中文版 | English
题名

采用单边螺栓连接的可拆卸式钢管混凝土K形节点工作机理研究

其他题名
PERFORMANCE OF BLIND-BOLTED CFST CHORD TO CHS BRACE DEMOUNTABLE K-JOINTS
姓名
姓名拼音
YU Zhenbo
学号
11930908
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
侯超
导师单位
海洋科学与工程系
论文答辩日期
2024-05-12
论文提交日期
2024-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

为加快建筑工业化进程,研发可拆卸、可循环利用的结构构件,是工程结构领域实现低碳减排的重要途经之一。目前,由钢管混凝土弦杆与空钢管腹杆焊接组成的K形节点在大空间公共建筑、大型钢结构厂房、大跨度桥梁、交通枢纽、海洋平台、塔架结构等工程中广泛应用。为了提高该类结构的建筑工业化程度,加快其建造速度并减少施工阶段的碳排放;本文提出了一种通过外置弧形连接板和单边螺栓连接钢管混凝土弦杆与空钢管腹杆的新型可拆卸式钢管混凝土K形节点,其通过工厂预制节点组件和现场螺栓连接,并且在结构服役期结束后,能够有效地无损分离和拆卸成为单独构件,实现组件的可循环服役和有效重复利用。因此,针对新型可拆卸式钢管混凝土K形节点的力学性能、工作机理和设计原理进行深入研究,具有重要的理论意义和工程应用价值。以下是本文的主要研究工作和研究结果:

  1.针对嵌入钢管混凝土中单边螺栓的拉伸性能开展了系列试验研究与有限元分析,其采用的单边螺栓主要类型为无锚固单边螺栓、无垫片锚固单边螺栓、锚固单边螺栓。基于系列试验结果,深入研究了嵌入钢管混凝土中单边螺栓试件在拉伸荷载作用下的破坏模态、极限承载力、刚度和变形特性。综合考虑了钢管对核心混凝土的约束特性以及单边螺栓与钢管混凝土在接触区域的相互作用界面特性和混凝土损伤塑性,进行了深入的有限元分析,明晰了单边螺栓嵌入钢管混凝土中受力全过程的工作机理和关键参数对试件力学性能的影响规律。在此基础上,针对三类钢管混凝土-单边螺栓试件分别提出了相应的极限承载力实用计算方法,试验数据与有限元计算结果以及公式计算结果吻合良好。 

  2.采用两腹杆铰接、弦杆一端自由一端轴拉的典型边界条件,对可拆卸式钢管混凝土K形节点试件进行了系列静力加载试验。试验中的主要参数包括单边螺栓数量、单边螺栓直径和锚固深度、弦杆半径厚比、腹弦杆壁厚比、连接板与弦杆壁厚比、材料强度等。基于试验结果,深入分析了该类新型可拆卸式节点的破坏模态、极限承载力、刚度和应力应变的发展规律,明晰了各重要参数对节点力学性能的影响规律;并通过破坏杆件拆除以及新构件替换后的重复加载,研究了节点在循环服役期的力学性能并与初次加载阶段进行对比,试验结果表明部分替换构件的节点在多次服役期内的极限承载力整体相差在5%以内,实现了钢管混凝土弦杆与单边螺栓等主要构件的有效重复利用,并对新型可拆卸式钢管混凝土K形节点与传统焊接钢管混凝土K形节点在典型工况下的力学性能进行了对比分析。

  3.综合考虑了材料非线性、几何非线性和界面粘结特性等因素,建立了可拆卸式钢管混凝土K形节点精细化非线性有限元模型,利用试验数据验证了该有限元模型的准确性。通过验证后的有限元模型对可拆卸式钢管混凝土K形节点在典型工况下的力学性能进行了深入分析,研究了节点的典型破坏模态和荷载-变形关系特征,以及节点区应力-应变发展过程和单边螺栓与钢管混凝土之间的相互作用等。针对节点组件在各特征点处应力应变的发展进行了细致分析,深入认识了节点受力全过程的工作机理。分析结果表明,弦杆钢管与核心混凝土,钢管混凝土弦杆与空钢管腹杆之间实现了协同工作,使得荷载能够在材料与杆件间有效传递;在钢管混凝土弦杆材料性能发展充分的基础上,节点受压腹杆出现局部屈曲的破坏模态具有更高的承载力和刚度,显著地提高了节点的力学性能。

  4.通过有限元建模计算,研究了重要参数对可拆卸式钢管混凝土K形节点力学性能的影响规律,包括腹弦杆管径比、弦杆半径厚比、腹弦杆厚度比、弧形连接板与弦杆厚度比、单边螺栓直径、单边螺栓数量、单边螺栓锚固深度、材料强度等。参数分析结果表明,影响节点极限承载力的关键参数包括钢材材料强度、单边螺栓数量、弦杆半径厚比、腹弦杆厚度比,弧形连接板与弦杆厚度比等。在此基础上,结合节点的典型破坏模态,提出了节点在典型工况下极限承载力实用计算方法;以及设计中所需的构造要求和选型建议,如在可拆卸式钢管混凝土K形节点的设计选型中,弦杆与弧形连接板厚度起着至关重要的作用,建议弧形连接板与弦杆厚度比的取值范围为1.5~2.5。

