activity (efficient delivery of mRNA to commonly used cells and even hard-to-transfect macrophages), stability, and biocompatibility. Furthermore, in vivo studies have further demonstrated that the expression of human osteoprotegerin protein could be detected in mouse plasma following the intravenous injection of lipid nanoparticles loaded with human osteoprotegerin mRNA into mice, which laid a foundation for the subsequent use of mRNA therapy for osteoporosis.

In summary, this study has prepared ionizable lipid nanoparticles that can efficiently encapsulate and deliver mRNA. Moreover, this study has successfully detected the expression of human osteoprotegerin protein in mice following intravenous injection of human osteoprotegerin mRNA-loaded ionizable lipid nanoparticles. These studies have demonstrated the therapeutic potential of mRNA therapy in the field of osteoporosis treatment.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021-08
学位授予年份
2024-07
参考文献列表

[1] ZEGHOUD S, BEN AMOR I, ALNAZZA ALHAMAD A, et al. Osteoporosis therapy using nanoparticles: a review [J]. Annals of Medicine and Surgery, 2024, 86(1): 284-291.
[2] BECK G R, JR., HA S W, CAMALIER C E, et al. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo [J]. Nanomedicine, 2012, 8(6): 793-803.
[3] HERNLUND E, SVEDBOM A, IVERGåRD M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA) [J]. Arch Osteoporos, 2013, 8(1): 136.
[4] STAPLETON M, SAWAMOTO K, ALMéCIGA-DíAZ C J, et al. Development of Bone Targeting Drugs [J]. International Journal of Molecular Sciences, 2017, 18(7): 1345.
[5] RACHNER T D, KHOSLA S, HOFBAUER L C. Osteoporosis: now and the future [J]. The Lancet, 2011, 377(9773): 1276-87.
[6] HOU X, ZAKS T, LANGER R, et al. Lipid nanoparticles for mRNA delivery [J]. Nat Rev Mater, 2021, 6(12): 1078-94.
[7] ROHNER E, YANG R, FOO K S, et al. Unlocking the promise of mRNA therapeutics [J]. Nature Biotechnology, 2022, 40(11): 1586-600.
[8] POLACK F P, THOMAS S J, KITCHIN N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine [J]. N Engl J Med, 2020, 383(27): 2603-15.
[9] NI H, HATIT M Z C, ZHAO K, et al. Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo [J]. Nature Communications, 2022, 13(1): 4766.
[10] YANG T, POENISCH M, KHANAL R, et al. Therapeutic HNF4A mRNA attenuates liver fibrosis in a preclinical model [J]. J Hepatol, 2021, 75(6): 1420-33.
[11] DE LA VEGA R E, VAN GRIENSVEN M, ZHANG W, et al. Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2 [J]. Sci Adv, 2022, 8(7): eabl6242.
[12] CARVALHO T. mRNA vaccine effective against RSV respiratory disease [J]. Nat Med, 2023, 29(4): 755-6.
[13] LORENTZEN C L, HAANEN J B, MET Ö, et al. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment [J]. Lancet Oncol, 2022, 23(10): e450-e8.
[14] GUAN S, ROSENECKER J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems [J]. Gene Ther, 2017, 24(3): 133-43.
[15] SAHIN U, KARIKó K, TüRECI Ö. mRNA-based therapeutics — developing a new class of drugs [J]. Nature Reviews Drug Discovery, 2014, 13(10): 759-80.
[16] ZONG Y, LIN Y, WEI T, et al. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy [J]. Advanced Materials, 2023, 35(51): 2303261.
[17] WENG Y, LI C, YANG T, et al. The challenge and prospect of mRNA therapeutics landscape [J]. Biotechnol Adv, 2020, 40: 107534.
[18] BADEN L R, EL SAHLY H M, ESSINK B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J]. N Engl J Med, 2021, 384(5): 403-16.
[19] LV X, GAO F, CAO X. Skeletal interoception in bone homeostasis and pain [J]. Cell Metabolism, 2022, 34(12): 1914-31.
[20] RIDDLE R C, CLEMENS T L. Bone Cell Bioenergetics and Skeletal Energy Homeostasis [J]. Physiol Rev, 2017, 97(2): 667-98.
[21] ZHOU R, GUO Q, XIAO Y, et al. Endocrine role of bone in the regulation of energy metabolism [J]. Bone Res, 2021, 9(1): 25.
[22] MéNDEZ-FERRER S, MICHURINA T V, FERRARO F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche [J]. Nature, 2010, 466(7308): 829-34.
[23] KARSENTY G, OURY F. Biology without walls: the novel endocrinology of bone [J]. Annu Rev Physiol, 2012, 74: 87-105.
[24] DESPARS G, ST-PIERRE Y. Bidirectional interactions between bone metabolism and hematopoiesis [J]. Exp Hematol, 2011, 39(8): 809-16.
[25] WOJTYS E M. Bone Health [J]. Sports Health, 2020, 12(5): 423-4.
[26] SOMMERFELDT D W, RUBIN C T. Biology of bone and how it orchestrates the form and function of the skeleton [J]. Eur Spine J, 2001, 10 Suppl 2(Suppl 2): S86-95.
[27] KIM J M, LIN C, STAVRE Z, et al. Osteoblast-Osteoclast Communication and Bone Homeostasis [J]. Cells, 2020, 9(9): 2073.
[28] NG K W, ROMAS E, DONNAN L, et al. Bone biology [J]. Baillieres Clin Endocrinol Metab, 1997, 11(1): 1-22.
[29] UDAGAWA N, TAKAHASHI N, JIMI E, et al. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand [J]. Bone, 1999, 25(5): 517-23.
[30] BOYLE W J, SIMONET W S, LACEY D L. Osteoclast differentiation and activation [J]. Nature, 2003, 423(6937): 337-42.

