中文版 | English
题名

基于微流控芯片的外周血循环肿瘤细胞分离技术研究

其他题名
RESEARCH ON THE SEPARATION TECHNIQUE OF CIRCULATING TUMOR CELLS FROM PERIPHERAL BLOOD BASED ON THE MICROFLUIDIC CHIP
姓名
姓名拼音
WANG Saijie
学号
12132649
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
张俊睿
导师单位
生物医学工程系
论文答辩日期
2024-04-30
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

循环肿瘤细胞(CTC)是一种从原发肿瘤组织脱落并进入外周血液循环的癌细胞,它们可以通过血液循环到达身体的各个部位并形成转移病灶。从外周血中分离 CTC 对于癌症的早期诊断,抗癌药物的研发和控制癌症转移等具有重要意义。然而,每毫升外周血中含有大约五十亿个血细胞,却仅含有大约一百个 CTC,因此从外周血中分离 CTC 非常具有挑战性,过滤和离心等常规分离方法已经难以应对这一挑战。本文开发了一种基于微流控芯片的按尺度分离颗粒的方法,用于从人体外周血中高通量地分离 CTC。该方法利用反向流来增强传统惯性挤压流分离器件(iPFF)的性能,通过优化主通道总流量、鞘流比、反向流通道的开口位置和开口大小等多个参数,研究了反向流增强的惯性挤压流分离器件(RF-iPFF)的分离性能。在相同条件下与传统 iPFF 相比,RF-iPFF具有更高的分离分辨率,可以实现对 6、15 和 20 μm 颗粒的分离(分离分辨率为 5 μm),因此可以实现对 CTC 的更高纯度收集。而且该方法可以在极高的总流速(16 mL/h)和极低的鞘流比(α = 1)下正常工作,因此可以极大提高细胞通量。通过综合优化,细胞通量大约可以提高至原来的10 倍,同时鞘液消耗量大约可以减少 50 %。此外,反向流增强效应具有良好的适用性,不仅可以应用于传统 iPFF 器件分离其他尺寸的颗粒,而且也可以应用于其他基于惯性原理的分离器件,例如用于改进传统惯性螺旋分离器件的出口。最后,本文收集了 RF-iPFF 器件分离后的 CTC 并进行了活性测试,细胞活性下降仅约 5 %,证明该方法不会对细胞活性造成明显损伤。总之,本文为外周血 CTC 的分离提供了一种高通量、高分离分辨率和低活性损伤的方法。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J/OL]. CA: A Cancer Journal for Clinicians, 2022, 72(1): 7-33.
[2] CROSBY D, BHATIA S, BRINDLE K M, et al. Early detection of cancer[J/OL]. Science, 2022, 375(6586): eaay9040.
[3] VAIDYANATHAN R, SOON R H, ZHANG P, et al. Cancer Diagnosis: From Tumor to Liquid Biopsy and Beyond[J/OL]. Lab on a Chip, 2018: 10.1039.C8LC00684A.
[4] TIVEY A, CHURCH M, ROTHWELL D, et al. Circulating tumour DNA — looking beyond the blood[J/OL]. Nature Reviews Clinical Oncology, 2022, 19(9): 600-612.
[5] LAWRENCE R, WATTERS M, DAVIES C R, et al. Circulating tumour cells for early detection of clinically relevant cancer[J/OL]. Nature Reviews Clinical Oncology, 2023, 20(7): 487-500.
[6] XU J, LIAO K, YANG X, et al. Using single-cell sequencing technology to detect circulating tumor cells in solid tumors[J/OL]. Molecular Cancer, 2021, 20(1): 104.
[7] HETTIARACHCHI S, CHA H, OUYANG L, et al. Recent microfluidic advances in submicron to nanoparticle manipulation and separation[J/OL]. Lab on a Chip, 2023, 23(5): 982-1010.
[8] LIN Z, LUO G, DU W, et al. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells’ (CTCs) Isolation and Tumor‐On‐A‐Chip[J/OL]. Small, 2020, 16(9): 1903899.
[9] UNDVALL ANAND E, MAGNUSSON C, LENSHOF A, et al. Two-Step Acoustophoresis Separation of Live Tumor Cells from Whole Blood[J/OL]. Analytical Chemistry, 2021, 93(51): 17076-17085.