关键词:钢管混凝土K形节点;单边螺栓;可拆卸式连接;力学性能;传力机制;设计方法

其他摘要

Developing demountable structures that enable the replacement of damaged components and the reuse of intact parts in their extended service-life is an effective approach to reducing carbon emissions and prompting sustainable construction. Currently, K-joints formed by concrete-filled steel tubular (CFST) chords and circular hollow section (CHS) braces are widely used in the construction of large-space public buildings, large steel plants, long-span bridges, transportation hubs, marine platforms, tower structures, etc. To enhance the industrialization of CFST structures, accelerate their construction speed, and reduce carbon emissions during the construction phase. This thesis proposed a novel demountable K-joint formed by CFST chords and CHS braces. The components of K-joints were prefabricated in a factory and subsequently on-site connected through blind bolts and curved flush endplates. At the end of the service life, the intact structural components can be disassembled and readily reused in new projects without needing much extra rework. Conducting thorough research on the mechanical properties, working mechanism and design principles of the demountable K-joints can serve as a theoretical basis to support and facilitate their application. The research content of this thesis is as follows:

1. Experimental and numerical investigations are performed on the pullout response of blind bolts embedded in CFSTs. The experimental program includes three different CFST-blind bolt test specimens: non-anchored blind bolt with washer, anchored blind bolt with no washer, and anchored blind bolt with washer. Test results are presented, including failure modes, ultimate bearing capacity, stiffness, and deformability. The effects of key test parameters on the performance of CFST-blind bolt specimens were identified. Advanced numerical simulations were conducted, with consideration of the confinement provided by CFST and the properties and damaged plasticity of the blind bolt and concrete interface, thus clarifying the working mechanism of blind bolt pullout from CFSTs. Theoretical methods predicting the ultimate bearing capacity are proposed for three types of CFST-blind bolt test specimens respectively, and the theoretical prediction results were in good agreement with the test results and numerical simulation results.

2. A series of tests were conducted on the demountable K-joint specimens, where pined supports were applied at the ends of two braces whilst one end of the chord was under tension and the other was left free. The test parameters included: (1) number of blind bolts group; (2) diameter of the blind bolts diameter; (3) blind bolts embedment depth; (4) radius to thickness ratio of the chord; (5) brace to chord thickness ratio; (6) endplate to chord thickness ratio; (7) the strength of materials, etc. Based on the tests, the failure mode, the ultimate capacity, the joint stiffness, and the deformability of the demountable joints are investigated. After the initial loading, the damaged components were disassembled and replaced by new ones to form new joints which were then loaded again for the 2nd and 3rd service periods. It was found that the differences in joint ultimate capacity during multiple service periods are generally within 5%, testifying the effective reuse of the main structural components such as CFST chords and blind bolts. A comparative analysis was conducted between the performance of demountable CFST K-joints and conventional welded CFST K-joints under typical loading conditions.

3. A refined nonlinear finite element model of demountable CFST K-joints was established and then calibrated with test results, by comprehensively considering the material nonlinearity, geometric nonlinearity, and the interaction between blind bolts and CFST. The performance of demountable CFST K-joints under typical loading conditions was analyzed based on the calibrated finite element model, including failure modes, load-deformation relation, stress distribution in joint zone, and bond between blind bolts and CFST chord. The simulation result indicates that synergy is achieved between the chord and concrete core, the CFST chord and the steel tube braces, respectively, allowing good load transfer efficiency between these components. The potential of material performance would be fully exploited when the material properties of the CFST chord are fully developed and the local buckling is exhibited in the compression brace.

4. A parametric study was conducted based on the calibrated finite model, including brace to chord diameter ratio, brace to chord thickness ratio, radius to thickness ratio of the chord, endplate to chord thickness ratio, diameter of the blind bolts, number of blind bolt group, blind bolt embedment depth, and material strength, etc. Based on parametric analysis results, the key parameters affecting the ultimate capacity of K-joints were identified, including the yield strength of steel, number of blind bolt group, radius to thickness ratio of the chord, brace to chord thickness ratio, and endplate to chord thickness ratio, etc. In addition, a rational design method for predicting the ultimate capacity of the demountable CFST K-joints under typical loading conditions is proposed by considering the typical failure modes. The construction requirements and design recommendations were given, such as the endplate to chord thickness ratio being recommended to be 1.5~2.5.

