[1] ZHAO X. Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks [J]. Soft Matter, 2014, 10(5): 672-687.
[2] HONG W, ZHAO X, ZHOU J, et al. A theory of coupled diffusion and large deformation in polymeric gels [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1779-1793.
[3] LI J, MOONEY D J. Designing hydrogels for controlled drug delivery [J]. Nature Reviews Materials, 2016, 1(12): 1-17.
[4] YUK H, LIN S, MA C, et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water [J]. Nature Communications, 2017, 8(1): 14230.
[5] LIU X, LIU J, LIN S, et al. Hydrogel machines [J]. Materials Today, 2020, 36: 102-124.
[6] EDELMAN I, LEIBMAN J. Anatomy of body water and electrolytes [J]. The American Journal of Medicine, 1959, 27(2): 256-277.
[7] YUK H, VARELA C E, NABZDYK C S, et al. Dry double-sided tape for adhesion of wet tissues and devices [J]. Nature, 2019, 575(7781): 169-174.
[8] HONG Y, ZHOU F, HUA Y, et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds [J]. Nature Communications, 2019, 10(1): 2060.
[9] STRAKOSAS X, BIESMANS H, ABRAHAMSSON T, et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics [J]. Science, 2023, 379(6634): 795-802.
[10] DENG J, YUK H, WU J, et al. Electrical bioadhesive interface for bioelectronics [J]. Nature Materials, 2021, 20(2): 229-236.
[11] SHASTRI A, MCGREGOR L M, LIU Y, et al. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system [J]. Nature Chemistry, 2015, 7(5): 447-454.
[12] YANG C, SHENG T, HOU W, et al. Glucose-responsive microneedle patch for closed-loop dual-hormone delivery in mice and pigs [J]. Science Advances, 2022, 8(48): eadd3197.
[13] CHANDRASEKHARAN A, SEONG K Y, YIM S G, et al. In situ photocrosslinkable hyaluronic acid-based surgical glue with tunable mechanical properties and high adhesive strength [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2019, 57(4): 522-530.
[14] PEI X, WANG J, CONG Y, et al. Recent progress in polymer hydrogel bioadhesives [J]. Journal of Polymer Science, 2021, 59(13): 1312-1337.
[15] WU S J, ZHAO X. Bioadhesive technology platforms [J]. Chemical Reviews, 2023, 123(24): 14084-14118.
[16] ZHAN Y, FU W, XING Y, et al. Advances in versatile anti-swelling polymer hydrogels [J]. Materials Science & Engineering C-Materials for Biological Applications, 2021, 127: 112208.
[17] MA P, LIANG W, HUANG R, et al. Super-structured wet-adhesive hydrogel with ultralow swelling, ultrahigh burst pressure tolerance, and anti-postoperative adhesion properties for tissue adhesion [J]. Advanced Materials, 2023: e2305400.
[18] WANG W, ZENG Z, XIANG L, et al. Injectable self-healing hydrogel via biological environment-adaptive supramolecular assembly for gastric perforation healing [J]. ACS Nano, 2021, 15(6): 9913-9923.
[19] YUK H, LU B, ZHAO X. Hydrogel bioelectronics [J]. Chemical Society Reviews, 2019, 48(6): 1642-1667.
[20] CHEN G, HOU K, YU N, et al. Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine [J]. Nature Communications, 2022, 13(1): 7789.
[21] LIU X, RAO S, CHEN W, et al. Fatigue-resistant hydrogel optical fibers enable peripheral nerve optogenetics during locomotion [J]. Nature Methods, 2023, 20(11): 1802-1809.
[22] YUK H, WU J, ZHAO X. Hydrogel interfaces for merging humans and machines [J]. Nature Reviews Materials, 2022, 7(12): 935-952.
[23] CHEN G, WANG G, TAN X, et al. Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications [J]. National Science Review, 2021, 8(9): nwaa209.
[24] YETISEN A K, JIANG N, FALLAHI A, et al. Glucose‐sensitive hydrogel optical fibers functionalized with phenylboronic acid [J]. Advanced Materials, 2017, 29(15): 1606380.
[25] LIU B, ZHU H, ZHAO D, et al. Hydrogel coating enabling mechanically friendly, step‐index, functionalized optical fiber [J]. Advanced Optical Materials, 2021, 9(20): 2101036.
[26] WARDEN M R, CARDIN J A, DEISSEROTH K. Optical neural interfaces [J]. Annual Review of Biomedical Engineering, 2014, 16: 103-129.
[27] LIANG Q, SHEN Z, SUN X, et al. Electron conductive and transparent hydrogels for recording brain neural signals and neuromodulation [J]. Advanced Materials, 2023, 35(9): 2211159.
[28] SHEN Z, LIANG Q, CHANG Q, et al. Topological hydrogels for long-term brain signal monitoring, neuromodulation, and stroke treatment [J]. Advanced Materials, 2023: 2310365.
[29] LIN Y, ZHAO Y, XIN Q, et al. Electrical control of the optical dielectric properties of PEDOT: PSS thin films [J]. Optical Materials, 2020, 108: 110435.
[30] BHAVSAR V, TRIPATHI D. Study of refractive index dispersion and optical conductivity of PPy doped PVC films [J]. Indian Journal of Pure & Applied Physics, 2016, 54: 105-110.
[31] WEBBER M J, PASHUCK E T. (Macro) Molecular self-assembly for hydrogel drug delivery [J]. Advanced Drug Delivery Reviews, 2021, 172: 275-295.
[32] RIZZO F, KEHR N S. Recent advances in injectable hydrogels for controlled and local drug delivery [J]. Advanced Healthcare Materials, 2021, 10(1): 2001341.
[33] ILGIN P, OZAY H, OZAY O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier [J]. Journal of Polymer Research, 2020, 27: 1-11.
[34] YUAN P, YANG T, LIU T, et al. Nanocomposite hydrogel with NIR/magnet/enzyme multiple responsiveness to accurately manipulate local drugs for on-demand tumor therapy [J]. Biomaterials, 2020, 262: 120357.
[35] QIAO H, CHEN X, CHEN E, et al. Folated pH-degradable nanogels for the simultaneous delivery of docetaxel and an IDO1-inhibitor in enhancing cancer chemo-immunotherapy [J]. Biomaterials Science, 2019, 7(7): 2749-2758.
[36] LIU C, WANG Z, WEI X, et al. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing [J]. Acta Biomaterialia, 2021, 131: 314-325.
[37] DREISS C A. Hydrogel design strategies for drug delivery [J]. Current Opinion in Colloid & Interface Science, 2020, 48: 1-17.
[38] CHEN Q, XIAO Z S, WANG C, et al. Microneedle patches loaded with nanovesicles for glucose transporter- mediated insulin delivery [J]. ACS Nano, 2022, 16(11): 18223-18231.
[39] GAO Z, SHENG T, ZHANG W, et al. Microneedle-mediated cell therapy [J]. Advanced Science, 2023: 2304124.
[40] ZHU Z, WANG J, PEI X, et al. Blue-ringed octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery [J]. Science Advances, 2023, 9(25): eadh2213.
[41] GUIMARãES C F, GASPERINI L, MARQUES A P, et al. The stiffness of living tissues and its implications for tissue engineering [J]. Nature Reviews Materials, 2020, 5(5): 351-370.