[31] TEITELBAUM S L. Bone resorption by osteoclasts [J]. Science, 2000, 289(5484): 1504-8.

[32] POOLE K E, VAN BEZOOIJEN R L, LOVERIDGE N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation [J]. Faseb j, 2005, 19(13): 1842-4.

[33] BIANCO P, RIMINUCCI M, GRONTHOS S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications [J]. Stem Cells, 2001, 19(3): 180-92.

[34] SIMONET W S, LACEY D L, DUNSTAN C R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density [J]. Cell, 1997, 89(2): 309-19.

[35] MING J, CRONIN S J F, PENNINGER J M. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy [J]. Frontiers in Oncology, 2020, 10: 1283.

[36] LACEY D L, TIMMS E, TAN H L, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation [J]. Cell, 1998, 93(2): 165-76.

[37] TAT S K, PELLETIER J P, VELASCO C R, et al. New perspective in osteoarthritis: the OPG and RANKL system as a potential therapeutic target? [J]. Keio J Med, 2009, 58(1): 29-40.

[38] ROCHETTE L, MELOUX A, RIGAL E, et al. The Role of Osteoprotegerin and Its Ligands in Vascular Function [J]. International Journal of Molecular Sciences, 2019, 20(3): 705.

[39] CLOHISY D R, RAMNARAINE M L, SCULLY S, et al. Osteoprotegerin inhibits tumor-induced osteoclastogenesis and bone tumor growth in osteopetrotic mice [J]. J Orthop Res, 2000, 18(6): 967-76.

[40] CHUNG S T, GEERTS D, ROSEMAN K, et al. Osteoprotegerin mediates tumor-promoting effects of Interleukin-1beta in breast cancer cells [J]. Mol Cancer, 2017, 16(1): 27.

[41] WANG Y, LIU Y, HUANG Z, et al. The roles of osteoprotegerin in cancer, far beyond a bone player [J]. Cell Death Discovery, 2022, 8(1): 252.

[42] BAUD'HUIN M, DUPLOMB L, TELETCHEA S, et al. Osteoprotegerin: multiple partners for multiple functions [J]. Cytokine Growth Factor Rev, 2013, 24(5): 401-9.

[43] MIN H, MORONY S, SAROSI I, et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis [J]. J Exp Med, 2000, 192(4): 463-74.

[44] BOLON B, CARTER C, DARIS M, et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis [J]. Mol Ther, 2001, 3(2): 197-205.

[45] SöZEN T, ÖZıŞıK L, BAŞARAN N. An overview and management of osteoporosis [J]. Eur J Rheumatol, 2017, 4(1): 46-56.

[46] CENTER J R, NGUYEN T V, SCHNEIDER D, et al. Mortality after all major types of osteoporotic fracture in men and women: an observational study [J]. Lancet, 1999, 353(9156): 878-82.

