[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J/OL]. CA: A Cancer Journal for Clinicians, 2022, 72(1): 7-33.
[2] CROSBY D, BHATIA S, BRINDLE K M, et al. Early detection of cancer[J/OL]. Science, 2022, 375(6586): eaay9040.
[3] VAIDYANATHAN R, SOON R H, ZHANG P, et al. Cancer Diagnosis: From Tumor to Liquid Biopsy and Beyond[J/OL]. Lab on a Chip, 2018: 10.1039.C8LC00684A.
[4] TIVEY A, CHURCH M, ROTHWELL D, et al. Circulating tumour DNA — looking beyond the blood[J/OL]. Nature Reviews Clinical Oncology, 2022, 19(9): 600-612.
[5] LAWRENCE R, WATTERS M, DAVIES C R, et al. Circulating tumour cells for early detection of clinically relevant cancer[J/OL]. Nature Reviews Clinical Oncology, 2023, 20(7): 487-500.
[6] XU J, LIAO K, YANG X, et al. Using single-cell sequencing technology to detect circulating tumor cells in solid tumors[J/OL]. Molecular Cancer, 2021, 20(1): 104.
[7] HETTIARACHCHI S, CHA H, OUYANG L, et al. Recent microfluidic advances in submicron to nanoparticle manipulation and separation[J/OL]. Lab on a Chip, 2023, 23(5): 982-1010.
[8] LIN Z, LUO G, DU W, et al. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells’ (CTCs) Isolation and Tumor‐On‐A‐Chip[J/OL]. Small, 2020, 16(9): 1903899.
[9] UNDVALL ANAND E, MAGNUSSON C, LENSHOF A, et al. Two-Step Acoustophoresis Separation of Live Tumor Cells from Whole Blood[J/OL]. Analytical Chemistry, 2021, 93(51): 17076-17085.
[10] YANG S, RUFO J, ZHONG R, et al. Acoustic tweezers for high-throughput single-cell analysis[J/OL]. Nature Protocols, 2023, 18(8): 2441-2458.
[11] ZHANG J, CHEN C, BECKER R, et al. A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER)[J/OL]. Science Advances, 2022, 8(47): eade0640.
[12] ZHU H, ZHANG P, ZHONG Z, et al. Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices[J/OL]. Science Advances, 2021, 7(2): eabc7885.
[13] DIAZ‐ARMAS G G, CERVANTES‐GONZALEZ A P, MARTINEZ‐DUARTE R, et al. Electrically driven microfluidic platforms for exosome manipulation and characterization[J/OL]. ELECTROPHORESIS, 2022, 43(1-2): 327-339.
[14] ZHANG Y, CHEN X. Blood cells separation microfluidic chip based on dielectrophoretic force[J/OL]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(4): 206.
[15] VARMAZYARI V, HABIBIYAN H, GHAFOORIFARD H, et al. A dielectrophoresis-based microfluidic system having double-sided optimized 3D electrodes for label-free cancer cell separation with preserving cell viability[J/OL]. Scientific Reports, 2022, 12(1): 12100.
[16] VERMESH O, AALIPOUR A, GE T J, et al. An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo[J/OL]. Nature Biomedical Engineering, 2018, 2(9): 696-705.
[17] LABIB M, WANG Z, AHMED S U, et al. Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting[J/OL]. Nature Biomedical Engineering, 2020, 5(1): 41-52.
[18] WANG Z, AHMED S, LABIB M, et al. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting[J/OL]. Nature Biomedical Engineering, 2022, 6(2): 108-117.
[19] WANG Z, WANG H, LIN S, et al. Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting[J/OL]. Nano Letters, 2022, 22(12): 4774-4783.
[20] YAO Z, KWAN C C, POON A W. An optofluidic “tweeze-and-drag” cell stretcher in a microfluidic channel[J/OL]. Lab on a Chip, 2020, 20(3): 601-613.
[21] ZHENG B, LI C Y, HUANG S, et al. Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip[J/OL]. Sensors and Actuators B: Chemical, 2022, 368: 132173.
[22] SHI Y, ZHAO H, CHIN L K, et al. Optical Potential-Well Array for High-Selectivity, Massive Trapping and Sorting at Nanoscale[J/OL]. Nano Letters, 2020, 20(7): 5193-5200.
[23] SCHWAFERTS C, SOGNE V, WELZ R, et al. Nanoplastic Analysis by Online Coupling of Raman Microscopy and Field-Flow Fractionation Enabled by Optical Tweezers[J/OL]. Analytical Chemistry, 2020, 92(8): 5813-5820.
