中文版 | English
题名

基于抗溶胀水凝胶的生物粘合界面和植入器件的研究

其他题名
ANTI-SWELLING HYDROGELS BASED BIOADHESIVE INTERFACES AND IMPLANTABLE DEVICES
姓名
姓名拼音
CHEN Xingmei
学号
12031264
学位类型
博士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
刘吉
导师单位
机械与能源工程系
论文答辩日期
2024-04-25
论文提交日期
2024-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

水凝胶因其独特的类组织生物、化学和力学特性,广泛应用于药物递送、组织工程、医用粘合剂和植入器件等领域。基于水凝胶的生物粘合剂通过物理或化学作用紧密粘附在组织表面以代替缝合线,可以避免组织损伤、减少手术时间和促进伤口愈合,在外科手术止血、伤口密封和体内植入器件等领域具有重要应用价值。此外,随着基于光递送的光动力治疗、光学传感和光遗传学等领域的发展,柔性可植入水凝胶光纤由于其低光损耗、可拉伸和优异的组织力学适配性等特点,在相关领域得到了广泛研究。

复杂的体内特殊应用场景对水凝胶粘合剂性能具有特定的要求,已有研究缺乏对相关需求的关注,忽视了水凝胶粘合剂在体内复杂的体液环境(如血液、消化液、泪液等)和动态机械载荷下面临的溶胀失效、力学性能下降等问题。针对这些问题,本论文研究从抗溶胀水凝胶设计制备策略出发,通过调控凝胶网络结构来解决水凝胶粘合剂在不同应用环境中的长期稳定性问题。设计并开发了针对跟腱、胃和角膜的特异性水凝胶粘合剂。水凝胶植入器件方面,已有研究开发了光电集成化的水凝胶光纤用于中枢神经光遗传调控,但这类集成器件面临导电物质因吸光特性严重破坏水凝胶光导通路的问题。为了解决这一问题,基于前期的界面粘合调控研究基础,提出了多功能层集成制备策略,成功开发了高性能导光、导电集成化水凝胶光纤,并用于中枢光遗传学调控研究。

主要的研究内容与结论如下:

1)提出了通过静电作用促进凝胶网络分相和单面功能化策略,用于解决水凝胶粘合剂在跟腱断裂缝合术后修复中面临的体液稳定性差和组织粘连问题。开发了具有体液环境下长期稳定(>168 h)和不对称组织粘合特性(粘合强度相差10倍)的水凝胶粘合剂(Janus Gels, JanuGels)。JanuGels通过干交联机制实现对跟腱组织的高强度粘合(界面韧性> 200 J/m2,粘合强度> 40 kPa),并通过为跟腱提供长期牢固的粘合界面和避免缝合点周围应力集中问题,成功实现跟腱的无组织粘连和显著改善生物力学性能恢复。

2)针对胃部的低pH胃液环境,提出了通过疏水作用促进凝胶网络相分离,作为稳定的物理交联的耐酸环境溶胀策略,并引入聚合物粘合刷(PAA-NHS),开发了耐酸的水凝胶粘合剂(Acid-tolerant hydrogel bioadhesives, ATGels)。ATGels在极端胃酸条件(pH = 2.0)下能够快速密封胃穿孔(< 2 min)并形成牢固的组织粘合界面(界面韧性> 300 J/m2,粘合强度> 60 kPa),并且表现出了长期的组织粘合酸稳定性(10天粘合强度保留> 70%),成功实现了体内对胃穿孔的无泄漏密封和有效促进组织修复。

3)针对眼科应用对粘合剂高透明度的要求,在相分离策略的基础上进一步提出了相分离束缚策略以控制相分离尺寸保证水凝胶兼具抗溶胀和高透明度,开发制备了适用于眼科角膜移植中无线缝合的生物胶水(Arrested phase separation bioglue, AGlue)。AGlue具备快速光引发固化(1 min 405 nm)的特点,同时具有优异的抗溶胀性能(溶胀率< 50%)、高透明度(> 90%400-800 nm,厚度:100 μm)和强组织粘合作用(粘合强度> 30 kPa,爆破压> 20 kPa)。此外,AGlue还具有与角膜修复适配的体内降解周期(> 30天)和良好的免疫排异相容性,在眼科角膜移植的无线缝合与修复应用中具有广阔的应用前景。

4)在实现高透明生物胶水开发的基础上,进一步开发了具有导光、导电性能集成化的水凝胶光纤(Integrated hydrogel optical fiber-based electronics, iHOFE)用于中枢光遗传学研究。基于前面的界面粘合调控研究,通过多功能分层(导光层、导电层和绝缘层)集成制备原则,避免了导电聚合物对水凝胶光纤导光通路的影响。iHOFE具有低光损耗(0.45 dB/cm473 nm)、合适的电生理记录阻抗(80-100 kΩ1 kHz)和优异的组织力学适配性(杨氏模量:860 kPa)的性能。iHOFE各个功能层间牢固的界面连接(界面韧性> 50 J/m2)保证了其在脑组织微扰动(100 μm)环境下的长期稳定性。在应用方面,将iHOFE成功应用于中枢神经疾病(癫痫)的电生理信号记录和光遗传干预,以及长期植入(2个月)对小鼠焦虑行为学的光遗传学调控研究中。

其他摘要

Hydrogels are similar to biological tissues in biological, chemical, and mechanical properties, and have been widely used in drug delivery, tissue engineering, bioadhesives, and implantable devices. Hydrogel adhesive is a representative example for replacing suture in hemostasis, sealing wound, and rigid device anchorage via physical or chemical bonding. They could effectively mitigate the tissue damage, reduce surgical time, and promote the wound healing. Additionally, with the development of photodynamic therapy, optical sensing, and optogenetics, hydrogel optical fibers exhibit great promise in these fields in light of their distinct transparency, stretchability, and mechanical compliance.

Previous studies mainly focus on the general performance requirements of hydrogels, neglecting the swelling and mechanical deterioration during the direct contact with complex bodily fluids (such as blood, digestive fluids, tears, etc.) as well as the dynamic movement. This thesis develops various anti-swelling hydrogel design and fabrication strategies to improve the long-term stability in specific in vivo conditions. We developed various hydrogels bioadhesives with anti-swelling for Achilles tendon rupture repair, sutureless sealing of gastric perforations and keratoplasty. For the hydrogel-based optic-electronic integrated device, the light-absorbing properties of conductive polymers substantially mitigate the efficiency of light delivery. To solve this challenge, we proposed the multi-functional layer integrate strategy to integrate the light delivery and electrically conducting modules within a single hydrogel device.

The main research contents and result are as follows:

(1) To address the swelling of hydrophilic hydrogel adhesives and tissue adhesion encountered in Achilles tendon repairing, a new strategy was proposed involving electrostatic interactions to promote phase separation and Janus functionalization of hydrogels. This led to the development of asymmetric hydrogel adhesives (JanuGels) with body fluid tolerance (>168 h) and Janus bioadhesion properties (10×). JanuGels achieved tough hydrogel adhesion through the dry-crosslinking mechanism (interface toughness: > 200 J/m2, adhesive strength: > 40 kPa). Moreover, JanuGels provided a long-term robust interface with tendon. This hydrogel bioadhesive successfully inhibits undesirable post-surgical adhesion and significantly improves the biomechanical performance of the injured Achilles tendon.

(2) The electrostatic interactions would be disrupted in acid environment, rendering phase separation strategy is unsuitable for gastric repair. This section proposed a hydrophobic interaction induced phase separation of hydrogel (ATGels), exhibiting stable physical crosslinking in extremely acidic fluids.  ATGels exhibit high gastric perforation sealing efficiency (< 2 min), accompanying with tough tissue adhesion properties (interface toughness > 300 J/m2, adhesive strength > 60 kPa), and long-term tissue adhesion stability (> 70% after 10 days). The long-term robustness in mechanical and tissue bonding of ATGels enables its successful application for fluid-tight, sutureless sealing of gastric perforations, and promotes repair in a rat model.

(3) To address the demand for high transparency in ophthalmic applications, the formation of large-sized phases (> 40 nm, within the visible light range) would destruct the transparency of hydrogels. This section proposes an arrested phase separation strategy and develops a high transparency and anti-swelling bioglue (AGlue). AGlue features rapid photocrosslinking (1 min, 405 nm) along with excellent anti-swelling (swelling ratio < 50%), high transparency (> 90% at 400-800 nm, thickness: 100 μm), and desirable adhesive strength (adhesive strength > 30 kPa, burst pressure > 20 kPa). Additionally, AGlue possesses an in vivo degradation period adapted for corneal repair (> 30 days) and excellent immunocompatibility, showing potential for sutureless corneal transplantation.