[47] 国家卫生健康委发布中国骨质疏松症流行病学调查结果 [Z]. 中国疾病预防控制中心. 2018-10-20

[48] CHEN L R, KO N Y, CHEN K H. Medical Treatment for Osteoporosis: From Molecular to Clinical Opinions [J]. Int J Mol Sci, 2019, 20(9): 2213.

[49] IñIGUEZ-ARIZA N M, CLARKE B L. Bone biology, signaling pathways, and therapeutic targets for osteoporosis [J]. Maturitas, 2015, 82(2): 245-55.

[50] LEE D, HEO D N, KIM H J, et al. Inhibition of Osteoclast Differentiation and Bone Resorption by Bisphosphonate-conjugated Gold Nanoparticles [J]. Sci Rep, 2016, 6: 27336.

[51] ROSSINI M, ADAMI S, VIAPIANA O, et al. Circulating γδ T cells and the risk of acute-phase response after zoledronic acid administration [J]. J Bone Miner Res, 2012, 27(1): 227-30.

[52] ANAGNOSTIS P, PASCHOU S A, MINTZIORI G, et al. Drug holidays from bisphosphonates and denosumab in postmenopausal osteoporosis: EMAS position statement [J]. Maturitas, 2017, 101: 23-30.

[53] CUMMINGS S R, SAN MARTIN J, MCCLUNG M R, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis [J]. N Engl J Med, 2009, 361(8): 756-65.

[54] ELLIS G K, BONE H G, CHLEBOWSKI R, et al. Randomized Trial of Denosumab in Patients Receiving Adjuvant Aromatase Inhibitors for Nonmetastatic Breast Cancer [J]. Journal of Clinical Oncology, 2008, 26(30): 4875-82.

[55] ROSSINI M, ADAMI G, ADAMI S, et al. Safety issues and adverse reactions with osteoporosis management [J]. Expert Opin Drug Saf, 2016, 15(3): 321-32.

[56] KUŽMA M, JACKULIAK P, KILLINGER Z, et al. Parathyroid Hormone-Related Changes of Bone Structure [J]. Physiol Res, 2021, 70(Suppl 1): S3-s11.

[57] ASLAN D, ANDERSEN M D, GEDE L B, et al. Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans [J]. Scand J Clin Lab Invest, 2012, 72(1): 14-22.

[58] JIANG Y, ZHAO J J, MITLAK B H, et al. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure [J]. J Bone Miner Res, 2003, 18(11): 1932-41.

[59] NEER R M, ARNAUD C D, ZANCHETTA J R, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis [J]. N Engl J Med, 2001, 344(19): 1434-41.

[60] JOSEPHSON K, RICARDO A, SZOSTAK J W. mRNA display: from basic principles to macrocycle drug discovery [J]. Drug Discov Today, 2014, 19(4): 388-99.

[61] QIN S, TANG X, CHEN Y, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases [J]. Signal Transduct Target Ther, 2022, 7(1): 166.

[62] DAMASE T R, SUKHOVERSHIN R, BOADA C, et al. The Limitless Future of RNA Therapeutics [J]. Front Bioeng Biotechnol, 2021, 9: 628137.

[63] LIN S, KUANG M. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives [J]. Nature Reviews Gastroenterology & Hepatology, 2024: 267-281.

[64] HAJJ K A, WHITEHEAD K A. Tools for translation: non-viral materials for therapeutic mRNA delivery [J]. Nature Reviews Materials, 2017, 2(10): 17056.

[65] YANG Z, SHI J, XIE J, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation [J]. Nat Biomed Eng, 2020, 4(1): 69-83.

[66] PAUNOVSKA K, LOUGHREY D, DAHLMAN J E. Drug delivery systems for RNA therapeutics [J]. Nature Reviews Genetics, 2022, 23(5): 265-80.

[67] HUANG P, DENG H, WANG C, et al. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery [J]. Adv Mater, 2023: e2307822.

[68] ZHANG Y, SUN C, WANG C, et al. Lipids and Lipid Derivatives for RNA Delivery [J]. Chem Rev, 2021, 121(20): 12181-277.

[69] LI Z, LIU Z, WU J, et al. Cell-Derived Vesicles for mRNA Delivery [J]. Pharmaceutics, 2022, 14(12): 2699.

[70] CHAUDHARY N, WEISSMAN D, WHITEHEAD K A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation [J]. Nature Reviews Drug Discovery, 2021, 20(11): 817-38.

[71] FAN T, ZHANG M, YANG J, et al. Therapeutic cancer vaccines: advancements, challenges, and prospects [J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 450.