[24] LIU C, ZHAO J, TIAN F, et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers[J/OL]. Nature Biomedical Engineering, 2019, 3(3): 183-193.
[25] ZHAO J, LIU C, LI Y, et al. Thermophoretic Detection of Exosomal microRNAs by Nanoflares[J/OL]. Journal of the American Chemical Society, 2020, 142(11): 4996-5001.
[26] DENG J, TIAN F, LIU C, et al. Rapid One-Step Detection of Viral Particles Using an Aptamer-Based Thermophoretic Assay[J/OL]. Journal of the American Chemical Society, 2021, 143(19): 7261-7266.
[27] CONG H, CHEN J, HO H P. Trapping, sorting and transferring of micro-particles and live cells using electric current-induced thermal tweezers[J/OL]. Sensors and Actuators B: Chemical, 2018, 264: 224-233.
[28] YUAN H, WAN C, WANG X, et al. Programmable Gravity Self‐Driven Microfluidic Chip for Point‐of‐Care Multiplied Immunoassays[J/OL]. Small, 2023: 2310206.
[29] GIORELLO A, MINETTI F, NICASTRO A, et al. The effect of gravity on microfluidic flow focusing[J/OL]. Sensors and Actuators B: Chemical, 2020, 307: 127595.
[30] WU M, CHEN K, YANG S, et al. High-throughput cell focusing and separation via acoustofluidic tweezers[J/OL]. Lab on a Chip, 2018, 18(19): 3003-3010.
[31] RUFO J, CAI F, FRIEND J, et al. Acoustofluidics for biomedical applications[J/OL]. Nature Reviews Methods Primers, 2022, 2(1): 30.
[32] WANG Z, WANG H, BECKER R, et al. Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes[J/OL]. Microsystems & Nanoengineering, 2021, 7(1): 20.
[33] NATH A, SEN A K. Flow of bidisperse suspensions under the effect of standing bulk acoustic waves[J/OL]. Physical Review Fluids, 2022, 7(10): 104201.
[34] LEIBACHER I, REICHERT P, DUAL J. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis[J/OL]. Lab on a Chip, 2015, 15(13): 2896-2905.
[35] YIANNACOU K, SARIOLA V. Controlled Manipulation and Active Sorting of Particles Inside Microfluidic Chips Using Bulk Acoustic Waves and Machine Learning[J/OL]. Langmuir, 2021, 37(14): 4192-4199.
[36] DEVENDRAN C, COLLINS D J, NEILD A. The role of channel height and actuation method on particle manipulation in surface acoustic wave (SAW)-driven microfluidic devices[J/OL]. Microfluidics and Nanofluidics, 2022, 26(2): 9.
[37] LIU G, SHEN W, LI Y, et al. Continuous separation of particles with different densities based on standing surface acoustic waves[J/OL]. Sensors and Actuators A: Physical, 2022, 341: 113589.
[38] ALI M, PARK J. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance[J/OL]. Ultrasonics Sonochemistry, 2023, 93: 106305.
[39] XU M, LEE P V S, COLLINS D J. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves[J/OL]. Lab on a Chip, 2022, 22(1): 90-99.
[40] AUGUSTSSON P, MAGNUSSON C, NORDIN M, et al. Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis[J/OL]. Analytical Chemistry, 2012, 84(18): 7954-7962.
[41] GENG W, LIU Y, YU N, et al. An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells[J/OL]. Analytica Chimica Acta, 2023, 1255: 341138.
[42] WU M, OUYANG Y, WANG Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics[J/OL]. Proceedings of the National Academy of Sciences, 2017, 114(40): 10584-10589.
[43] XIE Y, RUFO J, ZHONG R, et al. Microfluidic Isolation and Enrichment of Nanoparticles[J/OL]. ACS Nano, 2020, 14(12): 16220-16240.
[44] SAUCEDO-ESPINOSA M A, DITTRICH P S. In-Droplet Electrophoretic Separation and Enrichment of Biomolecules[J/OL]. Analytical Chemistry, 2020, 92(12): 8414-8421.
[45] LI M, LI D, SONG Y, et al. Tunable particle/cell separation across aqueous two-phase system interface by electric pulse in microfluidics[J/OL]. Journal of Colloid and Interface Science, 2022, 612: 23-34.
[46] ALAZZAM A, MATHEW B, ALHAMMADI F. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis: Alazzam et al.[J/OL]. Journal of Separation Science, 2017, 40(5): 1193-1200.