[42] SPICER C D. Hydrogel scaffolds for tissue engineering: The importance of polymer choice [J]. Polymer Chemistry, 2020, 11(2): 184-219.
[43] KONG B, CHEN Y, LIU R, et al. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma [J]. Nature Communications, 2020, 11(1): 1435.
[44] KIM S, MIN S, CHOI Y S, et al. Tissue extracellular matrix hydrogels as alternatives to matrigel for culturing gastrointestinal organoids [J]. Nature Communications, 2022, 13(1): 1692.
[45] VACKOVA I, VAVRINOVA E, MUSILKOVA J, et al. Hypothermic storage of 3D cultured multipotent mesenchymal stromal cells for regenerative medicine applications [J]. Polymers, 2022, 14(13): 2553.
[46] SONG A, FAWZY A. Exploring hyaluronic acid as a potential standard dressing for burn wound [J]. International Journal of Medical Science and Clinical Research Studies, 2022, 2(08): 787-793.
[47] TANG G, LUO Z, LIAN L, et al. Liquid-embedded (bio) printing of alginate-free, standalone, ultrafine, and ultrathin-walled cannular structures [J]. Proceedings of the National Academy of Sciences, 2023, 120(7): e2206762120.
[48] RAVANBAKHSH H, LUO Z, ZHANG X, et al. Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage [J]. Matter, 2022, 5(2): 573-593.
[49] WANG D, MAHARJAN S, KUANG X, et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels [J]. Science Advances, 2022, 8(43): eabq6900.
[50] WINTER G D. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig [J]. Nature, 1962, 193: 293-294.
[51] LIANG Y P, HE J H, GUO B L. Functional hydrogels as wound dressing to enhance wound healing [J]. ACS Nano, 2021, 15(8): 12687-12722.
[52] NGUYEN T D, NGUYEN T T, LY K L, et al. In vivo study of the antibacterial chitosan/polyvinyl alcohol loaded with silver nanoparticle hydrogel for wound healing applications [J]. International Journal of Polymer Science, 2019, 2019: 7382717.
[53] WANG P, HUANG S, HU Z, et al. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing [J]. Acta Biomaterialia, 2019, 100: 191-201.
[54] ZHAO X, WU H, GUO B, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing [J]. Biomaterials, 2017, 122: 34-47.
[55] YU R, ZHANG H L, GUO B L. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering [J]. Nano-Micro Letters, 2022, 14(1): 1-46.
[56] MEARA J G, LEATHER A J M, HAGANDER L, et al. Global surgery 2030: Evidence and solutions for achieving health, welfare, and economic development [J]. The Lancet, 2015, 386(9993): 569-624.
[57] TABOADA G M, YANG K, PEREIRA M J N, et al. Overcoming the translational barriers of tissue adhesives [J]. Nature Reviews Materials, 2020, 5(4): 310-329.
[58] TAKAOKA M, NAKAMURA T, SUGAI H, et al. Sutureless amniotic membrane transplantation for ocular surface reconstruction with a chemically defined bioadhesive [J]. Biomaterials, 2008, 29(19): 2923-2931.
[59] SMITH D J, BRAT G A, MEDINA S H, et al. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels [J]. Nature Nanotechnology, 2015, 11(1): 95-102.
[60] QIAN Y, XU K, SHEN L, et al. Dopamine-based high-transparent hydrogel as bioadhesive for sutureless ocular tissue repair [J]. Advanced Functional Materials, 2023, 33(49): 2300707.
[61] WU J, YUK H, SARRAFIAN T L, et al. An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects [J]. Science Translational Medicine, 2022, 14(630): eabh2857.
[62] A.BURI N A P P. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues [J]. Journal of Controlled Release, 1985, 2: 257-275.
[63] PENG X, XIA X, XU X, et al. Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations [J]. Science Advances, 2021, 7(23): eabe8739.
[64] MA Z, BAO G, LI J. Multifaceted design and emerging applications of tissue adhesives [J]. Advanced Materials, 2021, 33(24): 2007663.
[65] REN H, ZHANG Z, CHENG X, et al. Injectable, self-healing hydrogel adhesives with firm tissue adhesion and on-demand biodegradation for sutureless wound closure [J]. Science Advances, 2023, 9(33): eadh4327.
[66] ALBALA D. Fibrin sealants in clinical practice [J]. Cardiovascular Surgery, 2003, 11: 5-11.
[67] GE L, CHEN S. Recent advances in tissue adhesives for clinical medicine [J]. Polymers, 2020, 12(4): 939-961.
[68] SUEDA J, FUKUCHI T, USUMOTO N, et al. Intraocular use of hydrogel tissue adhesive in rabbit eyes [J]. Japanese Journal of Ophthalmology, 2007, 51(2): 89-95.
[69] KIM K D, WRIGHT N M. Polyethylene glycol hydrogel spinal sealant (duraseal spinal sealant) as an adjunct to sutured dural repair in the spine [J]. Spine, 2011, 36(23): 1906-1912.
[70] YANG Q S, WEI T, YIN R T, et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues [J]. Nature Materials, 2021, 20(11): 1559-1570.
[71] WANG C, CHEN X, WANG L, et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs [J]. Science, 2022, 377(6605): 517-523.
[72] XUE Y, ZHANG J, CHEN X, et al. Trigger-detachable hydrogel adhesives for bioelectronic interfaces [J]. Advanced Functional Materials, 2021, 31(47): 2106446.
[73] LI J, LIU Y, YUAN L, et al. A tissue-like neurotransmitter sensor for the brain and gut [J]. Nature, 2022, 606(7912): 94-101.
[74] DOBASHI Y, YAO D, PETEL Y, et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels [J]. Science, 2022, 376(6592): 502-507.
[75] JIN S, CHOI H, SEONG D, et al. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation [J]. Nature, 2023, 623(7985): 58-65.
[76] ROGERS J A, SOMEYA T, HUANG Y G. Materials and mechanics for stretchable electronics [J]. Science, 2010, 327(5973): 1603-1607.
[77] FRANK J A, ANTONINI M-J, ANIKEEVA P. Next-generation interfaces for studying neural function [J]. Nature biotechnology, 2019, 37(9): 1013-1023.
[78] WON D, KIM J, CHOI J, et al. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation [J]. Science Advances, 2022, 8(23): eabo3209.
[79] LI S G, DAI J, ZHU M, et al. Implantable hydrogel-protective DNA aptamer-based sensor supports accurate, continuous electrochemical analysis of drugs at multiple sites in living rats [J]. ACS Nano, 2023, 17(18): 18525-18538.
[80] KIM S K, LEE G H, JEON C, et al. Bimetallic nanocatalysts immobilized in nanoporous hydrogels for long-term robust continuous glucose monitoring of smart contact lens [J]. Advanced Materials, 2022, 34(18): 2110536.
[81] ZHAO X H, CHEN X Y, YUK H, et al. Soft materials by design: Unconventional polymer networks give extreme properties [J]. Chemical Reviews, 2021, 121(8): 4309-4372.
[82] WU S J, YUK H, WU J, et al. A multifunctional origami patch for minimally invasive tissue sealing [J]. Advanced Materials, 2021, 33(11): 2007667.