 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] 韩林海. 钢管混凝土结构—理论与实践(第三版)[M]. 北京: 科学出版社, 2016.
[2] PACKER J.A H J E, CAO J.J. 空心管结构连接设计指南[M]. 北京: 科学出版社, 1997.
[3] 韩林海, 李威, 王文达, 陶忠. 现代组合结构和混合结构—试验、理论和方法(第二版)[M]. 北京: 科学出版社, 2017.
[4] 张素梅, 李爱东, 王玉银, 等. 深圳岗厦北地下综合交通枢纽站桥合建大跨度组合结构复杂节点受力性能研究[J]. 建筑结构学报, 2023, 44(02): 1-15.
[5] 韩林海, 牟廷敏, 王法承, 等. 钢管混凝土混合结构设计原理及其在桥梁工程中的应用[J]. 土木工程学报, 2020, 53(05): 1-24.
[6] 侯超. 中空夹层钢管混凝土—钢管K形连接节点工作机理研究[D]. 北京: 清华大学, 2014.
[7] World Steel Association. World Steel in Figures 2010 to 2023[R]. Brussels: IISI, 2022.
[8] UN Environment Programme. 2022 Global Status Report for Buildings and Construction[R]. Nairobi: UNEP, 2022.
[9] 国家住房城乡建设部. 《关于推动智能建造与建筑工业化协同发展的指导意见》解读[EB/OL]. (2020-08-17)
[2024-04-05]. http://www.gov.cn/zhengce/2020-08/17/content_5535307.htm.
[10] 国家财政部、住房和城乡建设部. 关于政府采购支持绿色建材促进建筑品质提升试点工作的通知[EB/OL]. (2020-10-21)
[2024-04-05]. http://www.ccgp.gov.cn/zcdt/202010/t20201021_15271556.htm.
[11] 广东省人民政府. 广东省国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-04-25)
[2024-04-05]. http://www.gd.gov.cn/zwgk/wjk/qbwj/yf/content/post_3268751.html.
[12] 班慧勇, 孔思宇, 谢崇峰, 等. 新型高强度螺栓单边连接应变松弛及抗剪性能研究[J]. 工业建筑, 2019, 49(07): 146-50+61.
[13] GAO S, GUO L H, ZHANG S M, et al. Performance degradation of circular thin-walled CFST stub columns in high-latitude offshore region[J]. Thin-Walled Structures, 2020, 154: 106906.
[14] 李天斌, 高毅. 浅水固定式平台大直径钢桩基础应用研究[J]. 油气田地面工程, 2020, 39(02): 22-5+31.
[15] 张纪刚, 陶雪, 韩永力. 海洋平台-摇摆柱结构体系设计方法验证[J]. 中国海洋平台, 2018, 33(05): 16-21.
[16] 海上风电. 一文看尽! 海上风电机组固定式基础大全[N/OL]. Sohu Website. (2018-01-24)
[2024-04-05]. https://www.sohu.com/a/218794285_680494.
[17] GANDHI P, RAMACHANDRA MURTHY D S, RAGHAVA G, et al. Fatigue crack growth in stiffened steel tubular joints in seawater environment[J]. Engineering Structures, 2000, 22(10): 1390-401.
[18] KHAN R, SMITH K, KRAINCANIC I. Improved LJF equations for the uni-planar gapped K-type tubular joints of ageing fixed steel offshore platforms[J]. Journal of Marine Engineering and Technology 2018, 17(3): 121-36.
[19] AHMADI H, LOTFOLLAHI-YAGHIN M A, YONG-BO S. Chord-side SCF distribution of central brace in internally ring-stiffened tubular KT-joints: A geometrically parametric study[J]. Thin-Walled Structures, 2013, 70: 93-105.
[20] 武振宇, 张耀春. 直接焊接T型钢管节点性能的试验研究[J]. 钢结构, 1999, (2): 36-40.
[21] 陈以一, 王伟, 赵宪忠, 等. 圆钢管相贯节点抗弯刚度和承载力实验[J]. 建筑结构学报, 2001, 22(006): 25-30.
[22] RASMUSSEN KIM J R, HASHAM ANTHONY S. Tests of X- and K-Joints in CHS Stainless Steel Tubes[J]. Journal of Structural Engineering, 2001, 127(10): 1183-9.
[23] 丁玉坤, 武振宇, 张华山, 等. K型,KK型搭接方管节点的试验研究[J]. 土木工程学报, 2005, (04): 25-31.
[24] 傅俊涛. 大跨越钢管塔节点强度理论与试验研究[D]. 上海: 同济大学, 2006.
[25] 蔡艳青, 邵永波, 岳永生. 环口板加强型T型圆钢管节点承载力的试验研究[J]. 工程力学, 2011, 28(9): 90-4.
[26] 王伟, 顾青. X形方圆汇交钢管节点的焊缝轴拉性能试验研究与承载力计算[J]. 建筑结构学报, 2015, 36(3): 98-105.
[27] CHOI B-J, OH Y-S, LEE M-J, et al. Experiment and analysis of circular hollow section gap K-joints with grade HSB 600 steel[J]. International Journal of Steel Structures, 2012, 12(4): 589-97.
[28] FU Y, TONG L, HE L, et al. Experimental and numerical investigation on behavior of CFRP-strengthened circular hollow section gap K-joints[J]. Thin-Walled Structures, 2016, 102: 80-97.
[29] ZHU L, HAN S, SONG Q, et al. Experimental study of the axial compressive strength of CHS T-joints reinforced with external stiffening rings[J]. Thin-Walled Structures, 2016, 98: 245-51.
[30] BECQUE J, WILKINSON T. The capacity of grade C450 cold-formed rectangular hollow section T and X connections: An experimental investigation[J]. Journal of Constructional Steel Research, 2017, 133: 345-59.
[31] FENG R, LIN J, MOU X. Experiments on hybrid tubular K-joints with circular braces and square chord in stainless steel[J]. Engineering Structures, 2019, 190: 52-65.
[32] FENG R, CHEN L, CHEN Z, et al. Experiments on stainless steel hybrid K-joints with square braces and circular chord[J]. Journal of Constructional Steel Research, 2021, 185: 106865.