(4) Based on the highly transparent hydrogel bioglue above, this section applies it to the implantable optical devices. A hydrogel-based integrated photoelectronic device (iHOFE) with light waveguides and electroconductivity, is developed through multifunctional layers fabrication. iHOFE effectively avoids the absorption of conductive polymers on the light propagation pathways of hydrogel optical fibers. The device exhibits excellent light delivery efficiency (0.45 dB/cm, 473 nm), appropriate electrophysiological recording impedance (80-100 kΩ, 1 kHz), and tissue mechanics compatibility (Young's modulus: 860 kPa). Robust interfacial connections between different functional layers of iHOFE (interface toughness > 50 J/m2) ensures its enduring stability amid brain micromotions (100 μm). Moreover, iHOFE capable of recording epileptiform activity and optogenetic modulation, as well as for long-term implantation (2 months) in chronic behavioral tests and in vivo neurological modulation.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] ZHAO X. Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks [J]. Soft Matter, 2014, 10(5): 672-687.
[2] HONG W, ZHAO X, ZHOU J, et al. A theory of coupled diffusion and large deformation in polymeric gels [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1779-1793.
[3] LI J, MOONEY D J. Designing hydrogels for controlled drug delivery [J]. Nature Reviews Materials, 2016, 1(12): 1-17.
[4] YUK H, LIN S, MA C, et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water [J]. Nature Communications, 2017, 8(1): 14230.
[5] LIU X, LIU J, LIN S, et al. Hydrogel machines [J]. Materials Today, 2020, 36: 102-124.
[6] EDELMAN I, LEIBMAN J. Anatomy of body water and electrolytes [J]. The American Journal of Medicine, 1959, 27(2): 256-277.
[7] YUK H, VARELA C E, NABZDYK C S, et al. Dry double-sided tape for adhesion of wet tissues and devices [J]. Nature, 2019, 575(7781): 169-174.
[8] HONG Y, ZHOU F, HUA Y, et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds [J]. Nature Communications, 2019, 10(1): 2060.
[9] STRAKOSAS X, BIESMANS H, ABRAHAMSSON T, et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics [J]. Science, 2023, 379(6634): 795-802.
[10] DENG J, YUK H, WU J, et al. Electrical bioadhesive interface for bioelectronics [J]. Nature Materials, 2021, 20(2): 229-236.
[11] SHASTRI A, MCGREGOR L M, LIU Y, et al. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system [J]. Nature Chemistry, 2015, 7(5): 447-454.
[12] YANG C, SHENG T, HOU W, et al. Glucose-responsive microneedle patch for closed-loop dual-hormone delivery in mice and pigs [J]. Science Advances, 2022, 8(48): eadd3197.
[13] CHANDRASEKHARAN A, SEONG K Y, YIM S G, et al. In situ photocrosslinkable hyaluronic acid-based surgical glue with tunable mechanical properties and high adhesive strength [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2019, 57(4): 522-530.
[14] PEI X, WANG J, CONG Y, et al. Recent progress in polymer hydrogel bioadhesives [J]. Journal of Polymer Science, 2021, 59(13): 1312-1337.
[15] WU S J, ZHAO X. Bioadhesive technology platforms [J]. Chemical Reviews, 2023, 123(24): 14084-14118.
[16] ZHAN Y, FU W, XING Y, et al. Advances in versatile anti-swelling polymer hydrogels [J]. Materials Science & Engineering C-Materials for Biological Applications, 2021, 127: 112208.
[17] MA P, LIANG W, HUANG R, et al. Super-structured wet-adhesive hydrogel with ultralow swelling, ultrahigh burst pressure tolerance, and anti-postoperative adhesion properties for tissue adhesion [J]. Advanced Materials, 2023: e2305400.
[18] WANG W, ZENG Z, XIANG L, et al. Injectable self-healing hydrogel via biological environment-adaptive supramolecular assembly for gastric perforation healing [J]. ACS Nano, 2021, 15(6): 9913-9923.
[19] YUK H, LU B, ZHAO X. Hydrogel bioelectronics [J]. Chemical Society Reviews, 2019, 48(6): 1642-1667.
[20] CHEN G, HOU K, YU N, et al. Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine [J]. Nature Communications, 2022, 13(1): 7789.
[21] LIU X, RAO S, CHEN W, et al. Fatigue-resistant hydrogel optical fibers enable peripheral nerve optogenetics during locomotion [J]. Nature Methods, 2023, 20(11): 1802-1809.
[22] YUK H, WU J, ZHAO X. Hydrogel interfaces for merging humans and machines [J]. Nature Reviews Materials, 2022, 7(12): 935-952.
[23] CHEN G, WANG G, TAN X, et al. Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications [J]. National Science Review, 2021, 8(9): nwaa209.
[24] YETISEN A K, JIANG N, FALLAHI A, et al. Glucose‐sensitive hydrogel optical fibers functionalized with phenylboronic acid [J]. Advanced Materials, 2017, 29(15): 1606380.
[25] LIU B, ZHU H, ZHAO D, et al. Hydrogel coating enabling mechanically friendly, step‐index, functionalized optical fiber [J]. Advanced Optical Materials, 2021, 9(20): 2101036.
[26] WARDEN M R, CARDIN J A, DEISSEROTH K. Optical neural interfaces [J]. Annual Review of Biomedical Engineering, 2014, 16: 103-129.
[27] LIANG Q, SHEN Z, SUN X, et al. Electron conductive and transparent hydrogels for recording brain neural signals and neuromodulation [J]. Advanced Materials, 2023, 35(9): 2211159.
[28] SHEN Z, LIANG Q, CHANG Q, et al. Topological hydrogels for long-term brain signal monitoring, neuromodulation, and stroke treatment [J]. Advanced Materials, 2023: 2310365.
[29] LIN Y, ZHAO Y, XIN Q, et al. Electrical control of the optical dielectric properties of PEDOT: PSS thin films [J]. Optical Materials, 2020, 108: 110435.
[30] BHAVSAR V, TRIPATHI D. Study of refractive index dispersion and optical conductivity of PPy doped PVC films [J]. Indian Journal of Pure & Applied Physics, 2016, 54: 105-110.
[31] WEBBER M J, PASHUCK E T. (Macro) Molecular self-assembly for hydrogel drug delivery [J]. Advanced Drug Delivery Reviews, 2021, 172: 275-295.
[32] RIZZO F, KEHR N S. Recent advances in injectable hydrogels for controlled and local drug delivery [J]. Advanced Healthcare Materials, 2021, 10(1): 2001341.
[33] ILGIN P, OZAY H, OZAY O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier [J]. Journal of Polymer Research, 2020, 27: 1-11.
[34] YUAN P, YANG T, LIU T, et al. Nanocomposite hydrogel with NIR/magnet/enzyme multiple responsiveness to accurately manipulate local drugs for on-demand tumor therapy [J]. Biomaterials, 2020, 262: 120357.
[35] QIAO H, CHEN X, CHEN E, et al. Folated pH-degradable nanogels for the simultaneous delivery of docetaxel and an IDO1-inhibitor in enhancing cancer chemo-immunotherapy [J]. Biomaterials Science, 2019, 7(7): 2749-2758.
[36] LIU C, WANG Z, WEI X, et al. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing [J]. Acta Biomaterialia, 2021, 131: 314-325.
[37] DREISS C A. Hydrogel design strategies for drug delivery [J]. Current Opinion in Colloid & Interface Science, 2020, 48: 1-17.
[38] CHEN Q, XIAO Z S, WANG C, et al. Microneedle patches loaded with nanovesicles for glucose transporter- mediated insulin delivery [J]. ACS Nano, 2022, 16(11): 18223-18231.
[39] GAO Z, SHENG T, ZHANG W, et al. Microneedle-mediated cell therapy [J]. Advanced Science, 2023: 2304124.
[40] ZHU Z, WANG J, PEI X, et al. Blue-ringed octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery [J]. Science Advances, 2023, 9(25): eadh2213.
[41] GUIMARãES C F, GASPERINI L, MARQUES A P, et al. The stiffness of living tissues and its implications for tissue engineering [J]. Nature Reviews Materials, 2020, 5(5): 351-370.
[42] SPICER C D. Hydrogel scaffolds for tissue engineering: The importance of polymer choice [J]. Polymer Chemistry, 2020, 11(2): 184-219.