[47] KIM J, CHO H, HAN S I, et al. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing[J/OL]. Analytical Chemistry, 2016, 88(9): 4857-4863.
[48] SEYFOORI A, SEYYED EBRAHIMI S A, SAMANDARI M, et al. Microfluidic‐Assisted CTC Isolation and In Situ Monitoring Using Smart Magnetic Microgels[J/OL]. Small, 2023, 19(16): 2205320.
[49] CHEN Q, LI D, LIN J, et al. Simultaneous Separation and Washing of Nonmagnetic Particles in an Inertial Ferrofluid/Water Coflow[J/OL]. Analytical Chemistry, 2017, 89(12): 6915-6920.
[50] LIN S, ZHI X, CHEN D, et al. A flyover style microfluidic chip for highly purified magnetic cell separation[J/OL]. Biosensors and Bioelectronics, 2019, 129: 175-181.
[51] KIM S, HAN S I, PARK M J, et al. Circulating Tumor Cell Microseparator Based on Lateral Magnetophoresis and Immunomagnetic Nanobeads[J/OL]. Analytical Chemistry, 2013, 85(5): 2779-2786.
[52] DESCAMPS L, GARCIA J, BARTHELEMY D, et al. MagPure chip: an immunomagnetic-based microfluidic device for high purification of circulating tumor cells from liquid biopsies[J/OL]. Lab on a Chip, 2022, 22(21): 4151-4166.
[53] WANG M M, TU E, RAYMOND D E, et al. Microfluidic sorting of mammalian cells by optical force switching[J/OL]. Nature Biotechnology, 2005, 23(1): 83-87.
[54] KIM S B, YOON S Y, SUNG H J, et al. Cross-Type Optical Particle Separation in a Microchannel[J/OL]. Analytical Chemistry, 2008, 80(7): 2628-2630.
[55] ZHAO H, CHIN L K, SHI Y, et al. Continuous optical sorting of nanoscale biomolecules in integrated microfluidic-nanophotonic chips[J/OL]. Sensors and Actuators B: Chemical, 2021, 331: 129428.
[56] WANG X, CHEN S, KONG M, et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies[J/OL]. Lab on a Chip, 2011, 11(21): 3656.
[57] ZHANG Y, ZHAO J, YU H, et al. Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK)[J/OL]. Science Advances, 2020, 6(32): eaba9628.
[58] VIGOLO D, RUSCONI R, STONE H A, et al. Thermophoresis: microfluidics characterization and separation[J/OL]. Soft Matter, 2010, 6(15): 3489.
[59] ZHANG K, XIANG W, JIA N, et al. A portable microfluidic device for thermally controlled granular sample manipulation[J/OL]. Lab on a Chip, 2024: 10.1039.D3LC00888F.
[60] DENG J, ZHAO S, LI J, et al. One‐Step Thermophoretic AND Gate Operation on Extracellular Vesicles Improves Diagnosis of Prostate Cancer[J/OL]. Angewandte Chemie, 2022, 134(33): e202207037.
[61] WANG R, SUN S, WANG W, et al. Investigation on the thermophoretic sorting for submicroparticles in a sorter with expansion-contraction microchannel[J/OL]. International Journal of Heat and Mass Transfer, 2019, 133: 912-919.
[62] BOYA M, OZKAYA-AHMADOV T, SWAIN B E, et al. High throughput, label-free isolation of circulating tumor cell clusters in meshed microwells[J/OL]. Nature Communications, 2022, 13(1): 3385.
[63] LI X, CHEN W, LIU G, et al. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes[J/OL]. Lab Chip, 2014, 14(14): 2565-2575.
[64] SARIOGLU A F, ACETO N, KOJIC N, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters[J/OL]. Nature Methods, 2015, 12(7): 685-691.
[65] CLARK A S, SAN-MIGUEL A. A bioinspired, passive microfluidic lobe filtration system[J/OL]. Lab on a Chip, 2021, 21(19): 3762-3774.
[66] SUN J, LI M, LIU C, et al. Double spiral microchannel for label-free tumor cell separation and enrichment[J/OL]. Lab on a Chip, 2012, 12(20): 3952.
[67] HOU H W, WARKIANI M E, KHOO B L, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces[J/OL]. Scientific Reports, 2013, 3(1): 1259.
[68] RAFEIE M, ZHANG J, ASADNIA M, et al. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation[J/OL]. Lab on a Chip, 2016, 16(15): 2791-2802.
[69] SYED M S, RAFEIE M, VANDAMME D, et al. Selective separation of microalgae cells using inertial microfluidics[J/OL]. Bioresource Technology, 2018, 252: 91-99.