[33] SHIYEKAR M R, KALANI M, BELKUNE R M. Stresses in Stiffened Tubular T Joint of an Offshore Structure[J]. Journal of Energy Resources Technology, 1983, 105(2): 177-83.
[34] RAGHAVA G, RAO A G M, MURTHY D S R. Behavior of Unstiffened and Stiffened Steel Tubular T-Joints[J]. Journal of Offshore Mechanics and Arctic Engineering, 1989, 111(1): 56-60.
[35] 龚顺风, 何勇, 金伟良. 单点系泊海洋导管架平台结构的疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2007, 41(06): 995-9,1006.
[36] THANDAVAMOORTHY T S. Experimental and Numerical Investigations on Unstiffened Tubular T-Joints of Offshore Platforms[J]. Journal of Offshore Mechanics and Arctic Engineering, 2009, 131(4).
[37] AHMADI H, LOTFOLLAHI-YAGHIN M A, AMINFAR M H. Distribution of weld toe stress concentration factors on the central brace in two-planar CHS DKT-connections of steel offshore structures[J]. Thin-Walled Structures, 2011, 49(10): 1225-36.
[38] AHMADI H, LOTFOLLAHI-YAGHIN M A, AMINFAR M H. Geometrical effect on SCF distribution in uni-planar tubular DKT-joints under axial loads[J]. Journal of Constructional Steel Research, 2011, 67(8): 1282-91.
[39] CHEN Y, YANG J, HU K. Parametric study and formulae of SCFs for positive large eccentricity CHS N-joints[J]. Journal of Constructional Steel Research, 2016, 120: 117-31.
[40] FENG L, QIAN X. Enhanced crack sizing and life estimation for welded tubular joints under low cycle actions[J]. International Journal of Fatigue, 2020, 137: 105670.
[41] TONG L, XU G, ZHAO X-L, et al. Fatigue tests and design of CFRP-strengthened CHS gap K-joints[J]. Thin-Walled Structures, 2021, 163: 107694.
[42] 金伟良, 陈海江, 庄一舟. 极端波浪对海洋导管架平台的作用及其模型试验研究[J]. 海洋工程, 1999, (04): 33-8.
[43] 金伟良, 龚顺风, 朱俊民. 海洋平台结构管节点强度可靠性分析[J]. 科技通报, 2002, 18(05): 349-54.
[44] 欧进萍, 龙旭, 肖仪清, 等. 导管架式海洋平台结构阻尼隔振体系及其减振效果分析[J]. 地震工程与工程振动, 2002, (03): 115-22.
[45] 王学蕾, 张延昌, 王自力. 海洋导管架平台K型节点碰撞性能研究[J]. 江苏科技大学学报:自然科学版, 2007, 21(4): 1-6.
[46] QU H, HUO J, XU C, et al. Numerical studies on dynamic behavior of tubular T-joint subjected to impact loading[J]. International Journal of Impact Engineering, 2014, 67: 12-26.
[47] GAO F, XIAO Z, GUAN X, et al. Dynamic behavior of CHS-SHS tubular T-joints subjected to low-velocity impact loading[J]. Engineering Structures, 2019, 183: 720-40.
[48] 方敏勇, 郝际平. 空心管结构CIDECT设计指南简介[J]. 西安建筑科技大学学报:自然科学版, 2003, 35(4): 4.
[49] 马印平, 刘永健, 王琨, 等. 钢管桁架节点效率系数研究[J]. 建筑结构学报, 2022, 43(07): 205-18.
[50] Structural Steelwork: Analysis of safety against buckling of shells: DIN 18800-4[S]. Berlin: Deutsches Institüt fürNormung, 1990.
[51] WARDENIER J, KUROBANE Y, PACKER J.A, et al. Design guide for circular hollow section (CHS) joints under predominantly static loading: CIDECT design guide No.1[M]. 1th ed. Cologne: Verlag Tuvrheinland Press, 2008.
[52] PACKER J.A, WARDENIER J, ZHAO, X.L, et al. Design guide for rectangular hollow section (RHS) joints under predominantly static loading: CIDECT design guide No.3[M]// 1th ed. Cologne: Verlag Tuvrheinland Press, 2009.
[53] 中华人民共和国建设部. GBJ 17-1988. 钢结构设计规范[S]. 北京: 中国计划出版社, 1988.
[54] 中国工程建设协会. 钢管结构技术规程: CECS 280: 2010[S]. 北京: 中国计划出版社, 2010.
[55] 中华人民共和国住房和城乡建设部. GB 50017-2017. 钢结构设计标准[S]. 北京: 中国建筑工业出版社, 2018.
[56] SAKAI Y, HOSAKA T, ISOE A, et al. Experiments on concrete filled and reinforced tubular K-joints of truss girder[J]. Journal of Constructional Steel Research, 2004, 60(3): 683-99.
[57] 王新毅. 圆钢管—圆钢管混凝土焊接节点抗弯刚度和极限承载力研究[D]. 上海: 同济大学, 2009.
[58] 陈宝春, 黄文金. 钢管混凝土K形相贯节点极限承载力试验研究[J]. 土木工程学报, 2009, 42(12): 91-8.
[59] 李斌, 乔明, 高春彦. 钢管混凝土格构式风电机塔架节点静力性能试验研究[J]. 建筑结构, 2013, 43(05): 35-8+44.
[60] 高春彦, 杨卫平, 李斌, 等. 风力发电机塔架K型相贯节点静力性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(05): 671-5.
[61] HUANG W, FENU L, CHEN B, et al. Experimental study on K-joints of concrete-filled steel tubular truss structures[J]. Journal of Constructional Steel Research, 2015, 107: 182-93.
[62] HOU C, HAN L-H, MU T-M. Behaviour of CFDST chord to CHS brace composite K-joints: Experiments[J]. Journal of Constructional Steel Research, 2017, 135: 97-109.