[83] ASADIKORAYEM M, SURMAN F, WEBER P, et al. Zwitterionic granular hydrogel for cartilage tissue engineering [J]. Advanced Healthcare Materials, 2023: 2301831.
[84] FU C, SHEN L, LIU L, et al. Hydrogel with robust adhesion in various liquid environments by electrostatic-induced hydrophilic and hydrophobic polymer chains migration and rearrangement [J]. Advanced Materials, 2023, 35(15): 2211237.
[85] SONG R, MURPHY M, LI C S, et al. Current development of biodegradable polymeric materials for biomedical applications [J]. Drug Design Development and Therapy, 2018, 12: 3117-3145.
[86] AZEVEDO H S, REIS R L. Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate [M]. 2004.
[87] TAMARIZ E, RIOS-RAMíREZ A. Biodegradation of medical purpose polymeric materials and their impact on biocompatibility [J]. Biodegradation-Life of Science Croatia: Intech, 2013: 1-29.
[88] JOHNSON C D, ARANDA-ESPINOZA H, FISHER J P. A case for material stiffness as a design parameter in encapsulated islet transplantation [J]. Tissue Engineering Part B-Reviews, 2023, 29(4): 334-346.
[89] PARK S, YUK H, ZHAO R K, et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity [J]. Nature Communications, 2021, 12(1): 3435.
[90] ZHAO Y, YI B, HU J, et al. Double cross-linked biomimetic hyaluronic acid‐based hydrogels with thermo‐stimulated self-contraction and tissue adhesiveness for accelerating post‐wound closure and wound healing [J]. Advanced Functional Materials, 2023: 2300710.
[91] LIN X, LIU Y, BAI A B, et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction [J]. Nature Biomedical Engineering, 2019, 3(8): 632-643.
[92] YAMAGISHI K, KIRINO I, TAKAHASHI I, et al. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy [J]. Nature Biomedical Engineering, 2019, 3(1): 27-36.
[93] LIU J, LIN S T, LIU X Y, et al. Fatigue-resistant adhesion of hydrogels [J]. Nature Communications, 2020, 11(1): 1071.
[94] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength [J]. Advanced Materials, 2003, 15(14): 1155-1158.
[95] WANG W, NARAIN R, ZENG H. Rational design of self-healing tough hydrogels: A mini review [J]. Frontiers in Chemistry, 2018, 6: 497.
[96] WICHTERLE O, LIM D. Hydrophilic gels for biological use [J]. Nature, 1960, 185(4706): 117-118.
[97] KAMATA H, AKAGI Y, KAYASUGA-KARIYA Y, et al. “Nonswellable” hydrogel without mechanical hysteresis [J]. Science, 2014, 343(6173): 873-875.
[98] LI X, CUI K, SUN T L, et al. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture [J]. Proceedings of the National Academy of Sciences, 2020, 117(14): 7606-7612.
[99] LI X, CUI K, KUROKAWA T, et al. Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels [J]. Science Advances, 2021, 7(16): eabe8210.
[100] MIHAJLOVIC M, STAROPOLI M, APPAVOU M S, et al. Tough supramolecular hydrogel based on strong hydrophobic interactions in a multiblock segmented copolymer [J]. Macromolecules, 2017, 50(8): 3333-3346.
[101] LI M, LU H, PI M, et al. Water-induced phase separation for anti-swelling hydrogel adhesives in underwater soft electronics [J]. Advanced Science, 2023, 10(32): 2304780.
[102] LI F, ZHANG G, WANG Z, et al. Bioinspired nonswellable ultrastrong nanocomposite hydrogels with long-term underwater superoleophobic behavior [J]. Chemical Engineering Journal, 2019, 375: 122047.
[103] SATO K, NAKAJIMA T, HISAMATSU T, et al. Phase-separation induced anomalous stiffening, toughening, and self‐healing of polyacrylamide gels [J]. Advanced Materials, 2015, 27(43): 6990-6998.
[104] WANG M X, ZHANG P Y, SHAMSI M, et al. Tough and stretchable ionogels by in situ phase separation [J]. Nature Materials, 2022, 21(3): 359-365.
[105] GABRIEL C, PEYMAN A, GRANT E H. Electrical conductivity of tissue at frequencies below 1 MHz [J]. Physics in Medicine and Biology, 2009, 54(16): 4863-4878.
[106] XUE Y, CHEN X, WANG F, et al. Mechanically compliant bioelectronic interfaces through fatigue-resistant conducting polymer hydrogel coating [J]. Advanced Materials, 2023, 35(40): 2304095.
[107] LI H, ERBAŞ A, ZWANIKKEN J, et al. Ionic conductivity in polyelectrolyte hydrogels [J]. Macromolecules, 2016, 49(23): 9239-9246.
[108] KEPLINGER C, SUN J Y, FOO C C, et al. Stretchable, transparent, ionic conductors [J]. Science, 2013, 341(6149): 984-987.
[109] CAYRE O J, CHANG S T, VELEV O D. Polyelectrolyte diode: Nonlinear current response of a junction between aqueous ionic gels [J]. Journal of the American Chemical Society, 2007, 129(35): 10801-10806.
[110] YANG C, CHENG S, YAO X, et al. Ionotronic luminescent fibers, fabrics, and other configurations [J]. Advanced Materials, 2020, 32(47): 2005545.
[111] SUN J Y, KEPLINGER C, WHITESIDES G M, et al. Ionic skin [J]. Advanced Materials, 2014, 26(45): 7608-7614.
[112] GAO Y, SONG J, LI S, et al. Hydrogel microphones for stealthy underwater listening [J]. Nature Communications, 2016, 7(1): 12316.
[113] YE L, JI H, LIU J, et al. Carbon nanotube–hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity [J]. Advanced Materials, 2021, 33(41): 2102981.
[114] HU Y, ZHUO H, ZHANG Y, et al. Graphene oxide encapsulating liquid metal to toughen hydrogel [J]. Advanced Functional Materials, 2021, 31(51): 2106761.
[115] LIN S T, YUK H, ZHANG T, et al. Stretchable hydrogel electronics and devices [J]. Advanced Materials, 2016, 28(22): 4497-4505.
[116] WANG L, LIU Y, YE G, et al. Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs [J]. Nature Biomedical Engineering, 2021, 5(10): 1157-1173.
[117] XU Z Y, ZHANG X J, WANG X D, et al. Synthesis of Ag-Ni-Fe-P multielemental nanoparticles as bifunctional oxygen reduction/evolution reaction electrocatalysts [J]. ACS Nano, 2021, 15(4): 7131-7138.
[118] WANG F, XUE Y, CHEN X, et al. 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation [J]. Advanced Functional Materials, 2023: 2314471.
[119] YU C, SHI M, HE S, et al. Chronological adhesive cardiac patch for synchronous mechanophysiological monitoring and electrocoupling therapy [J]. Nature Communications, 2023, 14(1): 6226.
[120] FEIG V R, TRAN H, LEE M, et al. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue [J]. Nature Communications, 2018, 9(1): 2740.
[121] ZHOU T, YUK H, HU F, et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces [J]. Nature Materials, 2023, 22(7): 895-902.
[122] YUK H, LU B, LIN S, et al. 3D printing of conducting polymers [J]. Nature Communications, 2020, 11(1): 1604.
