中文版 | English
题名

可程控的光化学除氧在光子上转换的应用

其他题名
PROGRAMMABLE PHOTOCHEMICAL DEOXYGENATION IN PHOTON UPCONVERSION
姓名
姓名拼音
CHEN Sihan
学号
12132724
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
陆为
导师单位
化学系
论文答辩日期
2024-05-15
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本文探讨了可程控的光化学除氧技术在光子上转换领域的应用,旨在开 发一种新的控制方法,以调控光子上转换过程中的三重激发态,并且通过三重态-三重态湮灭过程激活高能量的光子,最终开发光子上转换领域新的功 能和应用场景。研究聚焦于 3D 打印与手性超分子凝胶两个领域,旨在解决 这些领域中存在的技术挑战。一方面,本文提出了一种可控光化学除氧光固 化策略,使用钯(II)四苯基四苯并卟啉(PdTPBP)作为代表性的金属三重 态卟啉分子,在二甲基亚砜(DMSO)溶液中进行光化学除氧能力的评估, 并验证了其三重态-三重态湮灭上转换的特性。通过灰度数字光处理(DLP) 策略实现了氧气浓度的时空控制,精确控制了光固化位置和程度,提出了一 种新的在 z 轴上控制聚合程度的方法,并且将 3D 打印的光响应范围拓展至 红光和近红外光。另一方面,研究建立了一种在空气氛围下实现“非手性磷 光客体-手性超分子凝胶主体”圆偏振发光的方法,并研究了三重态-三重态 湮灭上转换对手性传递的影响。选取具有光活化除氧功能的手性超分子凝胶 作为主体,以及铂(II)八乙基卟啉(PtOEP)和对(二酚基)蒽(DPOA)作 为磷光和荧光客体发光分子,分析了主客体间的手性传递与圆偏振发射现象, 并表征了客体分子的光物理和光化学性质,为可除氧的手性超分子凝胶领域 的圆偏振发光研究提供了新的视角。 本研究的成果表明,可控光化学除氧方法在 3D 打印技术和手性超分子 凝胶领域具有应用潜力,为光子上转换技术的新功能和新应用提供了研究方向。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] KUANG X, WU J, CHEN K, et al. Grayscale digital light processing 3D printing for highly functionally graded materials [J]. Science Advances, 2019, 5(5): eaav5790.
[2] APPUHAMILLAGE G A, CHARTRAIN N, MEENAKSHISUNDARAM V, et al. 110th Anniversary: Vat photopolymerization-based additive manufacturing: current trends and future directions in materials design [J]. Industrial & Engineering Chemistry Research, 2019, 58(33): 15109-15118.
[3] STERNLICHT H, NIEMAN G, ROBINSON G. Triplet—triplet annihilation and delayed fluorescence in molecular aggregates [J]. The Journal of Chemical Physics, 1963, 38(6): 1326-1335.
[4] SINGH-RACHFORD T N, CASTELLANO F N. Photon upconversion based on sensitized triplet–triplet annihilation [J]. Coordination Chemistry Reviews, 2010, 254(21-22): 2560-2573.
[5] ZENG L, HUANG L, HAN J, et al. Enhancing triplet–triplet annihilation upconversion: from molecular design to present applications [J]. Accounts of Chemical Research, 2022, 55(18): 2604-2615.
[6] AHN D, STEVENS L M, ZHOU K, et al. Rapid High-Resolution Visible Light 3D Printing [J]. ACS Central Science, 2020, 6(9): 1555-1563.
[7] LI M-D, WONG N-K, XIAO J, et al. Dynamics of oxygen-independent photocleavage of blebbistatin as a one-photon blue or two-photon near-infrared light-gated hydroxyl radical photocage [J]. Journal of the American Chemical Society, 2018, 140(46): 15957-15968.
[8] HUANG Z, TUNG C-H, WU L-Z. Quantum dot-sensitized triplet–triplet annihilation photon upconversion for solar energy conversion and beyond [J]. Accounts of Materials Research, 2024, 5(2): 136-145.