[43] KONG B, CHEN Y, LIU R, et al. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma [J]. Nature Communications, 2020, 11(1): 1435.
[44] KIM S, MIN S, CHOI Y S, et al. Tissue extracellular matrix hydrogels as alternatives to matrigel for culturing gastrointestinal organoids [J]. Nature Communications, 2022, 13(1): 1692.
[45] VACKOVA I, VAVRINOVA E, MUSILKOVA J, et al. Hypothermic storage of 3D cultured multipotent mesenchymal stromal cells for regenerative medicine applications [J]. Polymers, 2022, 14(13): 2553.
[46] SONG A, FAWZY A. Exploring hyaluronic acid as a potential standard dressing for burn wound [J]. International Journal of Medical Science and Clinical Research Studies, 2022, 2(08): 787-793.
[47] TANG G, LUO Z, LIAN L, et al. Liquid-embedded (bio) printing of alginate-free, standalone, ultrafine, and ultrathin-walled cannular structures [J]. Proceedings of the National Academy of Sciences, 2023, 120(7): e2206762120.
[48] RAVANBAKHSH H, LUO Z, ZHANG X, et al. Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage [J]. Matter, 2022, 5(2): 573-593.
[49] WANG D, MAHARJAN S, KUANG X, et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels [J]. Science Advances, 2022, 8(43): eabq6900.
[50] WINTER G D. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig [J]. Nature, 1962, 193: 293-294.
[51] LIANG Y P, HE J H, GUO B L. Functional hydrogels as wound dressing to enhance wound healing [J]. ACS Nano, 2021, 15(8): 12687-12722.
[52] NGUYEN T D, NGUYEN T T, LY K L, et al. In vivo study of the antibacterial chitosan/polyvinyl alcohol loaded with silver nanoparticle hydrogel for wound healing applications [J]. International Journal of Polymer Science, 2019, 2019: 7382717.
[53] WANG P, HUANG S, HU Z, et al. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing [J]. Acta Biomaterialia, 2019, 100: 191-201.
[54] ZHAO X, WU H, GUO B, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing [J]. Biomaterials, 2017, 122: 34-47.
[55] YU R, ZHANG H L, GUO B L. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering [J]. Nano-Micro Letters, 2022, 14(1): 1-46.
[56] MEARA J G, LEATHER A J M, HAGANDER L, et al. Global surgery 2030: Evidence and solutions for achieving health, welfare, and economic development [J]. The Lancet, 2015, 386(9993): 569-624.
[57] TABOADA G M, YANG K, PEREIRA M J N, et al. Overcoming the translational barriers of tissue adhesives [J]. Nature Reviews Materials, 2020, 5(4): 310-329.
[58] TAKAOKA M, NAKAMURA T, SUGAI H, et al. Sutureless amniotic membrane transplantation for ocular surface reconstruction with a chemically defined bioadhesive [J]. Biomaterials, 2008, 29(19): 2923-2931.
[59] SMITH D J, BRAT G A, MEDINA S H, et al. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels [J]. Nature Nanotechnology, 2015, 11(1): 95-102.
[60] QIAN Y, XU K, SHEN L, et al. Dopamine-based high-transparent hydrogel as bioadhesive for sutureless ocular tissue repair [J]. Advanced Functional Materials, 2023, 33(49): 2300707.
[61] WU J, YUK H, SARRAFIAN T L, et al. An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects [J]. Science Translational Medicine, 2022, 14(630): eabh2857.
[62] A.BURI N A P P. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues [J]. Journal of Controlled Release, 1985, 2: 257-275.
[63] PENG X, XIA X, XU X, et al. Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations [J]. Science Advances, 2021, 7(23): eabe8739.
[64] MA Z, BAO G, LI J. Multifaceted design and emerging applications of tissue adhesives [J]. Advanced Materials, 2021, 33(24): 2007663.
[65] REN H, ZHANG Z, CHENG X, et al. Injectable, self-healing hydrogel adhesives with firm tissue adhesion and on-demand biodegradation for sutureless wound closure [J]. Science Advances, 2023, 9(33): eadh4327.
[66] ALBALA D. Fibrin sealants in clinical practice [J]. Cardiovascular Surgery, 2003, 11: 5-11.
[67] GE L, CHEN S. Recent advances in tissue adhesives for clinical medicine [J]. Polymers, 2020, 12(4): 939-961.
[68] SUEDA J, FUKUCHI T, USUMOTO N, et al. Intraocular use of hydrogel tissue adhesive in rabbit eyes [J]. Japanese Journal of Ophthalmology, 2007, 51(2): 89-95.
[69] KIM K D, WRIGHT N M. Polyethylene glycol hydrogel spinal sealant (duraseal spinal sealant) as an adjunct to sutured dural repair in the spine [J]. Spine, 2011, 36(23): 1906-1912.
[70] YANG Q S, WEI T, YIN R T, et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues [J]. Nature Materials, 2021, 20(11): 1559-1570.
[71] WANG C, CHEN X, WANG L, et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs [J]. Science, 2022, 377(6605): 517-523.
[72] XUE Y, ZHANG J, CHEN X, et al. Trigger-detachable hydrogel adhesives for bioelectronic interfaces [J]. Advanced Functional Materials, 2021, 31(47): 2106446.
[73] LI J, LIU Y, YUAN L, et al. A tissue-like neurotransmitter sensor for the brain and gut [J]. Nature, 2022, 606(7912): 94-101.
[74] DOBASHI Y, YAO D, PETEL Y, et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels [J]. Science, 2022, 376(6592): 502-507.
[75] JIN S, CHOI H, SEONG D, et al. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation [J]. Nature, 2023, 623(7985): 58-65.
[76] ROGERS J A, SOMEYA T, HUANG Y G. Materials and mechanics for stretchable electronics [J]. Science, 2010, 327(5973): 1603-1607.
[77] FRANK J A, ANTONINI M-J, ANIKEEVA P. Next-generation interfaces for studying neural function [J]. Nature biotechnology, 2019, 37(9): 1013-1023.
[78] WON D, KIM J, CHOI J, et al. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation [J]. Science Advances, 2022, 8(23): eabo3209.
[79] LI S G, DAI J, ZHU M, et al. Implantable hydrogel-protective DNA aptamer-based sensor supports accurate, continuous electrochemical analysis of drugs at multiple sites in living rats [J]. ACS Nano, 2023, 17(18): 18525-18538.
[80] KIM S K, LEE G H, JEON C, et al. Bimetallic nanocatalysts immobilized in nanoporous hydrogels for long-term robust continuous glucose monitoring of smart contact lens [J]. Advanced Materials, 2022, 34(18): 2110536.
[81] ZHAO X H, CHEN X Y, YUK H, et al. Soft materials by design: Unconventional polymer networks give extreme properties [J]. Chemical Reviews, 2021, 121(8): 4309-4372.
[82] WU S J, YUK H, WU J, et al. A multifunctional origami patch for minimally invasive tissue sealing [J]. Advanced Materials, 2021, 33(11): 2007667.
[83] ASADIKORAYEM M, SURMAN F, WEBER P, et al. Zwitterionic granular hydrogel for cartilage tissue engineering [J]. Advanced Healthcare Materials, 2023: 2301831.
[84] FU C, SHEN L, LIU L, et al. Hydrogel with robust adhesion in various liquid environments by electrostatic-induced hydrophilic and hydrophobic polymer chains migration and rearrangement [J]. Advanced Materials, 2023, 35(15): 2211237.
[85] SONG R, MURPHY M, LI C S, et al. Current development of biodegradable polymeric materials for biomedical applications [J]. Drug Design Development and Therapy, 2018, 12: 3117-3145.
[86] AZEVEDO H S, REIS R L. Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate [M]. 2004.
[87] TAMARIZ E, RIOS-RAMíREZ A. Biodegradation of medical purpose polymeric materials and their impact on biocompatibility [J]. Biodegradation-Life of Science Croatia: Intech, 2013: 1-29.
[88] JOHNSON C D, ARANDA-ESPINOZA H, FISHER J P. A case for material stiffness as a design parameter in encapsulated islet transplantation [J]. Tissue Engineering Part B-Reviews, 2023, 29(4): 334-346.
[89] PARK S, YUK H, ZHAO R K, et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity [J]. Nature Communications, 2021, 12(1): 3435.