[10] YANG S, RUFO J, ZHONG R, et al. Acoustic tweezers for high-throughput single-cell analysis[J/OL]. Nature Protocols, 2023, 18(8): 2441-2458.
[11] ZHANG J, CHEN C, BECKER R, et al. A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER)[J/OL]. Science Advances, 2022, 8(47): eade0640.
[12] ZHU H, ZHANG P, ZHONG Z, et al. Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices[J/OL]. Science Advances, 2021, 7(2): eabc7885.
[13] DIAZ‐ARMAS G G, CERVANTES‐GONZALEZ A P, MARTINEZ‐DUARTE R, et al. Electrically driven microfluidic platforms for exosome manipulation and characterization[J/OL]. ELECTROPHORESIS, 2022, 43(1-2): 327-339.
[14] ZHANG Y, CHEN X. Blood cells separation microfluidic chip based on dielectrophoretic force[J/OL]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(4): 206.
[15] VARMAZYARI V, HABIBIYAN H, GHAFOORIFARD H, et al. A dielectrophoresis-based microfluidic system having double-sided optimized 3D electrodes for label-free cancer cell separation with preserving cell viability[J/OL]. Scientific Reports, 2022, 12(1): 12100.
[16] VERMESH O, AALIPOUR A, GE T J, et al. An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo[J/OL]. Nature Biomedical Engineering, 2018, 2(9): 696-705.
[17] LABIB M, WANG Z, AHMED S U, et al. Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting[J/OL]. Nature Biomedical Engineering, 2020, 5(1): 41-52.
[18] WANG Z, AHMED S, LABIB M, et al. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting[J/OL]. Nature Biomedical Engineering, 2022, 6(2): 108-117.
[19] WANG Z, WANG H, LIN S, et al. Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting[J/OL]. Nano Letters, 2022, 22(12): 4774-4783.
[20] YAO Z, KWAN C C, POON A W. An optofluidic “tweeze-and-drag” cell stretcher in a microfluidic channel[J/OL]. Lab on a Chip, 2020, 20(3): 601-613.
[21] ZHENG B, LI C Y, HUANG S, et al. Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip[J/OL]. Sensors and Actuators B: Chemical, 2022, 368: 132173.
[22] SHI Y, ZHAO H, CHIN L K, et al. Optical Potential-Well Array for High-Selectivity, Massive Trapping and Sorting at Nanoscale[J/OL]. Nano Letters, 2020, 20(7): 5193-5200.
[23] SCHWAFERTS C, SOGNE V, WELZ R, et al. Nanoplastic Analysis by Online Coupling of Raman Microscopy and Field-Flow Fractionation Enabled by Optical Tweezers[J/OL]. Analytical Chemistry, 2020, 92(8): 5813-5820.
[24] LIU C, ZHAO J, TIAN F, et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers[J/OL]. Nature Biomedical Engineering, 2019, 3(3): 183-193.
[25] ZHAO J, LIU C, LI Y, et al. Thermophoretic Detection of Exosomal microRNAs by Nanoflares[J/OL]. Journal of the American Chemical Society, 2020, 142(11): 4996-5001.
[26] DENG J, TIAN F, LIU C, et al. Rapid One-Step Detection of Viral Particles Using an Aptamer-Based Thermophoretic Assay[J/OL]. Journal of the American Chemical Society, 2021, 143(19): 7261-7266.
[27] CONG H, CHEN J, HO H P. Trapping, sorting and transferring of micro-particles and live cells using electric current-induced thermal tweezers[J/OL]. Sensors and Actuators B: Chemical, 2018, 264: 224-233.
[28] YUAN H, WAN C, WANG X, et al. Programmable Gravity Self‐Driven Microfluidic Chip for Point‐of‐Care Multiplied Immunoassays[J/OL]. Small, 2023: 2310206.
[29] GIORELLO A, MINETTI F, NICASTRO A, et al. The effect of gravity on microfluidic flow focusing[J/OL]. Sensors and Actuators B: Chemical, 2020, 307: 127595.