[70] WU L, GUAN G, HOU H W, et al. Separation of Leukocytes from Blood Using Spiral Channel with Trapezoid Cross-Section[J/OL]. Analytical Chemistry, 2012, 84(21): 9324-9331.
[71] SONG H, ROSANO J M, WANG Y, et al. Spiral-shaped inertial stem cell device for high-throughput enrichment of iPSC-derived neural stem cells[J/OL]. Microfluidics and Nanofluidics, 2017, 21(4): 64.
[72] LEE J H, LEE S K, KIM J H, et al. Separation of particles with bacterial size range using the control of sheath flow ratio in spiral microfluidic channel[J/OL]. Sensors and Actuators A: Physical, 2019, 286: 211-219.
[73] YAMADA M, NAKASHIMA M, SEKI M. Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel[J/OL]. Analytical Chemistry, 2004, 76(18): 5465-5471.
[74] HAMACHER T, BERENDSEN J T W, VAN DONGEN J E, et al. Virus removal from semen with a pinched flow fractionation microfluidic chip[J/OL]. Lab on a Chip, 2021, 21(22): 4477-4486.
[75] LU X, XUAN X. Inertia-Enhanced Pinched Flow Fractionation[J/OL]. Analytical Chemistry, 2015, 87(8): 4560-4565.
[76] WANG S, LIU Z, WU S, et al. Microalgae separation by inertia‐enhanced pinched flow fractionation[J/OL]. ELECTROPHORESIS, 2021, 42(21-22): 2223-2229.
[77] WANG S, XU Q, ZHANG Z, et al. Reverse flow enhanced inertia pinched flow fractionation[J/OL]. Lab on a Chip, 2023, 23(19): 4324-4333.
[78] INGLIS D W. Efficient microfluidic particle separation arrays[J/OL]. Applied Physics Letters, 2009, 94(1): 013510.
[79] RAZAULLA T M, YOUNG O M, ALSHARHAN A, et al. Deterministic Lateral Displacement Using Hexagonally Arranged, Bottom-Up-Inspired Micropost Arrays[J/OL]. Analytical Chemistry, 2022, 94(4): 1949-1957.
[80] MURAKAMI T, KOIWAI K, SUZUKI H. Applying deterministic lateral displacement cell separation on immune cells of Marine shrimp[J/OL]. Sensors and Actuators B: Chemical, 2021, 347: 130587.
[81] WUNSCH B H, SMITH J T, GIFFORD S M, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm[J/OL]. Nature Nanotechnology, 2016, 11(11): 936-940.
[82] HATTORI Y, SHIMADA T, YASUI T, et al. Micro- and Nanopillar Chips for Continuous Separation of Extracellular Vesicles[J/OL]. Analytical Chemistry, 2019, 91(10): 6514-6521.
[83] ZHANG J, YAN S, SLUYTER R, et al. Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel[J/OL]. Scientific Reports, 2014, 4(1): 4527.
[84] DI CARLO D, EDD J F, IRIMIA D, et al. Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing[J/OL]. Analytical Chemistry, 2008, 80(6): 2204-2211.
[85] LEE M G, CHOI S, PARK J K. Inertial separation in a contraction–expansion array microchannel[J/OL]. Journal of Chromatography A, 2011, 1218(27): 4138-4143.
[86] YUAN D, TAN S H, ZHAO Q, et al. Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid[J/OL]. RSC Advances, 2017, 7(6): 3461-3469.
[87] STOTT S L, HSU C H, TSUKROV D I, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip[J/OL]. Proceedings of the National Academy of Sciences, 2010, 107(43): 18392-18397.
[88] KIM T H, WANG Y, OLIVER C R, et al. A temporary indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells[J/OL]. Nature Communications, 2019, 10(1): 1478.
[89] WANG X, ZANDI M, HO C C, et al. Single stream inertial focusing in a straight microchannel[J/OL]. Lab on a Chip, 2015, 15(8): 1812-1821.
[90] ZHOU J, PAPAUTSKY I. Fundamentals of inertial focusing in microchannels[J/OL]. Lab on a Chip, 2013, 13(6): 1121.
[91] LIU C, XUE C, SUN J, et al. A generalized formula for inertial lift on a sphere in microchannels[J/OL]. Lab on a Chip, 2016, 16(5): 884-892.
[92] DI CARLO D. Inertial microfluidics[J/OL]. Lab on a Chip, 2009, 9(21): 3038.
修改评论