[123] DE GROOT J H, VAN BEIJMA F J, HAITJEMA H J, et al. Injectable intraocular lens materials based upon hydrogels [J]. Biomacromolecules, 2001, 2(3): 628-634.
[124] NICOLSON P C, VOGT J. Soft contact lens polymers: An evolution [J]. Biomaterials, 2001, 22(24): 3273-3283.
[125] MYUNG D, DUHAMEL P E, COCHRAN J R, et al. Development of hydrogel-based keratoprostheses: A materials perspective [J]. Biotechnology Progress, 2008, 24(3): 735-741.
[126] YUN S H, KWOK S J J. Light in diagnosis, therapy and surgery [J]. Nature Biomedical Engineering, 2017, 1(1): 0008.
[127] WANG L, ZHONG C, KE D, et al. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations [J]. Advanced Optical Materials, 2018, 6(16): 1800427.
[128] ZHOU Y, GU C, LIANG J, et al. A silk-based self-adaptive flexible opto-electro neural probe [J]. Microsystems & Nanoengineering, 2022, 8(1): 118-130.
[129] JIANG N, AHMED R, RIFAT A A, et al. Functionalized flexible soft polymer optical fibers for laser photomedicine [J]. Advanced Optical Materials, 2018, 6(3): 1701118.
[130] ZHU B, LIU D, WU J, et al. Slippery core-sheath hydrogel optical fiber built by catalytically triggered interface radical polymerization [J]. Advanced Functional Materials, 2024: 2309795.
[131] JUNG I Y, KIM J S, CHOI B R, et al. Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes [J]. Advanced Healthcare Materials, 2017, 6(12): 1601475.
[132] LI X, LU Y, HU Y. A wireless and battery-free DNA hydrogel biosensor for wound infection monitoring [J]. Matter, 2022, 5(8): 2473-2475.
[133] ZHANG P, ZHU B, DU P, et al. Electrochemical and electrical biosensors for wearable and implantable electronics based on conducting polymers and carbon-based materials [J]. Chemical Reviews, 2023, 124(3): 722-767.
[134] LI F, LYU D, LIU S, et al. DNA hydrogels and microgels for biosensing and biomedical applications [J]. Advanced Materials, 2020, 32(3): 1806538.
[135] UPDIKE S J, HICKS G P. The enzyme electrode [J]. Nature, 1967, 214(5092): 986-988.
[136] LI J, CELIZ A, YANG J, et al. Tough adhesives for diverse wet surfaces [J]. Science, 2017, 357(6349): 378-381.
[137] SAIZ‐POSEU J, MANCEBO-ARACIL J, NADOR F, et al. The chemistry behind catechol‐based adhesion [J]. Angewandte Chemie International Edition, 2019, 58(3): 696-714.
[138] CHEN M, WU Y, CHEN B, et al. Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing [J]. Proceedings of the National Academy of Sciences, 2022, 119(29): e2203074119.
[139] BELOWICH M E, STODDART J F. Dynamic imine chemistry [J]. Chemical Society Reviews, 2012, 41(6): 2003-2024.
[140] HOFMAN A H, VAN HEES I A, YANG J, et al. Bioinspired underwater adhesives by using the supramolecular toolbox [J]. Advanced Materials, 2018, 30(19): 1704640.
[141] CHEN S, ZHANG K, LI Z, et al. Hydrogen-bonded supramolecular adhesives: Synthesis, responsiveness, and application [J]. Supramolecular Materials, 2023: 100032.
[142] AHN B K. Perspectives on mussel-inspired wet adhesion [J]. Journal of the American Chemical Society, 2017, 139(30): 10166-10171.
[143] YANG J, BAI R, SUO Z. Topological adhesion of wet materials [J]. Advanced Materials, 2018, 30(25): 1800671.
[144] GAO Y, CHEN J, HAN X, et al. A universal strategy for tough adhesion of wet soft material [J]. Advanced Functional Materials, 2020, 30(36): 2003207.
[145] MA Z, BOURQUARD C, GAO Q, et al. Controlled tough bioadhesion mediated by ultrasound [J]. Science, 2022, 377(6607): 751-755.
[146] YANG S Y, O'CEARBHAILL E D, SISK G C, et al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue [J]. Nature Communications, 2013, 4(1): 1702.
[147] KURZAWSKI J, JANION-SADOWSKA A, SADOWSKI M. A novel minimally invasive method of successful tissue glue injection in patients with iatrogenic pseudoaneurysm [J]. The British Journal of Radiology, 2018, 91(1087): 20170538.
[148] ZHOU F, YANG Y, ZHANG W, et al. Bioinspired, injectable, tissue-adhesive and antibacterial hydrogel for multiple tissue regeneration by minimally invasive therapy [J]. Applied Materials Today, 2022, 26: 101290.
[149] DISTEFANO T J, SHMUKLER J O, DANIAS G, et al. Development of a two-part biomaterial adhesive strategy for annulus fibrosus repair and ex vivo evaluation of implant herniation risk [J]. Biomaterials, 2020, 258: 120309.
[150] ZHANG Y, WANG Y, CHEN L, et al. An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing [J]. Biomaterials, 2022, 285: 121546.
[151] HUANG Y, ZHAO X, ZHANG Z, et al. Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing [J]. Chemistry of Materials, 2020, 32(15): 6595-6610.
[152] LEE S-H, PARK C-W, LEE S-G, et al. Postoperative cervical cord compression induced by hydrogel dural sealant (Duraseal®) [J]. Korean Journal of Spine, 2013, 10(1): 44.
[153] BLACKBURN S L, SMYTH M D. Hydrogel-induced cervicomedullary compression after posterior fossa decompression for chiari malformation. Case report [J]. Journal of Neurosurgery, 2007, 106(4 Suppl): 302-304.
[154] ANNABI N, RANA D, SANI E S, et al. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing [J]. Biomaterials, 2017, 139: 229-243.
[155] LIANG S, ZHANG Y, WANG H, et al. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches [J]. Advanced Materials, 2018, 30(23): 1704235.
[156] ANEMA J G, MOREY A F, HARRIS R, et al. Potential uses of absorbable fibrin adhesive bandage for genitourinary trauma [J]. World Journal of Surgical Oncology, 2001, 25(12): 1573-1577.
[157] SANI E S, KHEIRKHAH A, RANA D, et al. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels [J]. Science Advances, 2019, 5(3): eaav1281.
[158] ASSMANN A, VEGH A, GHASEMI-RAD M, et al. A highly adhesive and naturally derived sealant [J]. Biomaterials, 2017, 140: 115-127.
[159] LIM C Y, OWENS N A, WAMPLER R D, et al. Succinimidyl ester surface chemistry: Implications of the competition between aminolysis and hydrolysis on covalent protein immobilization [J]. Langmuir, 2014, 30(43): 12868-12878.
[160] LIU X Y, STEIGER C, LIN S T, et al. Ingestible hydrogel device [J]. Nature Communications, 2019, 10(1): 493.
[161] PREUL M C, CAMPBELL P K, GARLICK D S, et al. Application of a new hydrogel dural sealant that reduces epidural adhesion formation: Evaluation in a large animal laminectomy model laboratory investigation [J]. Journal of Neurosurgery-Spine, 2010, 12(4): 381-390.