[72] PATEL M R, BAUER T M, JIMENO A, et al. A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab [J]. Journal of Clinical Oncology, 2020, 38(15_suppl): 3092.

[73] WILSON E, GOSWAMI J, BAQUI A H, et al. Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults [J]. New England Journal of Medicine, 2023, 389(24): 2233-44.

[74] HU X, KARTHIGEYAN K P, HERBEK S, et al. Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine [J]. The Journal of Infectious Diseases, 2024: jiad593.

[75] KRANZ L M, DIKEN M, HAAS H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy [J]. Nature, 2016, 534(7607): 396-401.

[76] MACKENSEN A, KOENECKE C, HAANEN J, et al. 958 BNT211: a phase I/II trial to evaluate safety and efficacy of CLDN6 CAR-T cells and vaccine-mediated in vivo expansion in patients with CLDN6-positive advanced solid tumors [J]. Journal for ImmunoTherapy of Cancer, 2021, 9(Suppl 2): A1008.

[77] GILLMORE J D, GANE E, TAUBEL J, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis [J]. New England Journal of Medicine, 2021, 385(6): 493-502.

[78] WU J, WU W, ZHOU B, et al. Chimeric antigen receptor therapy meets mRNA technology [J]. Trends in Biotechnology, 2024, 42(2): 228-40.

[79] KOEBERL D, SCHULZE A, SONDHEIMER N, et al. Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia [J]. Nature, 2024.

[80] CHENG X, LEE R J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery [J]. Adv Drug Deliv Rev, 2016, 99(Pt A): 129-37.

[81] PONTI F, CAMPOLUNGO M, MELCHIORI C, et al. Cationic lipids for gene delivery: many players, one goal [J]. Chem Phys Lipids, 2021, 235: 105032.

[82] DOKKA S, TOLEDO D, SHI X, et al. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes [J]. Pharm Res, 2000, 17(5): 521-5.

[83] SOENEN S J, BRISSON A R, DE CUYPER M. Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model [J]. Biomaterials, 2009, 30(22): 3691-701.

[84] FILION M C, PHILLIPS N C. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells [J]. Biochim Biophys Acta, 1997, 1329(2): 345-56.

[85] LAPPALAINEN K, JääSKELäINEN I, SYRJäNEN K, et al. Comparison of cell proliferation and toxicity assays using two cationic liposomes [J]. Pharm Res, 1994, 11(8): 1127-31.

[86] SEMPLE S C, KLIMUK S K, HARASYM T O, et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures [J]. Biochim Biophys Acta, 2001, 1510(1-2): 152-66.

[87] HAFEZ I M, MAURER N, CULLIS P R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids [J]. Gene Ther, 2001, 8(15): 1188-96.

[88] ZUHORN I S, BAKOWSKY U, POLUSHKIN E, et al. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency [J]. Molecular therapy : the journal of the American Society of Gene Therapy, 2005, 11(5): 801-10.

[89] CIANI L, RISTORI S, SALVATI A, et al. DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery: zeta potential measurements and electron spin resonance spectra [J]. Biochim Biophys Acta, 2004, 1664(1): 70-9.

[90] SRISIRI W, SISSON T M, O'BRIEN D F, et al. Polymerization of the Inverted Hexagonal Phase [J]. Journal of the American Chemical Society, 1997, 119(21): 4866-73.

[91] KAUFFMAN K J, DORKIN J R, YANG J H, et al. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs [J]. Nano Letters, 2015, 15(11): 7300-6.

[92] HATTORI Y, SUZUKI S, KAWAKAMI S, et al. The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route [J]. J Control Release, 2005, 108(2-3): 484-95.

[93] MENG C, CHEN Z, LI G, et al. Nanoplatforms for mRNA Therapeutics [J]. Advanced Therapeutics, 2021, 4(1): 2000099.

[94] POZZI D, MARCHINI C, CARDARELLI F, et al. Transfection efficiency boost of cholesterol-containing lipoplexes [J]. Biochim Biophys Acta, 2012, 1818(9): 2335-43.

[95] PAUNOVSKA K, GIL C J, LOKUGAMAGE M P, et al. Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery [J]. ACS Nano, 2018, 12(8): 8341-9.

[96] PATEL S, ASHWANIKUMAR N, ROBINSON E, et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA [J]. Nat Commun, 2020, 11(1): 983.