[63] HOU C, HAN L-H. Analytical behaviour of CFDST chord to CHS brace composite K-joints[J]. Journal of Constructional Steel Research, 2017, 128: 618-32.
[64] 王静峰, 邓权, 邢文彬. 圆钢管混凝土桁架K形节点极限承载力计算方法研究[J]. 建筑钢结构进展, 2018, 20(02): 44-52.
[65] XIE K Z, WANG H W, PANG J H, et al. Study of the Ultimate Bearing Capacity of Concrete-filled Steel Tube K-Joints[J]. KSCE Journal of Civil Engineering, 2019, 23(5): 2254-62.
[66] FERROTTO M F, FENU L, XUE J-Q, et al. Simplified equivalent finite element modelling of concrete-filled steel tubular K-joints with and without studs[J]. Engineering Structures, 2022, 266: 114634.
[67] ZAFIMANDIMBY M N H, LIU Y, JIANG L, et al. Numerical analysis of novel concrete filled K joints with different brace sections[J]. Heliyon, 2023, 9(4): 14847.
[68] 石卫华, 钟新谷, 余志武. 轴向荷载作用下K型管节点应力集中系数研究[J]. 工程力学, 2010, 27(S1): 48-52.
[69] 钟新谷, 杨胜, 石卫华. K型钢管混凝土节点疲劳性能试验研究[J]. 中国工程科学, 2011, 13(09): 97-100.
[70] 童乐为, 陈昆鹏, ZHAO XIAO-LING. 钢管混凝土桁架节点疲劳性能研究进展[C]//中国钢结构协会结构稳定与疲劳分会第14届(ISSF-2014)学术交流会暨教学研讨会论文集. 2014: 60-67.
[71] XU F, CHEN J, JIN W-L. Experimental investigation of SCF distribution for thin-walled concrete-filled CHS joints under axial tension loading[J]. Thin-Walled Structures, 2015, 93: 149-57.
[72] ZHENG J, NAKAMURA S, OKUMATSU T, et al. Formulation of stress concentration factors for concrete-filled steel tubular (CFST) K-joints under three loading conditions without shear forces[J]. Engineering Structures, 2019, 190: 90-100.
[73] 吴庆雄, 黄汉辉, 陈康明, 等. 钢管混凝土K形节点足尺模型疲劳性能试验[J]. 建筑结构学报, 2020, 41(10): 102-11.
[74] WU Q, ZHENG Q, CHEN K, et al. Study on fatigue performance of concrete-filled steel tubular K-joints with internal studs[J]. Journal of Constructional Steel Research, 2023, 200: 107662.
[75] CHEN K, HUANG H, ZHENG Q, et al. Experimental Research on the Calculating Method of Stress Concentration Factor for CFST K-Joint[J]. Journal of Structural Engineering, 2023, 149(3): 04023006.
[76] 中华人民共和国住房和城乡建设部. GB 50923-2013. 钢管混凝土拱桥技术规范[S]. 北京: 中国计划出版社, 2013.
[77] 中华人民共和国住房和城乡建设部. GB 50936-2014. 钢管混凝土结构技术规范[S]. 北京: 中国建筑工业出版社, 2014.
[78] 中国工程建设标准化协会. 钢管混凝土加劲混合结构技术规程: T/CECS 663-2020[S]. 北京: 中国建筑工业出版社, 2020.
[79] 中国工程建设标准化协会. 钢管混凝土桁式混合结构技术规程: T/CECS 785-2020[S]. 北京: 中国建筑工业出版社, 2020.
[80] 中华人民共和国住房和城乡建设部. GB/T 51446-2021. 钢管混凝土混合结构技术标准[S]. 北京: 中国建筑工业出版社, 2021.
[81] 蒋蕴涵, 李国强, 侯兆新, 等. 8.8级国产单向螺栓连接轴向拉伸刚度试验研究[J]. 建筑钢结构进展, 2018, 20(05): 22-30.
[82] 徐婷, 王伟, 陈以一. 国外单边螺栓研究现状[J]. 钢结构, 2015, 30(08): 27-33.
[83] PITRAKKOS T, TIZANI W. A component method model for blind-bolts with headed anchors in tension[J]. Steel and Composite Structures, 2015, 18(5): 1305-30.
[84] AGHESHLUI H, GOLDSWORTHY H, GAD E, et al. Tensile behaviour of anchored blind bolts in concrete filled square hollow sections[J]. Materials and Structures, 2016, 49(4): 1511-25.
[85] YAO H, GOLDSWORTHY H M, GAD E, et al. Experimental study on modified blind bolts anchored in concrete-filled steel tubular columns[C]// Australian Earthquake Engineering Society Conference. South Australia: Novotel Barossa Valley Resort, 2011: 1-9.
[86] ELFGREN L, CEDERWALL K, GYLLTOFT K, et al. Fatigue of anchor bolts in reinforced concrete foundations[C]// IABSE Colloquium. International Association for Bridge and Structural Engineering, 1982: 463-470.
[87] ELIGEHAUSEN R, SAWADE G. A fracture mechanics based description of the pull-out behavior of headed studs embedded in concrete[C]// In: Elfgren L, eds. Fracture mechanics of concretestructures. London: Report of RILEM TC-90-FMA, 1989: 281-299.
[88] CARPINTERI A. Size-Scale Effects in the Failure Mechanisms of Materials and Structures (1th ed)[M]. London: CRC Press, 1995.
[89] BRUCKNER M, ELIGEHAUSEN R, OZBOLT J. Influence of bending compressive stresses on the concrete cone capacity[C]// Proceedings of the International Symposium on Connections between Steel and Concrete. RILEM Publications SARL, 2001.
[90] ELIGEHAUSEN R, FICHTNER S. Influence of axial spacing on the concrete failure of groups under bending[C]// 2003.
[91] ANDERSON N, MEINHEIT D. Pryout Capacity of Cast-In Headed Stud Anchors[J]. PCI Journal, 2005, 50: 90-112.