[162] LU X, SHI S, LI H, et al. Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives [J]. Biomaterials, 2020, 232: 119719.
[163] MEHDIZADEH M, WENG H, GYAWALI D, et al. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure [J]. Biomaterials, 2012, 33(32): 7972-7983.
[164] WU J, PAN Z, ZHAO Z Y, et al. Anti-swelling, robust, and adhesive extracellular matrix-mimicking hydrogel used as intraoral dressing [J]. Advanced Materials, 2022, 34(20): 2200115.
[165] YU C J, YUE Z W, SHI M Y, et al. An intrapericardial injectable hydrogel patch for mechanical-electrical coupling with infarcted myocardium [J]. ACS Nano, 2022, 16(10): 16234-16248.
[166] FREEDMAN B R, KUTTLER A, BECKMANN N, et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity [J]. Nature Biomedical Engineering, 2022, 6(10): 1167-1179.
[167] MAGANARIS C N, PAUL J P. Tensile properties of the in vivo human gastrocnemius tendon [J]. Journal of Biomechanics, 2002, 35(12): 1639-1646.
[168] CAI C, ZHANG X, LI Y, et al. Self-healing hydrogel embodied with macrophage‐regulation and responsive gene silencing properties for synergistic prevention of peritendinous adhesion [J]. Advanced Materials, 2021, 34(5): e2106564.
[169] CHEN Y, TAN Z, WANG W, et al. Injectable, self-healing, and multi-responsive hydrogels via dynamic covalent bond formation between benzoxaborole and hydroxyl groups [J]. Biomacromolecules, 2018, 20(2): 1028-1035.
[170] JOLLIFFE D M. Practical gastric physiology [J]. Continuing Education in Anaesthesia Critical Care & Pain, 2009, 9(6): 173-177.
[171] XU X, XIA X, ZHANG K, et al. Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs [J]. Science Translational Medicine, 2020, 12(558): eaba8014.
[172] HE J, ZHANG Z, YANG Y, et al. Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing [J]. Nano-Micro Letters, 2021, 13(1): 80-97.
[173] YANG H L, LU H T, MIAO Y Y, et al. Non-swelling, super-tough, self-healing, and multi-responsive hydrogels based on micellar crosslinking for smart switch and shape memory [J]. Chemical Engineering Journal, 2022, 450: 138346.
[174] TRUJILLO-DE SANTIAGO G, SHARIFI R, YUE K, et al. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications [J]. Biomaterials, 2019, 197: 345-367.
[175] CAMPBELL P K, BENNETT S L, DRISCOLL A, et al. Evaluation of absorbable surgical sealants: In-vitro testing [J]. In-vitro Testing, 2005: 1170576081-1559295193.
[176] PAN J, ZHANG W, ZHU J, et al. Arrested phase separation enables high performance keratoprostheses [J]. Advanced Materials, 2023, 35(16): 2207750.
[177] ZHANG Q, FANG Z, CAO Y, et al. High refractive index inorganic-organic interpenetrating polymer network (IPN) hydrogel nanocomposite toward artificial cornea implants [J]. ACS Macro Letters, 2012, 1(7): 876-881.
[178] LEE G-H, MOON H, KIM H, et al. Multifunctional materials for implantable and wearable photonic healthcare devices [J]. Nature Reviews Materials, 2020, 5(2): 149-165.
[179] CANALES A, JIA X, FRORIEP U P, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo [J]. Nature Biotechnology, 2015, 33(3): 277-284.
[180] FITRIA G, KWON M, LEE H, et al. Microfluidic fabrication of highly efficient hydrogel optical fibers for in vivo fiber-optic applications [J]. Advanced Optical Materials, 2023, 11(18): 2300453.
[181] GUO J J, LIU X Y, JIANG N, et al. Highly stretchable, strain sensing hydrogel optical fibers [J]. Advanced Materials, 2016, 28(46): 10244-10249.
[182] CHOI M, HUMAR M, KIM S, et al. Step-index optical fiber made of biocompatible hydrogels [J]. Advanced Materials, 2015, 27(27): 4081-4086.
[183] VOLPI M, PARADISO A, COSTANTINI M, et al. Hydrogel-based fiber biofabrication techniques for skeletal muscle tissue engineering [J]. ACS Biomaterials Science & Engineering, 2022, 8(2): 379-405.
[184] BERTHIER E, YOUNG E W, BEEBE D. Engineers are from PDMS-land, biologists are from polystyrenia [J]. Lab on a Chip, 2012, 12(7): 1224-1237.
[185] CHEN Z W, ZHAO R G. Engineered tissue development in biofabricated 3D geometrical confinement-a review [J]. Acs Biomaterials Science & Engineering, 2019, 5(8): 3688-3702.
[186] LI W, LIU J, WEI J, et al. Recent progress of conductive hydrogel fibers for flexible electronics: Fabrications, applications, and perspectives [J]. Advanced Functional Materials, 2023: 2213485.
[187] DANIELE M A, BOYD D A, ADAMS A A, et al. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications [J]. Advanced Healthcare Materials, 2015, 4(1): 11-28.
[188] KANG E, CHOI Y Y, CHAE S K, et al. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds [J]. Advanced Materials, 2012, 24(31): 4271-4277.
[189] JEONG H, PARK W, KIM D-H, et al. Dynamic nanoassemblies of nanomaterials for cancer photomedicine [J]. Advanced Drug Delivery Reviews, 2021, 177: 113954.
[190] HU Y, CHI C, WANG S, et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer [J]. Advanced Materials, 2017, 29(33): 1700448.
[191] CHOI M, CHOI J W, KIM S, et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo [J]. Nature Photonics, 2013, 7(12): 987-994.
[192] FU R, LUO W, NAZEMPOUR R, et al. Implantable and biodegradable poly (L-lactic acid) fibers for optical neural interfaces [J]. Advanced Optical Materials, 2018, 6(3): 1700941.
[193] WANG J. Electrochemical glucose biosensors [J]. Chemical Reviews, 2008, 108(2): 814-825.
[194] RO’EE GILRON S L, PERRONE R, WILT R, et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease [J]. Nature Biotechnology, 2021, 39(9): 1078-1085.
[195] SPIX T A, NANIVADEKAR S, TOONG N, et al. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation [J]. Science, 2021, 374(6564): 201-206.
[196] KRAUSS J K, LIPSMAN N, AZIZ T, et al. Technology of deep brain stimulation: Current status and future directions [J]. Nature Reviews Neurology, 2021, 17(2): 75-87.
[197] LACOUR S P, COURTINE G, GUCK J. Materials and technologies for soft implantable neuroprostheses [J]. Nature Reviews Materials, 2016, 1(10): 1-14.
[198] LI Y, LI N, DE OLIVEIRA N, et al. Implantable bioelectronics toward long-term stability and sustainability [J]. Matter, 2021, 4(4): 1125-1141.
[199] ZáTONYI A, MADARáSZ M, SZABó Á, et al. Transparent, low-autofluorescence microecog device for simultaneous Ca2+ imaging and cortical electrophysiology in vivo [J]. Journal of Neural Engineering, 2020, 17(1): 016062.
[200] THUNEMANN M, LU Y C, LIU X, et al. Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays [J]. Nature Communications, 2018, 9(1): 2035.