[97] KULKARNI J A, WITZIGMANN D, LEUNG J, et al. On the role of helper lipids in lipid nanoparticle formulations of siRNA [J]. Nanoscale, 2019, 11(45): 21733-9.

[98] RYALS R C, PATEL S, ACOSTA C, et al. The effects of PEGylation on LNP based mRNA delivery to the eye [J]. PLoS One, 2020, 15(10): e0241006.

[99] KNOP K, HOOGENBOOM R, FISCHER D, et al. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives [J]. Angew Chem Int Ed Engl, 2010, 49(36): 6288-308.

[100] ZHU X, TAO W, LIU D, et al. Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery In Vitro and In Vivo [J]. Theranostics, 2017, 7(7): 1990-2002.

[101] KIM J, EYGERIS Y, GUPTA M, et al. Self-assembled mRNA vaccines [J]. Adv Drug Deliv Rev, 2021, 170: 83-112.

[102] LI B, ZHANG X, DONG Y. Nanoscale platforms for messenger RNA delivery [J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(2): e1530.

[103] MIAO L, LIN J, HUANG Y, et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver [J]. Nat Commun, 2020, 11(1): 2424.

[104] HOU X, ZHANG X, ZHAO W, et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis [J]. Nat Nanotechnol, 2020, 15(1): 41-6.

[105] WITTRUP A, AI A, LIU X, et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown [J]. Nat Biotechnol, 2015, 33(8): 870-6.

[106] REHMAN Z U, ZUHORN I S, HOEKSTRA D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances [J]. Journal of Controlled Release, 2013, 166(1): 46-56.

[107] CASEY J R, GRINSTEIN S, ORLOWSKI J. Sensors and regulators of intracellular pH [J]. Nat Rev Mol Cell Biol, 2010, 11(1): 50-61.

[108] VAIDYANATHAN S, ORR B G, BANASZAK HOLL M M. Role of Cell Membrane-Vector Interactions in Successful Gene Delivery [J]. Acc Chem Res, 2016, 49(8): 1486-93.

[109] KOLTOVER I, SALDITT T, RäDLER J O, et al. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery [J]. Science, 1998, 281(5373): 78-81.

[110] SIMBERG D, WEISMAN S, TALMON Y, et al. DOTAP (and other cationic lipids): chemistry, biophysics, and transfection [J]. Crit Rev Ther Drug Carrier Syst, 2004, 21(4): 257-317.

[111] HEYES J, PALMER L, BREMNER K, et al. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids [J]. J Control Release, 2005, 107(2): 276-87.

[112] MICHEL T, LUFT D, ABRAHAM M K, et al. Cationic Nanoliposomes Meet mRNA: Efficient Delivery of Modified mRNA Using Hemocompatible and Stable Vectors for Therapeutic Applications [J]. Mol Ther Nucleic Acids, 2017, 8: 459-68.

[113] TRUONG B, ALLEGRI G, LIU X B, et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency [J]. Proc Natl Acad Sci U S A, 2019, 116(42): 21150-9.

[114] YIN H, SONG C Q, SURESH S, et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing [J]. Nat Biotechnol, 2017, 35(12): 1179-87.

[115] AKINC A, MAIER M A, MANOHARAN M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J]. Nat Nanotechnol, 2019, 14(12): 1084-7.

[116] ROBINSON E, MACDONALD K D, SLAUGHTER K, et al. Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis [J]. Mol Ther, 2018, 26(8): 2034-46.

[117] MAIER M A, JAYARAMAN M, MATSUDA S, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics [J]. Mol Ther, 2013, 21(8): 1570-8.

[118] KENJO E, HOZUMI H, MAKITA Y, et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice [J]. Nature Communications, 2021, 12(1): 7101.

[119] NI H, HATIT M Z C, ZHAO K, et al. Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo [J]. Nat Commun, 2022, 13(1): 4766.

[120] ZHANG X, LI B, LUO X, et al. Biodegradable Amino-Ester Nanomaterials for Cas9 mRNA Delivery in Vitro and in Vivo [J]. ACS Appl Mater Interfaces, 2017, 9(30): 25481-7.

[121] KAUFFMAN K J, DORKIN J R, YANG J H, et al. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs [J]. Nano Lett, 2015, 15(11): 7300-6.

[122] FENTON O S, KAUFFMAN K J, MCCLELLAN R L, et al. Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery [J]. Adv Mater, 2016, 28(15): 2939-43.