[30] WU M, CHEN K, YANG S, et al. High-throughput cell focusing and separation via acoustofluidic tweezers[J/OL]. Lab on a Chip, 2018, 18(19): 3003-3010.
[31] RUFO J, CAI F, FRIEND J, et al. Acoustofluidics for biomedical applications[J/OL]. Nature Reviews Methods Primers, 2022, 2(1): 30.
[32] WANG Z, WANG H, BECKER R, et al. Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes[J/OL]. Microsystems & Nanoengineering, 2021, 7(1): 20.
[33] NATH A, SEN A K. Flow of bidisperse suspensions under the effect of standing bulk acoustic waves[J/OL]. Physical Review Fluids, 2022, 7(10): 104201.
[34] LEIBACHER I, REICHERT P, DUAL J. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis[J/OL]. Lab on a Chip, 2015, 15(13): 2896-2905.
[35] YIANNACOU K, SARIOLA V. Controlled Manipulation and Active Sorting of Particles Inside Microfluidic Chips Using Bulk Acoustic Waves and Machine Learning[J/OL]. Langmuir, 2021, 37(14): 4192-4199.
[36] DEVENDRAN C, COLLINS D J, NEILD A. The role of channel height and actuation method on particle manipulation in surface acoustic wave (SAW)-driven microfluidic devices[J/OL]. Microfluidics and Nanofluidics, 2022, 26(2): 9.
[37] LIU G, SHEN W, LI Y, et al. Continuous separation of particles with different densities based on standing surface acoustic waves[J/OL]. Sensors and Actuators A: Physical, 2022, 341: 113589.
[38] ALI M, PARK J. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance[J/OL]. Ultrasonics Sonochemistry, 2023, 93: 106305.
[39] XU M, LEE P V S, COLLINS D J. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves[J/OL]. Lab on a Chip, 2022, 22(1): 90-99.
[40] AUGUSTSSON P, MAGNUSSON C, NORDIN M, et al. Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis[J/OL]. Analytical Chemistry, 2012, 84(18): 7954-7962.
[41] GENG W, LIU Y, YU N, et al. An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells[J/OL]. Analytica Chimica Acta, 2023, 1255: 341138.
[42] WU M, OUYANG Y, WANG Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics[J/OL]. Proceedings of the National Academy of Sciences, 2017, 114(40): 10584-10589.
[43] XIE Y, RUFO J, ZHONG R, et al. Microfluidic Isolation and Enrichment of Nanoparticles[J/OL]. ACS Nano, 2020, 14(12): 16220-16240.
[44] SAUCEDO-ESPINOSA M A, DITTRICH P S. In-Droplet Electrophoretic Separation and Enrichment of Biomolecules[J/OL]. Analytical Chemistry, 2020, 92(12): 8414-8421.
[45] LI M, LI D, SONG Y, et al. Tunable particle/cell separation across aqueous two-phase system interface by electric pulse in microfluidics[J/OL]. Journal of Colloid and Interface Science, 2022, 612: 23-34.
[46] ALAZZAM A, MATHEW B, ALHAMMADI F. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis: Alazzam et al.[J/OL]. Journal of Separation Science, 2017, 40(5): 1193-1200.
[47] KIM J, CHO H, HAN S I, et al. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing[J/OL]. Analytical Chemistry, 2016, 88(9): 4857-4863.
[48] SEYFOORI A, SEYYED EBRAHIMI S A, SAMANDARI M, et al. Microfluidic‐Assisted CTC Isolation and In Situ Monitoring Using Smart Magnetic Microgels[J/OL]. Small, 2023, 19(16): 2205320.
[49] CHEN Q, LI D, LIN J, et al. Simultaneous Separation and Washing of Nonmagnetic Particles in an Inertial Ferrofluid/Water Coflow[J/OL]. Analytical Chemistry, 2017, 89(12): 6915-6920.
[50] LIN S, ZHI X, CHEN D, et al. A flyover style microfluidic chip for highly purified magnetic cell separation[J/OL]. Biosensors and Bioelectronics, 2019, 129: 175-181.
[51] KIM S, HAN S I, PARK M J, et al. Circulating Tumor Cell Microseparator Based on Lateral Magnetophoresis and Immunomagnetic Nanobeads[J/OL]. Analytical Chemistry, 2013, 85(5): 2779-2786.