[90] ZHAO Y, YI B, HU J, et al. Double cross-linked biomimetic hyaluronic acid‐based hydrogels with thermo‐stimulated self-contraction and tissue adhesiveness for accelerating post‐wound closure and wound healing [J]. Advanced Functional Materials, 2023: 2300710.
[91] LIN X, LIU Y, BAI A B, et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction [J]. Nature Biomedical Engineering, 2019, 3(8): 632-643.
[92] YAMAGISHI K, KIRINO I, TAKAHASHI I, et al. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy [J]. Nature Biomedical Engineering, 2019, 3(1): 27-36.
[93] LIU J, LIN S T, LIU X Y, et al. Fatigue-resistant adhesion of hydrogels [J]. Nature Communications, 2020, 11(1): 1071.
[94] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength [J]. Advanced Materials, 2003, 15(14): 1155-1158.
[95] WANG W, NARAIN R, ZENG H. Rational design of self-healing tough hydrogels: A mini review [J]. Frontiers in Chemistry, 2018, 6: 497.
[96] WICHTERLE O, LIM D. Hydrophilic gels for biological use [J]. Nature, 1960, 185(4706): 117-118.
[97] KAMATA H, AKAGI Y, KAYASUGA-KARIYA Y, et al. “Nonswellable” hydrogel without mechanical hysteresis [J]. Science, 2014, 343(6173): 873-875.
[98] LI X, CUI K, SUN T L, et al. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture [J]. Proceedings of the National Academy of Sciences, 2020, 117(14): 7606-7612.
[99] LI X, CUI K, KUROKAWA T, et al. Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels [J]. Science Advances, 2021, 7(16): eabe8210.
[100] MIHAJLOVIC M, STAROPOLI M, APPAVOU M S, et al. Tough supramolecular hydrogel based on strong hydrophobic interactions in a multiblock segmented copolymer [J]. Macromolecules, 2017, 50(8): 3333-3346.
[101] LI M, LU H, PI M, et al. Water-induced phase separation for anti-swelling hydrogel adhesives in underwater soft electronics [J]. Advanced Science, 2023, 10(32): 2304780.
[102] LI F, ZHANG G, WANG Z, et al. Bioinspired nonswellable ultrastrong nanocomposite hydrogels with long-term underwater superoleophobic behavior [J]. Chemical Engineering Journal, 2019, 375: 122047.
[103] SATO K, NAKAJIMA T, HISAMATSU T, et al. Phase-separation induced anomalous stiffening, toughening, and self‐healing of polyacrylamide gels [J]. Advanced Materials, 2015, 27(43): 6990-6998.
[104] WANG M X, ZHANG P Y, SHAMSI M, et al. Tough and stretchable ionogels by in situ phase separation [J]. Nature Materials, 2022, 21(3): 359-365.
[105] GABRIEL C, PEYMAN A, GRANT E H. Electrical conductivity of tissue at frequencies below 1 MHz [J]. Physics in Medicine and Biology, 2009, 54(16): 4863-4878.
[106] XUE Y, CHEN X, WANG F, et al. Mechanically compliant bioelectronic interfaces through fatigue-resistant conducting polymer hydrogel coating [J]. Advanced Materials, 2023, 35(40): 2304095.
[107] LI H, ERBAŞ A, ZWANIKKEN J, et al. Ionic conductivity in polyelectrolyte hydrogels [J]. Macromolecules, 2016, 49(23): 9239-9246.
[108] KEPLINGER C, SUN J Y, FOO C C, et al. Stretchable, transparent, ionic conductors [J]. Science, 2013, 341(6149): 984-987.
[109] CAYRE O J, CHANG S T, VELEV O D. Polyelectrolyte diode: Nonlinear current response of a junction between aqueous ionic gels [J]. Journal of the American Chemical Society, 2007, 129(35): 10801-10806.
[110] YANG C, CHENG S, YAO X, et al. Ionotronic luminescent fibers, fabrics, and other configurations [J]. Advanced Materials, 2020, 32(47): 2005545.
[111] SUN J Y, KEPLINGER C, WHITESIDES G M, et al. Ionic skin [J]. Advanced Materials, 2014, 26(45): 7608-7614.
[112] GAO Y, SONG J, LI S, et al. Hydrogel microphones for stealthy underwater listening [J]. Nature Communications, 2016, 7(1): 12316.
[113] YE L, JI H, LIU J, et al. Carbon nanotube–hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity [J]. Advanced Materials, 2021, 33(41): 2102981.
[114] HU Y, ZHUO H, ZHANG Y, et al. Graphene oxide encapsulating liquid metal to toughen hydrogel [J]. Advanced Functional Materials, 2021, 31(51): 2106761.
[115] LIN S T, YUK H, ZHANG T, et al. Stretchable hydrogel electronics and devices [J]. Advanced Materials, 2016, 28(22): 4497-4505.
[116] WANG L, LIU Y, YE G, et al. Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs [J]. Nature Biomedical Engineering, 2021, 5(10): 1157-1173.
[117] XU Z Y, ZHANG X J, WANG X D, et al. Synthesis of Ag-Ni-Fe-P multielemental nanoparticles as bifunctional oxygen reduction/evolution reaction electrocatalysts [J]. ACS Nano, 2021, 15(4): 7131-7138.
[118] WANG F, XUE Y, CHEN X, et al. 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation [J]. Advanced Functional Materials, 2023: 2314471.
[119] YU C, SHI M, HE S, et al. Chronological adhesive cardiac patch for synchronous mechanophysiological monitoring and electrocoupling therapy [J]. Nature Communications, 2023, 14(1): 6226.
[120] FEIG V R, TRAN H, LEE M, et al. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue [J]. Nature Communications, 2018, 9(1): 2740.
[121] ZHOU T, YUK H, HU F, et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces [J]. Nature Materials, 2023, 22(7): 895-902.
[122] YUK H, LU B, LIN S, et al. 3D printing of conducting polymers [J]. Nature Communications, 2020, 11(1): 1604.
[123] DE GROOT J H, VAN BEIJMA F J, HAITJEMA H J, et al. Injectable intraocular lens materials based upon hydrogels [J]. Biomacromolecules, 2001, 2(3): 628-634.
[124] NICOLSON P C, VOGT J. Soft contact lens polymers: An evolution [J]. Biomaterials, 2001, 22(24): 3273-3283.
[125] MYUNG D, DUHAMEL P E, COCHRAN J R, et al. Development of hydrogel-based keratoprostheses: A materials perspective [J]. Biotechnology Progress, 2008, 24(3): 735-741.
[126] YUN S H, KWOK S J J. Light in diagnosis, therapy and surgery [J]. Nature Biomedical Engineering, 2017, 1(1): 0008.
[127] WANG L, ZHONG C, KE D, et al. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations [J]. Advanced Optical Materials, 2018, 6(16): 1800427.
[128] ZHOU Y, GU C, LIANG J, et al. A silk-based self-adaptive flexible opto-electro neural probe [J]. Microsystems & Nanoengineering, 2022, 8(1): 118-130.
[129] JIANG N, AHMED R, RIFAT A A, et al. Functionalized flexible soft polymer optical fibers for laser photomedicine [J]. Advanced Optical Materials, 2018, 6(3): 1701118.
[130] ZHU B, LIU D, WU J, et al. Slippery core-sheath hydrogel optical fiber built by catalytically triggered interface radical polymerization [J]. Advanced Functional Materials, 2024: 2309795.
[131] JUNG I Y, KIM J S, CHOI B R, et al. Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes [J]. Advanced Healthcare Materials, 2017, 6(12): 1601475.
[132] LI X, LU Y, HU Y. A wireless and battery-free DNA hydrogel biosensor for wound infection monitoring [J]. Matter, 2022, 5(8): 2473-2475.
[133] ZHANG P, ZHU B, DU P, et al. Electrochemical and electrical biosensors for wearable and implantable electronics based on conducting polymers and carbon-based materials [J]. Chemical Reviews, 2023, 124(3): 722-767.
[134] LI F, LYU D, LIU S, et al. DNA hydrogels and microgels for biosensing and biomedical applications [J]. Advanced Materials, 2020, 32(3): 1806538.
[135] UPDIKE S J, HICKS G P. The enzyme electrode [J]. Nature, 1967, 214(5092): 986-988.
[136] LI J, CELIZ A, YANG J, et al. Tough adhesives for diverse wet surfaces [J]. Science, 2017, 357(6349): 378-381.
[137] SAIZ‐POSEU J, MANCEBO-ARACIL J, NADOR F, et al. The chemistry behind catechol‐based adhesion [J]. Angewandte Chemie International Edition, 2019, 58(3): 696-714.
[138] CHEN M, WU Y, CHEN B, et al. Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing [J]. Proceedings of the National Academy of Sciences, 2022, 119(29): e2203074119.