[9] CHALARD A, MAUDUIT M, SOULEILLE S, et al. 3D printing of a biocompatible low molecular weight supramolecular hydrogel by dimethylsulfoxide water solvent exchange [J]. Additive Manufacturing, 2020, 33: 101162-101168.
[10] LIGON S C, HUSAR B, WUTZEL H, et al. Strategies to reduce oxygen inhibition in photoinduced polymerization [J]. Chemical Reviews, 2014, 114(1): 557-589.
[11] PETERSON G I, SCHWARTZ J J, ZHANG D, et al. Production of materials with spatially-controlled cross-link density via vat photopolymerization [J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29037-29043.
[12] DONG M, HAN Y, HAO X P, et al. Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements [J]. Advanced Materials, 2022, 34(34): e2204333.
[13] HUANG B, HU R, XUE Z, et al. Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties [J]. Carbohydrate Polymers, 2020, 231: 115736.
[14] BIALAS S, MICHALEK L, MARSCHNER D E, et al. Access to disparate soft matter materials by curing with two colors of light [J]. Advanced Materials, 2019, 31(8): e1807288.
[15] ANDREU A, SU P-C, KIM J-H, et al. 4D printing materials for vat photopolymerization [J]. Additive Manufacturing, 2021, 44: 102024-102037.
[16] CHIVERS P R A, SMITH D K. Shaping and structuring supramolecular gels [J]. Nature Reviews Materials, 2019, 4(7): 463-478.
[17] PENG X, YUE L, LIANG S, et al. Multi‐color 3D printing via single‐vat grayscale digital light processing [J]. Advanced Functional Materials, 2022, 32(28).
[18] ZHAO H, SHA J, WANG X, et al. Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation [J]. Lab on a Chip, 2019, 19(16): 2651-2662.
[19] KOONE J C, DASHNAW C M, ALONZO E A, et al. Data for all: Tactile graphics that light up with picture-perfect resolution [J]. Science Advances, 2022, 8(33): eabq2640.
[20] ZHANG W, WANG H, WANG H, et al. 2.5D, 3D and 4D printing in nanophotonics - a progress report [J]. Materials Today Proceedings, 2022, 70: 304-309.
[21] NA J H, BENDE N P, BAE J, et al. Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates [J]. Soft Matter, 2016, 12(22): 4985-4990.
[22] VAN DER LAAN H L, BURNS M A, SCOTT T F. Volumetric photopolymerization confinement through dual-wavelength photoinitiation and photoinhibition [J]. ACS Macro Letters, 2019, 8(8): 899-904.
[23] ZHANG Y, XU Y, SIMON-MASSERON A, et al. Radical photoinitiation with LEDs and applications in the 3D printing of composites [J]. Chemical Society Reviews, 2021, 50(6): 3824-3841.
[24] DE BEER M P, VAN DER LAAN H L, COLE M A, et al. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning [J]. Science Advances, 2019, 5(1): eaau8723.
[25] KELLY B E, BHATTACHARYA I, HEIDARI H, et al. Volumetric additive manufacturing via tomographic reconstruction [J]. Science, 2019, 363(6431): 1075-1079.
[26] REGEHLY M, GARMSHAUSEN Y, REUTER M, et al. Xolography for linear volumetric 3D printing [J]. Nature, 2020, 588(7839): 620-624.
[27] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Continuous liquid interface production of 3D objects [J]. Science, 2015, 347(6228): 1349-1352.
[28] WAN S, LU W. Reversible photoactivated phosphorescence of gold(I) arylethynyl complexes in aerated DMSO solutions and gels [J]. Angewandte Chemie International Edition, 2017, 56(7): 1784-1788.
[29] WAN S, LIN J, SU H, et al. Photochemically deoxygenating solvents for triplet-triplet annihilation photon upconversion operating in air [J]. Chemical Communications, 2018, 54(31): 3907-3910.
[30] CHEN S, ZHOU H, ZHOU N, et al. Programmable photochemical deoxygenation for 2.5 D grayscale printing [J]. Chemical Communications, 2024, 60(5): 546-549.
[31] KIM B C, LIM Y J, SONG J H, et al. Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display [J]. Optics Express, 2014, 22(107): A1725-A1730.