[52] DESCAMPS L, GARCIA J, BARTHELEMY D, et al. MagPure chip: an immunomagnetic-based microfluidic device for high purification of circulating tumor cells from liquid biopsies[J/OL]. Lab on a Chip, 2022, 22(21): 4151-4166.
[53] WANG M M, TU E, RAYMOND D E, et al. Microfluidic sorting of mammalian cells by optical force switching[J/OL]. Nature Biotechnology, 2005, 23(1): 83-87.
[54] KIM S B, YOON S Y, SUNG H J, et al. Cross-Type Optical Particle Separation in a Microchannel[J/OL]. Analytical Chemistry, 2008, 80(7): 2628-2630.
[55] ZHAO H, CHIN L K, SHI Y, et al. Continuous optical sorting of nanoscale biomolecules in integrated microfluidic-nanophotonic chips[J/OL]. Sensors and Actuators B: Chemical, 2021, 331: 129428.
[56] WANG X, CHEN S, KONG M, et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies[J/OL]. Lab on a Chip, 2011, 11(21): 3656.
[57] ZHANG Y, ZHAO J, YU H, et al. Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK)[J/OL]. Science Advances, 2020, 6(32): eaba9628.
[58] VIGOLO D, RUSCONI R, STONE H A, et al. Thermophoresis: microfluidics characterization and separation[J/OL]. Soft Matter, 2010, 6(15): 3489.
[59] ZHANG K, XIANG W, JIA N, et al. A portable microfluidic device for thermally controlled granular sample manipulation[J/OL]. Lab on a Chip, 2024: 10.1039.D3LC00888F.
[60] DENG J, ZHAO S, LI J, et al. One‐Step Thermophoretic AND Gate Operation on Extracellular Vesicles Improves Diagnosis of Prostate Cancer[J/OL]. Angewandte Chemie, 2022, 134(33): e202207037.
[61] WANG R, SUN S, WANG W, et al. Investigation on the thermophoretic sorting for submicroparticles in a sorter with expansion-contraction microchannel[J/OL]. International Journal of Heat and Mass Transfer, 2019, 133: 912-919.
[62] BOYA M, OZKAYA-AHMADOV T, SWAIN B E, et al. High throughput, label-free isolation of circulating tumor cell clusters in meshed microwells[J/OL]. Nature Communications, 2022, 13(1): 3385.
[63] LI X, CHEN W, LIU G, et al. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes[J/OL]. Lab Chip, 2014, 14(14): 2565-2575.
[64] SARIOGLU A F, ACETO N, KOJIC N, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters[J/OL]. Nature Methods, 2015, 12(7): 685-691.
[65] CLARK A S, SAN-MIGUEL A. A bioinspired, passive microfluidic lobe filtration system[J/OL]. Lab on a Chip, 2021, 21(19): 3762-3774.
[66] SUN J, LI M, LIU C, et al. Double spiral microchannel for label-free tumor cell separation and enrichment[J/OL]. Lab on a Chip, 2012, 12(20): 3952.
[67] HOU H W, WARKIANI M E, KHOO B L, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces[J/OL]. Scientific Reports, 2013, 3(1): 1259.
[68] RAFEIE M, ZHANG J, ASADNIA M, et al. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation[J/OL]. Lab on a Chip, 2016, 16(15): 2791-2802.
[69] SYED M S, RAFEIE M, VANDAMME D, et al. Selective separation of microalgae cells using inertial microfluidics[J/OL]. Bioresource Technology, 2018, 252: 91-99.
[70] WU L, GUAN G, HOU H W, et al. Separation of Leukocytes from Blood Using Spiral Channel with Trapezoid Cross-Section[J/OL]. Analytical Chemistry, 2012, 84(21): 9324-9331.
[71] SONG H, ROSANO J M, WANG Y, et al. Spiral-shaped inertial stem cell device for high-throughput enrichment of iPSC-derived neural stem cells[J/OL]. Microfluidics and Nanofluidics, 2017, 21(4): 64.
[72] LEE J H, LEE S K, KIM J H, et al. Separation of particles with bacterial size range using the control of sheath flow ratio in spiral microfluidic channel[J/OL]. Sensors and Actuators A: Physical, 2019, 286: 211-219.