[92] TABSH S W, MOURAD S. Resistance factors for blind bolts in direct tension[J]. Engineering Structures, 1997, 19(12): 995-1000.
[93] GARDNER A P, GOLDSWORTHY H M. Experimental investigation of the stiffness of critical components in a moment-resisting composite connection[J]. Journal of Constructional Steel Research, 2005, 61(5): 709-26.
[94] GOLDSWORTHY H M, GARDNER A P. Feasibility study for blind-bolted connections to concrete-filled circular steel tubular columns[J]. Structural Engineering and Mechanics, 2006, 24(4): 463-78.
[95] OKTAVIANUS Y, YAO H, GOLDSWORTHY H M, et al. Pull-out behaviour of blind bolts from concrete-filled tubes[J]. Structures and Buildings, 2015, 168(10): 747-59.
[96] TIZANI W, PITRAKKOS T. Performance of T-Stub to CFT Joints Using Blind Bolts with Headed Anchors[J]. Journal of Structural Engineering, 2015, 141(10): 04015001.
[97] CABRERA M, TIZANI W, MAHMOOD M, et al. Analysis of Extended Hollo-Bolt connections: Combined failure in tension[J]. Journal of Constructional Steel Research, 2020, 165: 105766.
[98] TIZANI W, CABRERA M, MAHMOOD M, et al. The behaviour of anchored extended blind bolts in concrete-filled tubes[J]. Steel Construction, 2022, 15(S1): 51-8.
[99] TIZANI W, RAHMAN N A, PITRAKKOS T. Fatigue life of an anchored blind-bolt loaded in tension[J]. Journal of Constructional Steel Research, 2014, 93: 1-8.
[100] LIU Y, CHEN J, ZHANG X, et al. Fatigue behaviour of blind bolts under tensile cyclic loads[J]. Journal of Constructional Steel Research, 2018, 148: 16-27.
[101] AGHESHLUI H, GOLDSWORTHY H, GAD E, et al. Tensile Behavior of Groups of Anchored Blind Bolts within Concrete-Filled Steel Square Hollow Sections[J]. Journal of Structural Engineering, 2016, 142(2): 04015125.
[102] HOSSEINI S M, MAMUN M S, MIRZA O, et al. Behaviour of blind bolt shear connectors subjected to static and fatigue loading[J]. Engineering Structures, 2020, 214: 110584.
[103] PATHIRANA S W, UY B, MIRZA O, et al. Strengthening of existing composite steel-concrete beams utilising bolted shear connectors and welded studs[J]. Journal of Constructional Steel Research, 2015, 114: 417-30.
[104] REHMAN N, LAM D, DAI X, et al. Experimental study on demountable shear connectors in composite slabs with profiled decking[J]. Journal of Constructional Steel Research, 2016, 122: 178-89.
[105] REHMAN N, LAM D, DAI X, et al. Testing of composite beam with demountable shear connectors[J]. 2018, 171(01): 3-16.
[106] FEIDAKI E, VASDRAVELLIS G, HE J, et al. Steel-Yielding Demountable Shear Connector for Composite Floors with Precast Hollow-Core Slab Units[J]. Journal of Structural Engineering, 2019, 145(8): 04019076.
[107] ATAEI A, MORADI M, VALIPOUR H R, et al. Finite element modelling of demountable precast reinforced concrete deck slabs with external confining system[J]. Journal of Constructional Steel Research, 2018, 151: 204-15.
[108] UY B, PATEL V, LI D, et al. Behaviour and Design of Connections for Demountable Steel and Composite Structures[J]. Structures, 2017, 9: 1-12.
[109] PATEL V, UY B, PATHIRANA S W, et al. Finite element analysis of demountable steel-concrete composite beams under static loading[J]. Advanced Steel Construction, 2018, 14(03): 392-411.
[110] SONG Y, UY B, WANG J. Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates[J]. Steel and Composite Structures, 2019, 33(01): 143-62.
[111] DAI X H, LAM D, SAVERI E. Effect of Concrete Strength and Stud Collar Size to Shear Capacity of Demountable Shear Connectors[J]. Journal of Structural Engineering, 2015, 141(11): 04015025.
[112] SENCU R M, WANG Y C, YANG J, et al. Performance evaluation of demountable shear connectors with collar step at ambient and elevated temperatures[J]. Engineering Structures, 2019, 194: 94-105.
[113] 贺君, GEORGE V, 王思豪, 等. 新型可拆卸开孔钢管连接件抗剪性能[J]. 中国公路学报, 2018, 31(12): 28-36+80.
[114] ATAEI A, BRADFORD M A, LIU X. Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors[J]. Engineering Structures, 2016, 114: 1-13.