[201] GAO L, WANG J, ZHAO Y, et al. Free standing nanofilm electrode arrays for long‐term stable neural interfacings [J]. Advanced Materials, 2022, 34(5): 2107343.
[202] ZOU L, TIAN H, GUAN S, et al. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology [J]. Nature Communications, 2021, 12(1): 5871.
[203] SINGH V, KUMAR T. Study of modified PEDOT: PSS for tuning the optical properties of its conductive thin films [J]. Journal of Science: Advanced Materials and Devices, 2019, 4(4): 538-543.
[204] CUI C, WU T, CHEN X, et al. A janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion [J]. Advanced Functional Materials, 2020, 30(49): 2005689.
[205] ROZIS M, BENETOS I S, KARAMPINAS P, et al. Outcome of percutaneous fixation of acute achilles tendon ruptures [J]. Foot & Ankle International, 2018, 39(6): 689-693.
[206] FREEDMAN B R, MOONEY D J. Biomaterials to mimic and heal connective tissues [J]. Advanced Materials, 2019, 31(19): 1806695.
[207] WANG Y, JIN S S, LUO D, et al. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin [J]. Nature Communications, 2021, 12(1): 1293.
[208] LI Q R, ZHANG Q, CAI Y H, et al. Patients with Achilles tendon rupture have a degenerated contralateral Achilles tendon: An elastography study [J]. Biomed Research International, 2018, 2018: 1-7.
[209] NO Y J, CASTILHO M, RAMASWAMY Y, et al. Role of biomaterials and controlled architecture on tendon/ligament repair and regeneration [J]. Advanced Materials, 2020, 32(18): 1904511.
[210] VOLETI P B, BUCKLEY M R, SOSLOWSKY L J. Tendon healing: Repair and regeneration [J]. Annual Review of Biomedical Engineering, 2012, 14: 47-71.
[211] NOURISSAT G, BERENBAUM F, DUPREZ D. Tendon injury: From biology to tendon repair [J]. Nature Reviews Rheumatology, 2015, 11(4): 223-233.
[212] LOCKE R C, FORD E M, SILBERNAGEL K G, et al. Success criteria and preclinical testing of multifunctional hydrogels for tendon regeneration [J]. Tissue Engineering Part C-Methods, 2020, 26(10): 506-518.
[213] ZOU M, ZHAO X, ZHANG X, et al. Bio-inspired multiple composite film with anisotropic surface wettability and adhesion for tissue repair [J]. Chemical Engineering Journal, 2020, 398: 125563.
[214] ZHANG E, SONG B, SHI Y, et al. Fouling-resistant zwitterionic polymers for complete prevention of postoperative adhesion [J]. Proceedings of the National Academy of Sciences, 2020, 117(50): 32046-32055.
[215] ZHANG Q, YANG Y, YILDIRIMER L, et al. Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: Design, intrinsic and extrinsic factor considerations [J]. Acta Biomaterialia, 2021, 124: 15-32.
[216] GUO Q, SUN H, WU X, et al. In situ clickable purely zwitterionic hydrogel for peritoneal adhesion prevention [J]. Chemistry of Materials, 2020, 32(15): 6347-6357.
[217] CHEN B, LIANG Y, BAI L, et al. Sustained release of magnesium ions mediated by injectable self-healing adhesive hydrogel promotes fibrocartilaginous interface regeneration in the rabbit rotator cuff tear model [J]. Chemical Engineering Journal, 2020, 396: 125335.
[218] ZHANG Q, YANG Y, SUO D, et al. A biomimetic adhesive and robust janus patch with anti-oxidative, anti-inflammatory, and anti-bacterial activities for tendon repair [J]. ACS Nano, 2023, 17(17): 16798-16816.
[219] HE Y, LI Q, CHEN P, et al. A smart adhesive janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention [J]. Nature Communications, 2022, 13(1): 7666.
[220] XU Y, DONG S, ZHOU Q, et al. The effect of mechanical stimulation on the maturation of TDSCS-poly (L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering [J]. Biomaterials, 2014, 35(9): 2760-2772.
[221] YANG S, SHI X, LI X, et al. Oriented collagen fiber membranes formed through counter-rotating extrusion and their application in tendon regeneration [J]. Biomaterials, 2019, 207: 61-75.
[222] JAHN S, SEROR J, KLEIN J. Lubrication of articular cartilage [J]. Annual Review of Biomedical Engineering, 2016, 18: 235-258.
[223] SUN T L, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity [J]. Nature Materials, 2013, 12(10): 932-937.
[224] NALEWAY S E, LEAR W, KRUZIC J J, et al. Mechanical properties of suture materials in general and cutaneous surgery [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(4): 735-742.
[225] MARKOVSKY E, BAABUR-COHEN H, ELDAR-BOOCK A, et al. Administration, distribution, metabolism and elimination of polymer therapeutics [J]. Journal of Controlled Release, 2012, 161(2): 446-460.
[226] XU L, YANG J, XUE B, et al. Molecular insights for the biological interactions between polyethylene glycol and cells [J]. Biomaterials, 2017, 147: 1-13.
[227] WREN T A L, YERBY S A, BEAUPRé G S, et al. Mechanical properties of the human Achilles tendon [J]. Clinical Biomechanics, 2001, 16(3): 245-251.
[228] JIANG M, LIN M, LI W, et al. Growth factors in the treatment of Achilles tendon injury [J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1250533.
[229] VERDIYEVA G, KOSHY K, GLIBBERY N, et al. Tendon reconstruction with tissue engineering approach-A review [J]. Journal of Biomedical Nanotechnology, 2015, 11(9): 1495-1523.
[230] LAURENT D, WALSH L, MUAREMI A, et al. Relationship between tendon structure, stiffness, gait patterns and patient reported outcomes during the early stages of recovery after an Achilles tendon rupture [J]. Scientific Reports, 2020, 10(1): 20757.
[231] ABRAHAM A C, SHAH S A, GOLMAN M, et al. Targeting the NF-κB signaling pathway in chronic tendon disease [J]. Science Translational Medicine, 2019, 11(481): eaav4319.
[232] CHOU P Y, CHEN S H, CHEN C H, et al. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion [J]. Acta Biomaterialia, 2017, 63: 85-95.
[233] ZHAO S, ZHAO X, DONG S, et al. A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing [J]. Journal of Materials Chemistry B, 2015, 3(6): 990-1000.
[234] YANG Q Q, ZHANG L, ZHOU Y L, et al. Morphological changes of macrophages and their potential contribution to tendon healing [J]. Colloids and Surfaces B: Biointerfaces, 2022, 209: 112145.
[235] NISHIGUCHI A, SASAKI F, MAEDA H, et al. Multifunctional hydrophobized microparticles for accelerated wound healing after endoscopic submucosal dissection [J]. Small, 2019, 15(35): 1901566.
[236] SITARZ R, SKIERUCHA M, MIELKO J, et al. Gastric cancer: Epidemiology, prevention, classification, and treatment [J]. Cancer Management and Research, 2018, 10: 239-248.
[237] REVELL M A, PUGH M A, MCGHEE M. Gastrointestinal traumatic injuries: Gastrointestinal perforation [J]. Critical Care Nursing Clinics, 2018, 30(1): 157-166.