[32] DAS S, XU S, BEN T, et al. Chiral recognition and separation by chirality‐enriched metal–organic frameworks [J]. Angewandte Chemie International Edition, 2018, 57(28): 8629-8633.
[33] SONG F, WEI G, JIANG X, et al. Chiral sensing for induced circularly polarized luminescence using an Eu (III)-containing polymer and D-or L-proline [J]. Chemical Communications, 2013, 49(51): 5772-5774.
[34] PETERMAYER C, DUBE H. Circular dichroism photoswitching with a twist: axially chiral hemiindigo [J]. Journal of the American Chemical Society, 2018, 140(42): 13558-13561.
[35] LI Z, JI C, FAN Y, et al. Circularly polarized light-dependent pyro-phototronic effect from 2D chiral–polar double perovskites [J]. Journal of the American Chemical Society, 2023, 145(46): 25134-25142.
[36] SCHADT M. Liquid crystal materials and liquid crystal displays [J]. Annual Review of Materials Science, 1997, 27(1): 305-379.
[37] HUCK N P, JAGER W F, DE LANGE B, et al. Dynamic control and amplification of molecular chirality by circular polarized light [J]. Science, 1996, 273(5282): 1686-1688.
[38] SHERSON J F, KRAUTER H, OLSSON R K, et al. Quantum teleportation between light and matter [J]. Nature, 2006, 443(7111): 557-560.
[39] SIMON Y C, WEDER C. Low-power photon upconversion through triplet–triplet annihilation in polymers [J]. Journal of Materials Chemistry, 2012, 22(39): 20817-20830.
[40] GRAY V, DZEBO D, ABRAHAMSSON M, et al. Triplet-triplet annihilation photon-upconversion: towards solar energy applications [J]. Physical Chemistry Chemical Physics, 2014, 16(22): 10345-10352.
[41] GIRI N K, PONCE C P, STEER R P, et al. Homomolecular non-coherent photon upconversion by triplet–triplet annihilation using a zinc porphyrin on wide bandgap semiconductors [J]. Chemical Physics Letters, 2014, 598: 17-22.
[42] O’BRIEN J A, RALLABANDI S, TRIPATHY U, et al. Efficient S2 state production in ZnTPP–PMMA thin films by triplet–triplet annihilation: Evidence of solute aggregation in photon upconversion systems [J]. Chemical Physics Letters, 2009, 475(4-6): 220-222.
[43] GHIGGINO K P, GIRI N K, HANRIEDER J, et al. Photophysics of soret-excited tin(IV) porphyrins in solution [J]. Journal of Physical Chemistry A, 2013, 117(33): 7833-7840.
[44] AWWAD N, BUI A T, DANILOV E O, et al. Visible-light-initiated free-radical polymerization by homomolecular triplet-triplet annihilation [J]. Chem, 2020, 6(11): 3071-3085.
[45] SCHLOEMER T, NARAYANAN P, ZHOU Q, et al. Nanoengineering triplet–triplet annihilation upconversion: from materials to real-world applications [J]. ACS Nano, 2023, 17(4): 3259-3288.
[46] SANDERS S N, SCHLOEMER T H, GANGISHETTY M K, et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing [J]. Nature, 2022, 604(7906): 474-478.
[47] UJI M, ZäHRINGER T J, KERZIG C, et al. Visible‐to‐UV Photon Upconversion: Recent Progress in New Materials and Applications [J]. Angewandte Chemie, 2023, 135(25): e202301506.
[48] KUI S C, HUNG F F, LAI S L, et al. Luminescent organoplatinum (II) complexes with functionalized cyclometalated C^ N^ C ligands: structures, photophysical properties, and material applications [J]. Chemistry–A European Journal, 2012, 18(1): 96-109.
[49] LIN J, WAN S, LIU W, et al. Photo-writing self-erasable phosphorescent images using poly (N-vinyl-2-pyrrolidone) as a photochemically deoxygenating matrix [J]. Chemical Communications, 2019, 55(30): 4299-4302.
[50] ZHOU H, LIN J, WAN S, et al. Photochemically deoxygenating gels for triplet-triplet annihilation photon-upconversion performed under air [J]. Physical Chemistry Chemical Physics, 2022, 24(47): 29151-29158.