[115] Xu M, Gao S, Zhang S M, et al. Experimental study on bolted CFST-column joints with different configurations in accommodating column-loss. Journal of Constructional Steel Research. 2018;151:122-31.
[116] VALIPOUR H, RAJABI A, FOSTER S J, et al. Arching behaviour of precast concrete slabs in a deconstructable composite bridge deck[J]. Construction and Building Materials, 2015, 87: 67-77.
[117] SUWAED AHMED S H, KARAVASILIS THEODORE L. Novel Demountable Shear Connector for Accelerated Disassembly, Repair, or Replacement of Precast Steel-Concrete Composite Bridges[J]. Journal of Bridge Engineering, 2017, 22(9): 04017052.
[118] SUWAED A S H, KARAVASILIS T L. Demountable steel-concrete composite beam with full-interaction and low degree of shear connection[J]. Journal of Constructional Steel Research, 2020, 171: 106152.
[119] DU H, HU X, MENG Y, et al. Study on composite beams with prefabricated steel bar truss concrete slabs and demountable shear connectors[J]. Engineering Structures, 2020, 210: 110419.
[120] LUO Y-B, YAN J-B. Developments of prefabricated steel-concrete composite beams with novel steel-yielding demountable bolt connectors[J]. Journal of Constructional Steel Research, 2022, 190: 107123.
[121] HE J, SUWAED A S H, VASDRAVELLIS G, et al. Behaviour and design of the 'lockbolt' demountable shear connector for sustainable steel-concrete composite structures[J]. Structures, 2022, 44: 988-1010.
[122] SONG S-S, XU F, CHEN J, et al. Feasibility and performance of novel tapered iron bolt shear connectors in demountable composite beams[J]. Journal of Building Engineering, 2022, 53: 104528.
[123] XIONG L, KONG F, HE J, et al. Demountable connections for enhanced resilience: An analytical and numerical assessment of steel-concrete composite beams[J]. Journal of Building Engineering, 2023, 70: 106392.
[124] SHAMEL FAHMY A, MOSTAFA SWELEM S, KAMAL ABDELAZIZ M. Behavior of high-strength demountable bolted shear connectors in steel-concrete girders with prefabricated slabs[J]. Alexandria Engineering Journal, 2023, 70: 247-60.
[125] BAI J, HE J, LI C, et al. An RBS-based replaceable precast concrete beam-column joint: Design approach and experimental investigation[J]. Journal of Building Engineering, 2022, 51: 104212.
[126] WANG H, MARINO E M, PAN P. Design, testing and finite element analysis of an improved precast prestressed beam-to-column joint[J]. Engineering Structures, 2019, 199: 109661.
[127] 李德山, 陶忠, 王志滨. 钢管混凝土柱-钢梁单边螺栓连接节点静力性能试验研究[J]. 湖南大学学报(自然科学版), 2015, 42(03): 43-9.
[128] MORADI M, VALIPOUR H, FOSTER S. Behaviour of precast concrete deck slabs with transverse confining systems[J]. 2016, 68(17): 863-76.
[129] ATAEI A, BRADFORD M A, VALIPOUR H R. Finite element analysis of HSS semi-rigid composite joints with precast concrete slabs and demountable bolted shear connectors[J]. Finite Elements in Analysis and Design, 2016, 122: 16-38.
[130] WANG W, LI L, CHEN D. Progressive collapse behaviour of endplate connections to cold-formed tubular column with novel Slip-Critical Blind Bolts[J]. Thin-Walled Structures, 2018, 131: 404-16.
[131] TANG H, DENG X, JIA Y, et al. Study on the progressive collapse behavior of fully bolted RCS beam-to-column connection [J]. Engineering Structures, 2019, 199: 109618.
[132] ZHANG A-L, WANG Q, JIANG Z-Q, et al. Experimental study of earthquake-resilient prefabricated steel beam-column joints with different connection forms[J]. Engineering Structures, 2019, 187: 299-313.
[133] LU Z, HUANG J, DAI S, et al. Experimental study on a precast beam-column joint with double grouted splice sleeves[J]. Engineering Structures, 2019, 199: 109589.
[134] WANG J, GUO L. Experimental and Analytical Behavior of Square CFDST Column Blind Bolted to Steel Beam Connections[J]. International Journal of Steel Structures, 2020, 20(2): 612-35.
[135] LIU Y, GUO Z, DING J, et al. Experimental study on seismic behaviour of plug-in assembly concrete beam-column connections[J]. Engineering Structures, 2020, 221: 111049.