[73] YAMADA M, NAKASHIMA M, SEKI M. Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel[J/OL]. Analytical Chemistry, 2004, 76(18): 5465-5471.
[74] HAMACHER T, BERENDSEN J T W, VAN DONGEN J E, et al. Virus removal from semen with a pinched flow fractionation microfluidic chip[J/OL]. Lab on a Chip, 2021, 21(22): 4477-4486.
[75] LU X, XUAN X. Inertia-Enhanced Pinched Flow Fractionation[J/OL]. Analytical Chemistry, 2015, 87(8): 4560-4565.
[76] WANG S, LIU Z, WU S, et al. Microalgae separation by inertia‐enhanced pinched flow fractionation[J/OL]. ELECTROPHORESIS, 2021, 42(21-22): 2223-2229.
[77] WANG S, XU Q, ZHANG Z, et al. Reverse flow enhanced inertia pinched flow fractionation[J/OL]. Lab on a Chip, 2023, 23(19): 4324-4333.
[78] INGLIS D W. Efficient microfluidic particle separation arrays[J/OL]. Applied Physics Letters, 2009, 94(1): 013510.
[79] RAZAULLA T M, YOUNG O M, ALSHARHAN A, et al. Deterministic Lateral Displacement Using Hexagonally Arranged, Bottom-Up-Inspired Micropost Arrays[J/OL]. Analytical Chemistry, 2022, 94(4): 1949-1957.
[80] MURAKAMI T, KOIWAI K, SUZUKI H. Applying deterministic lateral displacement cell separation on immune cells of Marine shrimp[J/OL]. Sensors and Actuators B: Chemical, 2021, 347: 130587.
[81] WUNSCH B H, SMITH J T, GIFFORD S M, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm[J/OL]. Nature Nanotechnology, 2016, 11(11): 936-940.
[82] HATTORI Y, SHIMADA T, YASUI T, et al. Micro- and Nanopillar Chips for Continuous Separation of Extracellular Vesicles[J/OL]. Analytical Chemistry, 2019, 91(10): 6514-6521.
[83] ZHANG J, YAN S, SLUYTER R, et al. Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel[J/OL]. Scientific Reports, 2014, 4(1): 4527.
[84] DI CARLO D, EDD J F, IRIMIA D, et al. Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing[J/OL]. Analytical Chemistry, 2008, 80(6): 2204-2211.
[85] LEE M G, CHOI S, PARK J K. Inertial separation in a contraction–expansion array microchannel[J/OL]. Journal of Chromatography A, 2011, 1218(27): 4138-4143.
[86] YUAN D, TAN S H, ZHAO Q, et al. Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid[J/OL]. RSC Advances, 2017, 7(6): 3461-3469.
[87] STOTT S L, HSU C H, TSUKROV D I, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip[J/OL]. Proceedings of the National Academy of Sciences, 2010, 107(43): 18392-18397.
[88] KIM T H, WANG Y, OLIVER C R, et al. A temporary indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells[J/OL]. Nature Communications, 2019, 10(1): 1478.
[89] WANG X, ZANDI M, HO C C, et al. Single stream inertial focusing in a straight microchannel[J/OL]. Lab on a Chip, 2015, 15(8): 1812-1821.
[90] ZHOU J, PAPAUTSKY I. Fundamentals of inertial focusing in microchannels[J/OL]. Lab on a Chip, 2013, 13(6): 1121.
[91] LIU C, XUE C, SUN J, et al. A generalized formula for inertial lift on a sphere in microchannels[J/OL]. Lab on a Chip, 2016, 16(5): 884-892.
[92] DI CARLO D. Inertial microfluidics[J/OL]. Lab on a Chip, 2009, 9(21): 3038.

所在学位评定分委会
电子科学与技术
国内图书分类号
R318
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766192
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
王赛杰. 基于微流控芯片的外周血循环肿瘤细胞分离技术研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132649-王赛杰-生物医学工程系(5157KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王赛杰]的文章
百度学术
百度学术中相似的文章
[王赛杰]的文章
必应学术
必应学术中相似的文章
[王赛杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。