[238] BLOECHLE C, EMMERMANN A, STRATE T, et al. Laparoscopic vs open repair of gastric perforation and abdominal lavage of associated peritonitis in pigs [J]. Surgical Endoscopy, 1998, 12: 212-218.
[239] KARLICZEK A, HARLAAR N J, ZEEBREGTS C J, et al. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery [J]. International Journal of Colorectal Disease, 2009, 24(5): 569-576.
[240] MIYAMOTO A, LEE S, COORAY N F, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes [J]. Nature Nanotechnology, 2017, 12(9): 907-913.
[241] SPOTNITZ W D, BURKS S. Hemostats, sealants, and adhesives: Components of the surgical toolbox [J]. Transfusion, 2008, 48(7): 1502-1516.
[242] LIU J, TAN C S Y, SCHERMAN O A. Dynamic interfacial adhesion through cucurbit[n]uril molecular recognition [J]. Angewandte Chemie International Edition, 2018, 57(29): 8854-8858.
[243] YU Y, YUK H, PARADA G A, et al. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes [J]. Advanced Materials, 2019, 31(7): 1807101.
[244] PATERSON S M, BROWN D H, CHIRILA T V, et al. The synthesis of water-soluble PHEMA via ARGET ATRP in protic media [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48(18): 4084-4092.
[245] LORD M S, STENZEL M H, SIMMONS A, et al. The effect of charged groups on protein interactions with poly (HEMA) hydrogels [J]. Biomaterials, 2006, 27(4): 567-575.
[246] PASCUAL G, SOTOMAYOR S, RODRíGUEZ M, et al. Cytotoxicity of cyanoacrylate-based tissue adhesives and short-term preclinical biocompatibility in abdominal hernia repair [J]. Plos One, 2016, 11(6): e0157920.
[247] MIZRAHI B, STEFANESCU C F, YANG C, et al. Elasticity and safety of alkoxyethyl cyanoacrylate tissue adhesives [J]. Acta Biomaterialia, 2011, 7(8): 3150-3157.
[248] ZHANG K, CHEN X, XUE Y, et al. Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces [J]. Advanced Functional Materials, 2022, 32(15): 2111465.
[249] TABOADA G M, YANG K, PEREIRA M J, et al. Overcoming the translational barriers of tissue adhesives [J]. Nature Reviews Materials, 2020, 5(4): 310-329.
[250] ZHANG J, WANG Y, ZHANG J, et al. Robust hydrogel adhesion by harnessing bioinspired interfacial mineralization [J]. Small, 2022, 18(31): 2201796.
[251] GAO Y, WU K, SUO Z. Photodetachable adhesion [J]. Advanced Materials, 2019, 31(6): 1806948.
[252] REID B, GIBSON M, SINGH A, et al. PEG hydrogel degradation and the role of the surrounding tissue environment [J]. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9(3): 315-318.
[253] HONG Y K, CHANG Y H, LIN Y C, et al. Inflammation in wound healing and pathological scarring [J]. Advances in Wound Care, 2023, 12(5): 288-300.
[254] EMING S A, MARTIN P, TOMIC-CANIC M. Wound repair and regeneration: Mechanisms, signaling, and translation [J]. Science Translational Medicine, 2014, 6(265): 265-281.
[255] GUO B, DONG R, LIANG Y, et al. Haemostatic materials for wound healing applications [J]. Nature Reviews Chemistry, 2021, 5(11): 773-791.
[256] LU Y, LI H, WANG J, et al. Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing [J]. Advanced Functional Materials, 2021, 31(48): 2105749.
[257] FLAXMAN S R, BOURNE R R, RESNIKOFF S, et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis [J]. The Lancet Global Health, 2017, 5(12): 1221-1234.
[258] GAIN P, JULLIENNE R, HE Z G, et al. Global survey of corneal transplantation and eye banking [J]. Jama Ophthalmology, 2016, 134(2): 167-173.
[259] CRAWFORD A Z, MEYER J J, PATEL D V, et al. Complications related to sutures following penetrating and deep anterior lamellar keratoplasty [J]. Clinical & Experimental Ophthalmology, 2016, 44(2): 142-143.
[260] ZHAO X, LI S Q, DU X Y, et al. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty [J]. Bioactive Materials, 2022, 8: 196-209.
[261] RAFAT M, JABBARVAND M, SHARMA N, et al. Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts [J]. Nature Biotechnology, 2023, 41(1): 70-81.
[262] HE B, YANG J, LIU Y, et al. An in situ-forming polyzwitterion hydrogel: Towards vitreous substitute application [J]. Bioactive Materials, 2021, 6(10): 3085-3096.
[263] GHOBRIL C, GRINSTAFF M. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial [J]. Chemical Society Reviews, 2015, 44(7): 1820-1835.
[264] KUMAR A, DOMB A J. Polymerization enhancers for cyanoacrylate skin adhesive [J]. Macromolecular Bioscience, 2021, 21(10): 2100143.
[265] MCTIERNAN C D, SIMPSON F C, HAAGDORENS M, et al. LiQD cornea: Pro-regeneration collagen mimetics as patches and alternatives to corneal transplantation [J]. Science Advances, 2020, 6(25): eaba2187.
[266] SATO K, NAKAJIMA T, HISAMATSU T, et al. Phase-separation-induced anomalous stiffening, toughening, and self-healing of polyacrylamide gels [J]. Advanced Materials, 2015, 27(43): 6990-6698.
[267] GANJI F, VASHEGHANI-FARAHANI S, VASHEGHANI-FARAHANI E. Theoretical description of hydrogel swelling: A review [J]. Iranian Polymer Journal, 2010, 19(5): 375-398.
[268] CHALAL M, EHRBURGER-DOLLE F, MORFIN I, et al. SAXS investigation of the effect of temperature on the multiscale structure of a macroporous poly(N-isopropylacrylamide) gel [J]. Macromolecules, 2010, 43(4): 2009-2017.
[269] XIONG L, HU X, LIU X, et al. Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility [J]. Polymer, 2008, 49(23): 5064-5071.
[270] WANG J, WU W, LIN Z. Kinetics and thermodynamics of the water sorption of 2‐hydroxyethyl methacrylate/styrene copolymer hydrogels [J]. Journal of Applied Polymer Science, 2008, 109(5): 3018-3023.
[271] PATEL S, TUTCHENKO L. The refractive index of the human cornea: A review [J]. Contact Lens and Anterior Eye, 2019, 42(5): 575-580.
[272] ZHANG H J, WANG L, WANG X, et al. Developing super tough gelatin-based hydrogels by incorporating linear poly (methacrylic acid) to facilitate sacrificial hydrogen bonding [J]. Soft Matter, 2020, 16(20): 4723-4727.
[273] BRYANT S J, NUTTELMAN C R, ANSETH K S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro [J]. Journal of Biomaterials Science, Polymer Edition, 2000, 11(5): 439-457.
[274] FAIRBANKS B D, SCHWARTZ M P, BOWMAN C N, et al. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility [J]. Biomaterials, 2009, 30(35): 6702-6707.
[275] KIM S, KO J, CHOI J H, et al. Antigen-antibody interaction derived bioadhesion of bacterial cellulose nanofibers to promote topical wound healing [J]. Advanced Functional Materials, 2022, 32(20): 2110557.