[139] BELOWICH M E, STODDART J F. Dynamic imine chemistry [J]. Chemical Society Reviews, 2012, 41(6): 2003-2024.
[140] HOFMAN A H, VAN HEES I A, YANG J, et al. Bioinspired underwater adhesives by using the supramolecular toolbox [J]. Advanced Materials, 2018, 30(19): 1704640.
[141] CHEN S, ZHANG K, LI Z, et al. Hydrogen-bonded supramolecular adhesives: Synthesis, responsiveness, and application [J]. Supramolecular Materials, 2023: 100032.
[142] AHN B K. Perspectives on mussel-inspired wet adhesion [J]. Journal of the American Chemical Society, 2017, 139(30): 10166-10171.
[143] YANG J, BAI R, SUO Z. Topological adhesion of wet materials [J]. Advanced Materials, 2018, 30(25): 1800671.
[144] GAO Y, CHEN J, HAN X, et al. A universal strategy for tough adhesion of wet soft material [J]. Advanced Functional Materials, 2020, 30(36): 2003207.
[145] MA Z, BOURQUARD C, GAO Q, et al. Controlled tough bioadhesion mediated by ultrasound [J]. Science, 2022, 377(6607): 751-755.
[146] YANG S Y, O'CEARBHAILL E D, SISK G C, et al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue [J]. Nature Communications, 2013, 4(1): 1702.
[147] KURZAWSKI J, JANION-SADOWSKA A, SADOWSKI M. A novel minimally invasive method of successful tissue glue injection in patients with iatrogenic pseudoaneurysm [J]. The British Journal of Radiology, 2018, 91(1087): 20170538.
[148] ZHOU F, YANG Y, ZHANG W, et al. Bioinspired, injectable, tissue-adhesive and antibacterial hydrogel for multiple tissue regeneration by minimally invasive therapy [J]. Applied Materials Today, 2022, 26: 101290.
[149] DISTEFANO T J, SHMUKLER J O, DANIAS G, et al. Development of a two-part biomaterial adhesive strategy for annulus fibrosus repair and ex vivo evaluation of implant herniation risk [J]. Biomaterials, 2020, 258: 120309.
[150] ZHANG Y, WANG Y, CHEN L, et al. An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing [J]. Biomaterials, 2022, 285: 121546.
[151] HUANG Y, ZHAO X, ZHANG Z, et al. Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing [J]. Chemistry of Materials, 2020, 32(15): 6595-6610.
[152] LEE S-H, PARK C-W, LEE S-G, et al. Postoperative cervical cord compression induced by hydrogel dural sealant (Duraseal®) [J]. Korean Journal of Spine, 2013, 10(1): 44.
[153] BLACKBURN S L, SMYTH M D. Hydrogel-induced cervicomedullary compression after posterior fossa decompression for chiari malformation. Case report [J]. Journal of Neurosurgery, 2007, 106(4 Suppl): 302-304.
[154] ANNABI N, RANA D, SANI E S, et al. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing [J]. Biomaterials, 2017, 139: 229-243.
[155] LIANG S, ZHANG Y, WANG H, et al. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches [J]. Advanced Materials, 2018, 30(23): 1704235.
[156] ANEMA J G, MOREY A F, HARRIS R, et al. Potential uses of absorbable fibrin adhesive bandage for genitourinary trauma [J]. World Journal of Surgical Oncology, 2001, 25(12): 1573-1577.
[157] SANI E S, KHEIRKHAH A, RANA D, et al. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels [J]. Science Advances, 2019, 5(3): eaav1281.
[158] ASSMANN A, VEGH A, GHASEMI-RAD M, et al. A highly adhesive and naturally derived sealant [J]. Biomaterials, 2017, 140: 115-127.
[159] LIM C Y, OWENS N A, WAMPLER R D, et al. Succinimidyl ester surface chemistry: Implications of the competition between aminolysis and hydrolysis on covalent protein immobilization [J]. Langmuir, 2014, 30(43): 12868-12878.
[160] LIU X Y, STEIGER C, LIN S T, et al. Ingestible hydrogel device [J]. Nature Communications, 2019, 10(1): 493.
[161] PREUL M C, CAMPBELL P K, GARLICK D S, et al. Application of a new hydrogel dural sealant that reduces epidural adhesion formation: Evaluation in a large animal laminectomy model laboratory investigation [J]. Journal of Neurosurgery-Spine, 2010, 12(4): 381-390.
[162] LU X, SHI S, LI H, et al. Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives [J]. Biomaterials, 2020, 232: 119719.
[163] MEHDIZADEH M, WENG H, GYAWALI D, et al. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure [J]. Biomaterials, 2012, 33(32): 7972-7983.
[164] WU J, PAN Z, ZHAO Z Y, et al. Anti-swelling, robust, and adhesive extracellular matrix-mimicking hydrogel used as intraoral dressing [J]. Advanced Materials, 2022, 34(20): 2200115.
[165] YU C J, YUE Z W, SHI M Y, et al. An intrapericardial injectable hydrogel patch for mechanical-electrical coupling with infarcted myocardium [J]. ACS Nano, 2022, 16(10): 16234-16248.
[166] FREEDMAN B R, KUTTLER A, BECKMANN N, et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity [J]. Nature Biomedical Engineering, 2022, 6(10): 1167-1179.
[167] MAGANARIS C N, PAUL J P. Tensile properties of the in vivo human gastrocnemius tendon [J]. Journal of Biomechanics, 2002, 35(12): 1639-1646.
[168] CAI C, ZHANG X, LI Y, et al. Self-healing hydrogel embodied with macrophage‐regulation and responsive gene silencing properties for synergistic prevention of peritendinous adhesion [J]. Advanced Materials, 2021, 34(5): e2106564.
[169] CHEN Y, TAN Z, WANG W, et al. Injectable, self-healing, and multi-responsive hydrogels via dynamic covalent bond formation between benzoxaborole and hydroxyl groups [J]. Biomacromolecules, 2018, 20(2): 1028-1035.
[170] JOLLIFFE D M. Practical gastric physiology [J]. Continuing Education in Anaesthesia Critical Care & Pain, 2009, 9(6): 173-177.
[171] XU X, XIA X, ZHANG K, et al. Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs [J]. Science Translational Medicine, 2020, 12(558): eaba8014.
[172] HE J, ZHANG Z, YANG Y, et al. Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing [J]. Nano-Micro Letters, 2021, 13(1): 80-97.
[173] YANG H L, LU H T, MIAO Y Y, et al. Non-swelling, super-tough, self-healing, and multi-responsive hydrogels based on micellar crosslinking for smart switch and shape memory [J]. Chemical Engineering Journal, 2022, 450: 138346.
[174] TRUJILLO-DE SANTIAGO G, SHARIFI R, YUE K, et al. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications [J]. Biomaterials, 2019, 197: 345-367.
[175] CAMPBELL P K, BENNETT S L, DRISCOLL A, et al. Evaluation of absorbable surgical sealants: In-vitro testing [J]. In-vitro Testing, 2005: 1170576081-1559295193.
[176] PAN J, ZHANG W, ZHU J, et al. Arrested phase separation enables high performance keratoprostheses [J]. Advanced Materials, 2023, 35(16): 2207750.
[177] ZHANG Q, FANG Z, CAO Y, et al. High refractive index inorganic-organic interpenetrating polymer network (IPN) hydrogel nanocomposite toward artificial cornea implants [J]. ACS Macro Letters, 2012, 1(7): 876-881.
[178] LEE G-H, MOON H, KIM H, et al. Multifunctional materials for implantable and wearable photonic healthcare devices [J]. Nature Reviews Materials, 2020, 5(2): 149-165.
[179] CANALES A, JIA X, FRORIEP U P, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo [J]. Nature Biotechnology, 2015, 33(3): 277-284.
[180] FITRIA G, KWON M, LEE H, et al. Microfluidic fabrication of highly efficient hydrogel optical fibers for in vivo fiber-optic applications [J]. Advanced Optical Materials, 2023, 11(18): 2300453.
[181] GUO J J, LIU X Y, JIANG N, et al. Highly stretchable, strain sensing hydrogel optical fibers [J]. Advanced Materials, 2016, 28(46): 10244-10249.
[182] CHOI M, HUMAR M, KIM S, et al. Step-index optical fiber made of biocompatible hydrogels [J]. Advanced Materials, 2015, 27(27): 4081-4086.
[183] VOLPI M, PARADISO A, COSTANTINI M, et al. Hydrogel-based fiber biofabrication techniques for skeletal muscle tissue engineering [J]. ACS Biomaterials Science & Engineering, 2022, 8(2): 379-405.