[51] LIU Y, AL-SALIHI M, GUO Y, et al. Halogen-doped phosphorescent carbon dots for grayscale patterning [J]. Light: Science & Applications, 2022, 11(1): 163-173.
[52] JIN Y, PENG Q C, XIE J W, et al. Photo‐activated circularly polarized luminescence film based on aggregation‐induced emission copper (I) cluster‐assembled materials [J]. Angewandte Chemie International Edition, 2023, 62(19): e202301000.
[53] ZHANG F, ZHU L, LI Z, et al. The recent development of vat photopolymerization: A review [J]. Additive Manufacturing, 2021, 48: 102423-102442.
[54] BAO Y. Recent trends in advanced photoinitiators for vat photopolymerization 3D printing [J]. Macromolecular Rapid Communications, 2022, 43(14): e2200202.
[55] KRONENFELD J M, ROTHER L, SACCONE M A, et al. Roll-to-roll, high-resolution 3D printing of shape-specific particles [J]. Nature, 2024, 627(8003): 306-312.
[56] RAVETZ B D, PUN A B, CHURCHILL E M, et al. Photoredox catalysis using infrared light via triplet fusion upconversion [J]. Nature, 2019, 565(7739): 343-346.
[57] LIMBERG D K, KANG J H, HAYWARD R C. Triplet-triplet annihilation photopolymerization for high-resolution 3D printing [J]. Journal of the American Chemical Society, 2022, 144(12): 5226-5232.
[58] WANG Z, ZHANG Y, SU Y, et al. Three-dimensional direct-writing via photopolymerization based on triplet—triplet annihilation [J]. Science China Chemistry, 2022, 65(11): 2283-2289.
[59] SCHWARTZ J J, BOYDSTON A J. Multimaterial actinic spatial control 3D and 4D printing [J]. Nature Communications, 2019, 10(1): 791-800.
[60] MONTGOMERY S M, HAMEL C M, SKOVRAN J, et al. A reaction–diffusion model for grayscale digital light processing 3D printing [J]. Extreme Mechanics Letters, 2022, 53: 101714-101726.
[61] YUE L, SUN X, YU L, et al. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing [J]. Nature Communications, 2023, 14(1): 5519-5529.
[62] OKAZAKI Y, GOTO T, SAKAGUCHI R, et al. Facile and versatile approach for generating circularly polarized luminescence by non-chiral, low-molecular dye-on-nanotemplate composite system [J]. Chemistry Letters, 2016, 45(4): 448-450.
[63] HAN J, DUAN P, LI X, et al. Amplification of circularly polarized luminescence through triplet–triplet annihilation-based photon upconversion [J]. Journal of the American Chemical Society, 2017, 139(29): 9783-9786.
[64] YANG D, DUAN P, LIU M. Dual upconverted and downconverted circularly polarized luminescence in donor–acceptor assemblies [J]. Angewandte Chemie International Edition, 2018, 130(30): 9501-9505.
[65] WANG F, JI W, YANG P, et al. Inversion of circularly polarized luminescence of nanofibrous hydrogels through co-assembly with achiral coumarin derivatives [J]. ACS Nano, 2019, 13(6): 7281-7290.
[66] LI Y, WANG T, LIU M. Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies [J]. Soft Matter, 2007, 3(10): 1312-1317.
[67] WANG Q, XU X, HONG B, et al. Molecular engineering of a gel polymer electrolyte via in-situ polymerization for high performance lithium metal batteries [J]. Chemical Engineering Journal, 2022, 428: 131331-131338.
[68] BORISOV S, NUSS G, HAAS W, et al. New NIR-emitting complexes of platinum (II) and palladium (II) with fluorinated benzoporphyrins [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201(2-3): 128-135.

所在学位评定分委会
化学
国内图书分类号
O65
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766187
专题理学院_化学系
推荐引用方式
GB/T 7714
陈思涵. 可程控的光化学除氧在光子上转换的应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132724-陈思涵-化学系.pdf(5476KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈思涵]的文章
百度学术
百度学术中相似的文章
[陈思涵]的文章
必应学术
必应学术中相似的文章
[陈思涵]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。