[276] CHAVAKIS T, ALEXAKI V I, FERRANTE JR A W. Macrophage function in adipose tissue homeostasis and metabolic inflammation [J]. Nature Immunology, 2023, 24(5): 757-766.
[277] FERRANTE C J, LEIBOVICH S J. Regulation of macrophage polarization and wound healing [J]. Advances in Wound Care, 2012, 1(1): 10-16.
[278] MAO J, CHEN L, CAI Z, et al. Advanced biomaterials for regulating polarization of macrophages in wound healing [J]. Advanced Functional Materials, 2022, 32(12): 2111003.
[279] MONTANA G, LAMPIASI N. Substance P induces HO-1 expression in Raw 264.7 cells promoting switch towards M2-like macrophages [J]. Plos One, 2016, 11(12): e0167420.
[280] ESLANI M, PUTRA I, SHEN X, et al. Cornea-derived mesenchymal stromal cells therapeutically modulate macrophage immunophenotype and angiogenic function [J]. Stem Cells, 2018, 36(5): 775-784.
[281] CHEN Q, LI J, HAN F, et al. A multifunctional composite hydrogel that rescues the ROS microenvironment and guides the immune response for repair of osteoporotic bone defects [J]. Advanced Functional Materials, 2022, 32(27): 2201067.
[282] SONG X, LIU F, QIU C, et al. Nanosurfacing Ti alloy by weak alkalinity-activated solid-state dewetting (AAD) and its biointerfacial enhancement effect [J]. Materials Horizons, 2021, 8(3): 912-924.
[283] GHOBRIL C, GRINSTAFF M W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial [J]. Chemical Society Reviews, 2015, 44(7): 1820-1835.
[284] HONG G, LIEBER C M. Novel electrode technologies for neural recordings [J]. Nature Reviews Neuroscience, 2019, 20(6): 330-345.
[285] MONTGOMERY K L, IYER S M, CHRISTENSEN A J, et al. Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system [J]. Science Translational Medicine, 2016, 8(337): 337-342.
[286] MCGLYNN E, NABAEI V, REN E, et al. The future of neuroscience: Flexible and wireless implantable neural electronics [J]. Advanced Science, 2021, 8(10): 2002693.
[287] CANALES A, PARK S, KILIAS A, et al. Multifunctional fibers as tools for neuroscience and neuroengineering [J]. Accounts of Chemical Research, 2018, 51(4): 829-838.
[288] SHARMA K, JAECKEL Z, SCHNEIDER A, et al. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats [J]. Journal of Neural Engineering, 2021, 18(6): 066013.
[289] KIM C K, ADHIKARI A, DEISSEROTH K. Integration of optogenetics with complementary methodologies in systems neuroscience [J]. Nature Reviews Neuroscience, 2017, 18(4): 222-235.
[290] GRADINARU V, MOGRI M, THOMPSON K R, et al. Optical deconstruction of parkinsonian neural circuitry [J]. Science, 2009, 324(5925): 354-359.
[291] SAHASRABUDHE A, RUPPRECHT L E, ORGUC S, et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits [J]. Nature Biotechnology, 2023: 1-13.
[292] DU M, HUANG L, ZHENG J, et al. Flexible fiber probe for efficient neural stimulation and detection [J]. Advanced Science, 2020, 7(15): 2001410.
[293] SALATINO J W, LUDWIG K A, KOZAI T D Y, et al. Glial responses to implanted electrodes in the brain [J]. Nature Biomedical Engineering, 2017, 1(11): 862-877.
[294] OTTE E, VLACHOS A, ASPLUND M. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes [J]. Cell and Tissue Research, 2022, 387(3): 461-477.
[295] LI G, HUANG K, DENG J, et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics [J]. Advanced Materials, 2022, 34(15): 2200261.
[296] ACIK G, KARATAVUK A O. Synthesis, properties and biodegradability of cross-linked amphiphilic poly (vinyl acrylate)-poly (tert-butyl acrylate)s by photo-initiated radical polymerization [J]. European Polymer Journal, 2020, 127: 109602.
[297] SULLIVAN D M. Electromagnetic simulation using the FDTD method [M]. John Wiley & Sons, 2013.
[298] OSKOOI A F, ROUNDY D, IBANESCU M, et al. Meep: A flexible free-software package for electromagnetic simulations by the fdtd method [J]. Computer Physics Communications, 2010, 181(3): 687-702.
[299] DOMINGUEZ I, CORRES J, MATIAS I R, et al. High sensitivity lossy-mode resonance refractometer using low refractive index pfa planar waveguide [J]. Optics & Laser Technology, 2023, 162: 109235.
[300] GASIOROWSKI J, MENON R, HINGERL K, et al. Surface morphology, optical properties and conductivity changes of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) by using additives [J]. Thin Solid Films, 2013, 536: 211-215.
[301] ZHANG J, WANG L, XUE Y, et al. Engineering electrodes with robust conducting hydrogel coating for neural recording and modulation [J]. Advanced Materials, 2023, 35(3): 2209324.
[302] FANG B, YAN J M, CHANG D, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors [J]. Nature Communications, 2022, 13(1): 2101.
[303] WON C, JEONG U J, LEE S, et al. Mechanically tissue-like and highly conductive Au nanoparticles embedded elastomeric fiber electrodes of brain-machine interfaces for chronic in vivo brain neural recording [J]. Advanced Functional Materials, 2022, 32(52): 2205145.
[304] LUAN L, WEI X, ZHAO Z, et al. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration [J]. Science Advances, 2017, 3(2): e1601966.
[305] RICHTER A, XIE Y, SCHUMACHER A, et al. A simple implantation method for flexible, multisite microelectrodes into rat brains [J]. Frontiers in Neuroengineering, 2013, 6: 1-6.
[306] GOLDSTEIN S R, SALCMAN M. Mechanical factors in the design of chronic recording intracortical microelectrodes [J]. IEEE Transactions on Biomedical Engineering, 1973, (4): 260-269.
[307] SUBBAROYAN J, MARTIN D C, KIPKE D R. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex [J]. Journal of Neural Engineering, 2005, 2(4): 103-113.
[308] LEE Y, SHIN H, LEE D, et al. A lubricated nonimmunogenic neural probe for acute insertion trauma minimization and long-term signal recording [J]. Advanced Science, 2021, 8(15): 2300231.
[309] KOZAI T D, CATT K, LI X, et al. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording [J]. Biomaterials, 2015, 37: 25-39.
[310] OUYANG W, LU W, ZHANG Y, et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals [J]. Nature Biomedical Engineering, 2023: 1-18.
[311] WU D, FEI F, ZHANG Q, et al. Nanoengineered on-demand drug delivery system improves efficacy of pharmacotherapy for epilepsy [J]. Science Advances, 2022, 8(2): eabm3381.
[312] LISMAN J, BUZSáKI G, EICHENBAUM H, et al. Viewpoints: How the hippocampus contributes to memory, navigation and cognition [J]. Nature Neuroscience, 2017, 20(11): 1434-1447.
[313] FANSELOW M S, DONG H W. Are the dorsal and ventral hippocampus functionally distinct structures? [J]. Neuron, 2010, 65(1): 7-19.
[314] KHEIRBEK M A, DREW L J, BURGHARDT N S, et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus [J]. Neuron, 2013, 77(5): 955-968.
修改评论