[184] BERTHIER E, YOUNG E W, BEEBE D. Engineers are from PDMS-land, biologists are from polystyrenia [J]. Lab on a Chip, 2012, 12(7): 1224-1237.
[185] CHEN Z W, ZHAO R G. Engineered tissue development in biofabricated 3D geometrical confinement-a review [J]. Acs Biomaterials Science & Engineering, 2019, 5(8): 3688-3702.
[186] LI W, LIU J, WEI J, et al. Recent progress of conductive hydrogel fibers for flexible electronics: Fabrications, applications, and perspectives [J]. Advanced Functional Materials, 2023: 2213485.
[187] DANIELE M A, BOYD D A, ADAMS A A, et al. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications [J]. Advanced Healthcare Materials, 2015, 4(1): 11-28.
[188] KANG E, CHOI Y Y, CHAE S K, et al. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds [J]. Advanced Materials, 2012, 24(31): 4271-4277.
[189] JEONG H, PARK W, KIM D-H, et al. Dynamic nanoassemblies of nanomaterials for cancer photomedicine [J]. Advanced Drug Delivery Reviews, 2021, 177: 113954.
[190] HU Y, CHI C, WANG S, et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer [J]. Advanced Materials, 2017, 29(33): 1700448.
[191] CHOI M, CHOI J W, KIM S, et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo [J]. Nature Photonics, 2013, 7(12): 987-994.
[192] FU R, LUO W, NAZEMPOUR R, et al. Implantable and biodegradable poly (L-lactic acid) fibers for optical neural interfaces [J]. Advanced Optical Materials, 2018, 6(3): 1700941.
[193] WANG J. Electrochemical glucose biosensors [J]. Chemical Reviews, 2008, 108(2): 814-825.
[194] RO’EE GILRON S L, PERRONE R, WILT R, et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease [J]. Nature Biotechnology, 2021, 39(9): 1078-1085.
[195] SPIX T A, NANIVADEKAR S, TOONG N, et al. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation [J]. Science, 2021, 374(6564): 201-206.
[196] KRAUSS J K, LIPSMAN N, AZIZ T, et al. Technology of deep brain stimulation: Current status and future directions [J]. Nature Reviews Neurology, 2021, 17(2): 75-87.
[197] LACOUR S P, COURTINE G, GUCK J. Materials and technologies for soft implantable neuroprostheses [J]. Nature Reviews Materials, 2016, 1(10): 1-14.
[198] LI Y, LI N, DE OLIVEIRA N, et al. Implantable bioelectronics toward long-term stability and sustainability [J]. Matter, 2021, 4(4): 1125-1141.
[199] ZáTONYI A, MADARáSZ M, SZABó Á, et al. Transparent, low-autofluorescence microecog device for simultaneous Ca2+ imaging and cortical electrophysiology in vivo [J]. Journal of Neural Engineering, 2020, 17(1): 016062.
[200] THUNEMANN M, LU Y C, LIU X, et al. Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays [J]. Nature Communications, 2018, 9(1): 2035.
[201] GAO L, WANG J, ZHAO Y, et al. Free standing nanofilm electrode arrays for long‐term stable neural interfacings [J]. Advanced Materials, 2022, 34(5): 2107343.
[202] ZOU L, TIAN H, GUAN S, et al. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology [J]. Nature Communications, 2021, 12(1): 5871.
[203] SINGH V, KUMAR T. Study of modified PEDOT: PSS for tuning the optical properties of its conductive thin films [J]. Journal of Science: Advanced Materials and Devices, 2019, 4(4): 538-543.
[204] CUI C, WU T, CHEN X, et al. A janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion [J]. Advanced Functional Materials, 2020, 30(49): 2005689.
[205] ROZIS M, BENETOS I S, KARAMPINAS P, et al. Outcome of percutaneous fixation of acute achilles tendon ruptures [J]. Foot & Ankle International, 2018, 39(6): 689-693.
[206] FREEDMAN B R, MOONEY D J. Biomaterials to mimic and heal connective tissues [J]. Advanced Materials, 2019, 31(19): 1806695.
[207] WANG Y, JIN S S, LUO D, et al. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin [J]. Nature Communications, 2021, 12(1): 1293.
[208] LI Q R, ZHANG Q, CAI Y H, et al. Patients with Achilles tendon rupture have a degenerated contralateral Achilles tendon: An elastography study [J]. Biomed Research International, 2018, 2018: 1-7.
[209] NO Y J, CASTILHO M, RAMASWAMY Y, et al. Role of biomaterials and controlled architecture on tendon/ligament repair and regeneration [J]. Advanced Materials, 2020, 32(18): 1904511.
[210] VOLETI P B, BUCKLEY M R, SOSLOWSKY L J. Tendon healing: Repair and regeneration [J]. Annual Review of Biomedical Engineering, 2012, 14: 47-71.
[211] NOURISSAT G, BERENBAUM F, DUPREZ D. Tendon injury: From biology to tendon repair [J]. Nature Reviews Rheumatology, 2015, 11(4): 223-233.
[212] LOCKE R C, FORD E M, SILBERNAGEL K G, et al. Success criteria and preclinical testing of multifunctional hydrogels for tendon regeneration [J]. Tissue Engineering Part C-Methods, 2020, 26(10): 506-518.
[213] ZOU M, ZHAO X, ZHANG X, et al. Bio-inspired multiple composite film with anisotropic surface wettability and adhesion for tissue repair [J]. Chemical Engineering Journal, 2020, 398: 125563.
[214] ZHANG E, SONG B, SHI Y, et al. Fouling-resistant zwitterionic polymers for complete prevention of postoperative adhesion [J]. Proceedings of the National Academy of Sciences, 2020, 117(50): 32046-32055.
[215] ZHANG Q, YANG Y, YILDIRIMER L, et al. Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: Design, intrinsic and extrinsic factor considerations [J]. Acta Biomaterialia, 2021, 124: 15-32.
[216] GUO Q, SUN H, WU X, et al. In situ clickable purely zwitterionic hydrogel for peritoneal adhesion prevention [J]. Chemistry of Materials, 2020, 32(15): 6347-6357.
[217] CHEN B, LIANG Y, BAI L, et al. Sustained release of magnesium ions mediated by injectable self-healing adhesive hydrogel promotes fibrocartilaginous interface regeneration in the rabbit rotator cuff tear model [J]. Chemical Engineering Journal, 2020, 396: 125335.
[218] ZHANG Q, YANG Y, SUO D, et al. A biomimetic adhesive and robust janus patch with anti-oxidative, anti-inflammatory, and anti-bacterial activities for tendon repair [J]. ACS Nano, 2023, 17(17): 16798-16816.
[219] HE Y, LI Q, CHEN P, et al. A smart adhesive janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention [J]. Nature Communications, 2022, 13(1): 7666.
[220] XU Y, DONG S, ZHOU Q, et al. The effect of mechanical stimulation on the maturation of TDSCS-poly (L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering [J]. Biomaterials, 2014, 35(9): 2760-2772.
[221] YANG S, SHI X, LI X, et al. Oriented collagen fiber membranes formed through counter-rotating extrusion and their application in tendon regeneration [J]. Biomaterials, 2019, 207: 61-75.
[222] JAHN S, SEROR J, KLEIN J. Lubrication of articular cartilage [J]. Annual Review of Biomedical Engineering, 2016, 18: 235-258.
[223] SUN T L, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity [J]. Nature Materials, 2013, 12(10): 932-937.
[224] NALEWAY S E, LEAR W, KRUZIC J J, et al. Mechanical properties of suture materials in general and cutaneous surgery [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(4): 735-742.
[225] MARKOVSKY E, BAABUR-COHEN H, ELDAR-BOOCK A, et al. Administration, distribution, metabolism and elimination of polymer therapeutics [J]. Journal of Controlled Release, 2012, 161(2): 446-460.
[226] XU L, YANG J, XUE B, et al. Molecular insights for the biological interactions between polyethylene glycol and cells [J]. Biomaterials, 2017, 147: 1-13.
[227] WREN T A L, YERBY S A, BEAUPRé G S, et al. Mechanical properties of the human Achilles tendon [J]. Clinical Biomechanics, 2001, 16(3): 245-251.