[123] FENTON O S, KAUFFMAN K J, KACZMAREK J C, et al. Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes [J]. Adv Mater, 2017, 29(33): 1606944.

[124] FENTON O S, KAUFFMAN K J, MCCLELLAN R L, et al. Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs [J]. Angew Chem Int Ed Engl, 2018, 57(41): 13582-6.

[125] LI M, LI S, HUANG Y, et al. Secreted Expression of mRNA-Encoded Truncated ACE2 Variants for SARS-CoV-2 via Lipid-Like Nanoassemblies [J]. Adv Mater, 2021, 33(34): e2101707.

[126] LI M, HUANG Y, WU J, et al. A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice [J]. Mater Horiz, 2023, 10(2): 466-72.

[127] HUANG Y, WU J, LI S, et al. Quaternization drives spleen-to-lung tropism conversion for mRNA-loaded lipid-like nanoassemblies [J]. Theranostics, 2024, 14(2): 830-42.

[128] XIE W, CHEN B, WONG J. Evolution of the market for mRNA technology [J]. Nat Rev Drug Discov, 2021, 20(10): 735-6.

[129] GREN S T, GRIP O. Role of Monocytes and Intestinal Macrophages in Crohn's Disease and Ulcerative Colitis [J]. Inflamm Bowel Dis, 2016, 22(8): 1992-8.

[130] PEI Y, YEO Y. Drug delivery to macrophages: Challenges and opportunities [J]. Journal of Controlled Release, 2016, 240: 202-11.

[131] HE W, KAPATE N, SHIELDS C W, et al. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases [J]. Advanced Drug Delivery Reviews, 2020, 165-166: 15-40.

[132] HARIZAJ A, DE SMEDT S C, LENTACKER I, et al. Physical transfection technologies for macrophages and dendritic cells in immunotherapy [J]. Expert Opinion on Drug Delivery, 2021, 18(2): 229-47.

[133] ZHANG X, EDWARDS J P, MOSSER D M. The Expression of Exogenous Genes in Macrophages: Obstacles and Opportunities [M]. Methods Mol Biol, 2009, 531: 123-43.

[134] PATEL P, IBRAHIM N M, CHENG K. The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA [J]. Trends in Pharmacological Sciences, 2021, 42(6): 448-60.

[135] LI B, LUO X, DENG B, et al. An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo [J]. Nano Letters, 2015, 15(12): 8099-107.

[136] JIANG C, MEI M, LI B, et al. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo [J]. Cell Research, 2017, 27(3): 440-3.

[137] ZENG C, HOU X, YAN J, et al. Leveraging mRNA Sequences and Nanoparticles to Deliver SARS-CoV-2 Antigens In Vivo [J]. Adv Mater, 2020, 32(40): e2004452.

[138] MUTTACH F, MUTHMANN N, RENTMEISTER A. Synthetic mRNA capping [J]. Beilstein J Org Chem, 2017, 13: 2819-32.

[139] SUN H, LI K, LIU C, et al. Regulation and functions of non-m(6)A mRNA modifications [J]. Nat Rev Mol Cell Biol, 2023, 24(10): 714-31.

[140] NOMBELA P, MIGUEL-LóPEZ B, BLANCO S. The role of m(6)A, m(5)C and Ψ RNA modifications in cancer: Novel therapeutic opportunities [J]. Mol Cancer, 2021, 20(1): 18.

[141] SULTANA N, HADAS Y, SHARKAR M T K, et al. Optimization of 5' Untranslated Region of Modified mRNA for Use in Cardiac or Hepatic Ischemic Injury [J]. Mol Ther Methods Clin Dev, 2020, 17: 622-33.

[142] MAUGER D M, CABRAL B J, PRESNYAK V, et al. mRNA structure regulates protein expression through changes in functional half-life [J]. Proc Natl Acad Sci U S A, 2019, 116(48): 24075-83.

[143] PASSMORE L A, COLLER J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression [J]. Nat Rev Mol Cell Biol, 2022, 23(2): 93-106.

 

所在学位评定分委会
生物学
国内图书分类号
Q782
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766184
专题南方科技大学医学院
推荐引用方式
GB/T 7714
王宁. 可电离脂质纳米制剂的制备及其用于递送骨保护素mRNA的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133156-王宁-南方科技大学医学(2901KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王宁]的文章
百度学术
百度学术中相似的文章
[王宁]的文章
必应学术
必应学术中相似的文章
[王宁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。