[228] JIANG M, LIN M, LI W, et al. Growth factors in the treatment of Achilles tendon injury [J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1250533.
[229] VERDIYEVA G, KOSHY K, GLIBBERY N, et al. Tendon reconstruction with tissue engineering approach-A review [J]. Journal of Biomedical Nanotechnology, 2015, 11(9): 1495-1523.
[230] LAURENT D, WALSH L, MUAREMI A, et al. Relationship between tendon structure, stiffness, gait patterns and patient reported outcomes during the early stages of recovery after an Achilles tendon rupture [J]. Scientific Reports, 2020, 10(1): 20757.
[231] ABRAHAM A C, SHAH S A, GOLMAN M, et al. Targeting the NF-κB signaling pathway in chronic tendon disease [J]. Science Translational Medicine, 2019, 11(481): eaav4319.
[232] CHOU P Y, CHEN S H, CHEN C H, et al. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion [J]. Acta Biomaterialia, 2017, 63: 85-95.
[233] ZHAO S, ZHAO X, DONG S, et al. A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing [J]. Journal of Materials Chemistry B, 2015, 3(6): 990-1000.
[234] YANG Q Q, ZHANG L, ZHOU Y L, et al. Morphological changes of macrophages and their potential contribution to tendon healing [J]. Colloids and Surfaces B: Biointerfaces, 2022, 209: 112145.
[235] NISHIGUCHI A, SASAKI F, MAEDA H, et al. Multifunctional hydrophobized microparticles for accelerated wound healing after endoscopic submucosal dissection [J]. Small, 2019, 15(35): 1901566.
[236] SITARZ R, SKIERUCHA M, MIELKO J, et al. Gastric cancer: Epidemiology, prevention, classification, and treatment [J]. Cancer Management and Research, 2018, 10: 239-248.
[237] REVELL M A, PUGH M A, MCGHEE M. Gastrointestinal traumatic injuries: Gastrointestinal perforation [J]. Critical Care Nursing Clinics, 2018, 30(1): 157-166.
[238] BLOECHLE C, EMMERMANN A, STRATE T, et al. Laparoscopic vs open repair of gastric perforation and abdominal lavage of associated peritonitis in pigs [J]. Surgical Endoscopy, 1998, 12: 212-218.
[239] KARLICZEK A, HARLAAR N J, ZEEBREGTS C J, et al. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery [J]. International Journal of Colorectal Disease, 2009, 24(5): 569-576.
[240] MIYAMOTO A, LEE S, COORAY N F, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes [J]. Nature Nanotechnology, 2017, 12(9): 907-913.
[241] SPOTNITZ W D, BURKS S. Hemostats, sealants, and adhesives: Components of the surgical toolbox [J]. Transfusion, 2008, 48(7): 1502-1516.
[242] LIU J, TAN C S Y, SCHERMAN O A. Dynamic interfacial adhesion through cucurbit[n]uril molecular recognition [J]. Angewandte Chemie International Edition, 2018, 57(29): 8854-8858.
[243] YU Y, YUK H, PARADA G A, et al. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes [J]. Advanced Materials, 2019, 31(7): 1807101.
[244] PATERSON S M, BROWN D H, CHIRILA T V, et al. The synthesis of water-soluble PHEMA via ARGET ATRP in protic media [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48(18): 4084-4092.
[245] LORD M S, STENZEL M H, SIMMONS A, et al. The effect of charged groups on protein interactions with poly (HEMA) hydrogels [J]. Biomaterials, 2006, 27(4): 567-575.
[246] PASCUAL G, SOTOMAYOR S, RODRíGUEZ M, et al. Cytotoxicity of cyanoacrylate-based tissue adhesives and short-term preclinical biocompatibility in abdominal hernia repair [J]. Plos One, 2016, 11(6): e0157920.
[247] MIZRAHI B, STEFANESCU C F, YANG C, et al. Elasticity and safety of alkoxyethyl cyanoacrylate tissue adhesives [J]. Acta Biomaterialia, 2011, 7(8): 3150-3157.
[248] ZHANG K, CHEN X, XUE Y, et al. Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces [J]. Advanced Functional Materials, 2022, 32(15): 2111465.
[249] TABOADA G M, YANG K, PEREIRA M J, et al. Overcoming the translational barriers of tissue adhesives [J]. Nature Reviews Materials, 2020, 5(4): 310-329.
[250] ZHANG J, WANG Y, ZHANG J, et al. Robust hydrogel adhesion by harnessing bioinspired interfacial mineralization [J]. Small, 2022, 18(31): 2201796.
[251] GAO Y, WU K, SUO Z. Photodetachable adhesion [J]. Advanced Materials, 2019, 31(6): 1806948.
[252] REID B, GIBSON M, SINGH A, et al. PEG hydrogel degradation and the role of the surrounding tissue environment [J]. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9(3): 315-318.
[253] HONG Y K, CHANG Y H, LIN Y C, et al. Inflammation in wound healing and pathological scarring [J]. Advances in Wound Care, 2023, 12(5): 288-300.
[254] EMING S A, MARTIN P, TOMIC-CANIC M. Wound repair and regeneration: Mechanisms, signaling, and translation [J]. Science Translational Medicine, 2014, 6(265): 265-281.
[255] GUO B, DONG R, LIANG Y, et al. Haemostatic materials for wound healing applications [J]. Nature Reviews Chemistry, 2021, 5(11): 773-791.
[256] LU Y, LI H, WANG J, et al. Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing [J]. Advanced Functional Materials, 2021, 31(48): 2105749.
[257] FLAXMAN S R, BOURNE R R, RESNIKOFF S, et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis [J]. The Lancet Global Health, 2017, 5(12): 1221-1234.
[258] GAIN P, JULLIENNE R, HE Z G, et al. Global survey of corneal transplantation and eye banking [J]. Jama Ophthalmology, 2016, 134(2): 167-173.
[259] CRAWFORD A Z, MEYER J J, PATEL D V, et al. Complications related to sutures following penetrating and deep anterior lamellar keratoplasty [J]. Clinical & Experimental Ophthalmology, 2016, 44(2): 142-143.
[260] ZHAO X, LI S Q, DU X Y, et al. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty [J]. Bioactive Materials, 2022, 8: 196-209.
[261] RAFAT M, JABBARVAND M, SHARMA N, et al. Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts [J]. Nature Biotechnology, 2023, 41(1): 70-81.
[262] HE B, YANG J, LIU Y, et al. An in situ-forming polyzwitterion hydrogel: Towards vitreous substitute application [J]. Bioactive Materials, 2021, 6(10): 3085-3096.
[263] GHOBRIL C, GRINSTAFF M. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial [J]. Chemical Society Reviews, 2015, 44(7): 1820-1835.
[264] KUMAR A, DOMB A J. Polymerization enhancers for cyanoacrylate skin adhesive [J]. Macromolecular Bioscience, 2021, 21(10): 2100143.
[265] MCTIERNAN C D, SIMPSON F C, HAAGDORENS M, et al. LiQD cornea: Pro-regeneration collagen mimetics as patches and alternatives to corneal transplantation [J]. Science Advances, 2020, 6(25): eaba2187.
[266] SATO K, NAKAJIMA T, HISAMATSU T, et al. Phase-separation-induced anomalous stiffening, toughening, and self-healing of polyacrylamide gels [J]. Advanced Materials, 2015, 27(43): 6990-6698.
[267] GANJI F, VASHEGHANI-FARAHANI S, VASHEGHANI-FARAHANI E. Theoretical description of hydrogel swelling: A review [J]. Iranian Polymer Journal, 2010, 19(5): 375-398.
[268] CHALAL M, EHRBURGER-DOLLE F, MORFIN I, et al. SAXS investigation of the effect of temperature on the multiscale structure of a macroporous poly(N-isopropylacrylamide) gel [J]. Macromolecules, 2010, 43(4): 2009-2017.
[269] XIONG L, HU X, LIU X, et al. Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility [J]. Polymer, 2008, 49(23): 5064-5071.
[270] WANG J, WU W, LIN Z. Kinetics and thermodynamics of the water sorption of 2‐hydroxyethyl methacrylate/styrene copolymer hydrogels [J]. Journal of Applied Polymer Science, 2008, 109(5): 3018-3023.
[271] PATEL S, TUTCHENKO L. The refractive index of the human cornea: A review [J]. Contact Lens and Anterior Eye, 2019, 42(5): 575-580.
[272] ZHANG H J, WANG L, WANG X, et al. Developing super tough gelatin-based hydrogels by incorporating linear poly (methacrylic acid) to facilitate sacrificial hydrogen bonding [J]. Soft Matter, 2020, 16(20): 4723-4727.
[273] BRYANT S J, NUTTELMAN C R, ANSETH K S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro [J]. Journal of Biomaterials Science, Polymer Edition, 2000, 11(5): 439-457.
[274] FAIRBANKS B D, SCHWARTZ M P, BOWMAN C N, et al. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility [J]. Biomaterials, 2009, 30(35): 6702-6707.
[275] KIM S, KO J, CHOI J H, et al. Antigen-antibody interaction derived bioadhesion of bacterial cellulose nanofibers to promote topical wound healing [J]. Advanced Functional Materials, 2022, 32(20): 2110557.
[276] CHAVAKIS T, ALEXAKI V I, FERRANTE JR A W. Macrophage function in adipose tissue homeostasis and metabolic inflammation [J]. Nature Immunology, 2023, 24(5): 757-766.
[277] FERRANTE C J, LEIBOVICH S J. Regulation of macrophage polarization and wound healing [J]. Advances in Wound Care, 2012, 1(1): 10-16.
[278] MAO J, CHEN L, CAI Z, et al. Advanced biomaterials for regulating polarization of macrophages in wound healing [J]. Advanced Functional Materials, 2022, 32(12): 2111003.
[279] MONTANA G, LAMPIASI N. Substance P induces HO-1 expression in Raw 264.7 cells promoting switch towards M2-like macrophages [J]. Plos One, 2016, 11(12): e0167420.
[280] ESLANI M, PUTRA I, SHEN X, et al. Cornea-derived mesenchymal stromal cells therapeutically modulate macrophage immunophenotype and angiogenic function [J]. Stem Cells, 2018, 36(5): 775-784.
[281] CHEN Q, LI J, HAN F, et al. A multifunctional composite hydrogel that rescues the ROS microenvironment and guides the immune response for repair of osteoporotic bone defects [J]. Advanced Functional Materials, 2022, 32(27): 2201067.
[282] SONG X, LIU F, QIU C, et al. Nanosurfacing Ti alloy by weak alkalinity-activated solid-state dewetting (AAD) and its biointerfacial enhancement effect [J]. Materials Horizons, 2021, 8(3): 912-924.
[283] GHOBRIL C, GRINSTAFF M W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial [J]. Chemical Society Reviews, 2015, 44(7): 1820-1835.
[284] HONG G, LIEBER C M. Novel electrode technologies for neural recordings [J]. Nature Reviews Neuroscience, 2019, 20(6): 330-345.
[285] MONTGOMERY K L, IYER S M, CHRISTENSEN A J, et al. Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system [J]. Science Translational Medicine, 2016, 8(337): 337-342.
[286] MCGLYNN E, NABAEI V, REN E, et al. The future of neuroscience: Flexible and wireless implantable neural electronics [J]. Advanced Science, 2021, 8(10): 2002693.
[287] CANALES A, PARK S, KILIAS A, et al. Multifunctional fibers as tools for neuroscience and neuroengineering [J]. Accounts of Chemical Research, 2018, 51(4): 829-838.
[288] SHARMA K, JAECKEL Z, SCHNEIDER A, et al. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats [J]. Journal of Neural Engineering, 2021, 18(6): 066013.
[289] KIM C K, ADHIKARI A, DEISSEROTH K. Integration of optogenetics with complementary methodologies in systems neuroscience [J]. Nature Reviews Neuroscience, 2017, 18(4): 222-235.
[290] GRADINARU V, MOGRI M, THOMPSON K R, et al. Optical deconstruction of parkinsonian neural circuitry [J]. Science, 2009, 324(5925): 354-359.
[291] SAHASRABUDHE A, RUPPRECHT L E, ORGUC S, et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits [J]. Nature Biotechnology, 2023: 1-13.
[292] DU M, HUANG L, ZHENG J, et al. Flexible fiber probe for efficient neural stimulation and detection [J]. Advanced Science, 2020, 7(15): 2001410.
[293] SALATINO J W, LUDWIG K A, KOZAI T D Y, et al. Glial responses to implanted electrodes in the brain [J]. Nature Biomedical Engineering, 2017, 1(11): 862-877.
[294] OTTE E, VLACHOS A, ASPLUND M. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes [J]. Cell and Tissue Research, 2022, 387(3): 461-477.
[295] LI G, HUANG K, DENG J, et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics [J]. Advanced Materials, 2022, 34(15): 2200261.
[296] ACIK G, KARATAVUK A O. Synthesis, properties and biodegradability of cross-linked amphiphilic poly (vinyl acrylate)-poly (tert-butyl acrylate)s by photo-initiated radical polymerization [J]. European Polymer Journal, 2020, 127: 109602.
[297] SULLIVAN D M. Electromagnetic simulation using the FDTD method [M]. John Wiley & Sons, 2013.
[298] OSKOOI A F, ROUNDY D, IBANESCU M, et al. Meep: A flexible free-software package for electromagnetic simulations by the fdtd method [J]. Computer Physics Communications, 2010, 181(3): 687-702.
[299] DOMINGUEZ I, CORRES J, MATIAS I R, et al. High sensitivity lossy-mode resonance refractometer using low refractive index pfa planar waveguide [J]. Optics & Laser Technology, 2023, 162: 109235.
[300] GASIOROWSKI J, MENON R, HINGERL K, et al. Surface morphology, optical properties and conductivity changes of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) by using additives [J]. Thin Solid Films, 2013, 536: 211-215.
[301] ZHANG J, WANG L, XUE Y, et al. Engineering electrodes with robust conducting hydrogel coating for neural recording and modulation [J]. Advanced Materials, 2023, 35(3): 2209324.
[302] FANG B, YAN J M, CHANG D, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors [J]. Nature Communications, 2022, 13(1): 2101.
[303] WON C, JEONG U J, LEE S, et al. Mechanically tissue-like and highly conductive Au nanoparticles embedded elastomeric fiber electrodes of brain-machine interfaces for chronic in vivo brain neural recording [J]. Advanced Functional Materials, 2022, 32(52): 2205145.
[304] LUAN L, WEI X, ZHAO Z, et al. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration [J]. Science Advances, 2017, 3(2): e1601966.
[305] RICHTER A, XIE Y, SCHUMACHER A, et al. A simple implantation method for flexible, multisite microelectrodes into rat brains [J]. Frontiers in Neuroengineering, 2013, 6: 1-6.
[306] GOLDSTEIN S R, SALCMAN M. Mechanical factors in the design of chronic recording intracortical microelectrodes [J]. IEEE Transactions on Biomedical Engineering, 1973, (4): 260-269.
[307] SUBBAROYAN J, MARTIN D C, KIPKE D R. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex [J]. Journal of Neural Engineering, 2005, 2(4): 103-113.
[308] LEE Y, SHIN H, LEE D, et al. A lubricated nonimmunogenic neural probe for acute insertion trauma minimization and long-term signal recording [J]. Advanced Science, 2021, 8(15): 2300231.
[309] KOZAI T D, CATT K, LI X, et al. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording [J]. Biomaterials, 2015, 37: 25-39.
[310] OUYANG W, LU W, ZHANG Y, et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals [J]. Nature Biomedical Engineering, 2023: 1-18.
[311] WU D, FEI F, ZHANG Q, et al. Nanoengineered on-demand drug delivery system improves efficacy of pharmacotherapy for epilepsy [J]. Science Advances, 2022, 8(2): eabm3381.
[312] LISMAN J, BUZSáKI G, EICHENBAUM H, et al. Viewpoints: How the hippocampus contributes to memory, navigation and cognition [J]. Nature Neuroscience, 2017, 20(11): 1434-1447.
[313] FANSELOW M S, DONG H W. Are the dorsal and ventral hippocampus functionally distinct structures? [J]. Neuron, 2010, 65(1): 7-19.
[314] KHEIRBEK M A, DREW L J, BURGHARDT N S, et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus [J]. Neuron, 2013, 77(5): 955-968.

所在学位评定分委会
力学
国内图书分类号
R318.08
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766194
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
陈兴梅. 基于抗溶胀水凝胶的生物粘合界面和植入器件的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031264-陈兴梅-机械与能源工程(32374KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈兴梅]的文章
百度学术
百度学术中相似的文章
[陈兴梅]的文章
必应学术
必应学术中相似的文章
[陈兴梅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。