[136] LI Z, QI Y, TENG J. Experimental investigation of prefabricated beam-to-column steel joints for precast concrete structures under cyclic loading[J]. Engineering Structures, 2020, 209: 110217.
[137] LI Y, GENG F, DING Y, et al. Experimental and numerical study of low-damage self-centering precast concrete frame connections with replaceable dampers[J]. Engineering Structures, 2020, 220: 111011.
[138] SENTURK M, PUL S, ILKI A, et al. Development of a monolithic-like precast beam-column moment connection: Experimental and analytical investigation[J]. Engineering Structures, 2020, 205: 110057.
[139] ZHANG J, DING C, RONG X, et al. Experimental seismic study of precast hybrid SFC/RC beam-column connections with different connection details[J]. Engineering Structures, 2020, 208: 110295.
[140] LI D, WU C, ZHOU Y, et al. A precast beam-column connection using metallic damper as connector: Experiment and application[J]. Journal of Constructional Steel Research, 2021, 181: 106628.
[141] KIM J H, CHOI S-H, HWANG J-H, et al. Experimental study on lateral behavior of post-tensioned precast beam-column joints[J]. Structures, 2021, 33: 841-54.
[142] ZHANG Y, LI D. Development and testing of precast concrete-filled square steel tube column-to-RC beam connections under cyclic loading[J]. Construction and Building Materials, 2021, 280: 122540.
[143] YE M, JIANG J, CHEN H M, et al. Seismic behavior of an innovative hybrid beam-column connection for precast concrete structures[J]. Engineering Structures, 2021, 227: 111436.
[144] ZHU Y, WU J, XIE L. Experimental investigation on hysteretic performance and deformation patterns of single-side yielding precast concrete beam-column connection with energy dissipation bars[J]. Engineering Structures, 2021, 245: 112841.
[145] FENG S, YANG Y, XUE Y, et al. A post-tensioned hybrid beam-column connection with a web friction device: Experimental study and theoretical analysis[J]. Journal of Building Engineering, 2021, 43: 103105.
[146] ZHANG J, LI C, RONG X, et al. Experimental study on the seismic performance of steel-concrete beam-column connections for prefabricated concrete frames [J]. Journal of Building Engineering, 2021, 43: 103236.
[147] YUAN Y, HUANG H, YE Y, et al. Performance coordination design method applied to replaceable artificial controllable plastic hinge for precast concrete beam-column joints[J]. Journal of Building Engineering, 2022, 47: 103863.
[148] LI W, YE H, LIU H, et al. Development and testing of demountable RC column-to-steel beam connections under cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2022, 159: 107342.
[149] YANG C, XIE L, LI A, et al. A dry-connected rotational friction dissipative beam-to-column joint for precast concrete frame: full-scale experimental and numerical investigations[J]. Journal of Building Engineering, 2022, 54: 104685.
[150] BAI J, HE J, LI C, et al. Experimental investigation on the seismic performance of a novel damage-control replaceable RC beam-to-column joint[J]. Engineering Structures, 2022, 267: 114692.
[151] TONG C, WU J, ZAKARI M D, et al. Hysteretic behavior of a new precast concrete interior beam-to-column joint with a controllable bending moment[J]. Journal of Building Engineering, 2022, 45: 103557.
[152] ZHANG J, PEI Z, RONG X. Experimental seismic study of an innovative precast steel–concrete composite beam–column joint[J]. Soil Dynamics and Earthquake Engineering, 2022, 161: 107420.
[153] XUE W, HU X, DAI L, et al. Cyclic behavior of semi-rigid precast concrete beam-to-column subassemblages with rapid assembly connections[J]. Journal of Building Engineering, 2022, 46: 103671.
[154] HUANG W, HU G, ZHANG J. Experimental study on the seismic performance of new precast concrete beam-column joints with replaceable connection[J]. Structures, 2022, 35: 856-72.
[155] TIAN S Y, WU J L, MO J X, et al. Seismic behaviour of a novel demountable joint connecting FTCES columns and RC beams[J]. Structures, 2023, 54: 746-63.
[156] YANG Y, GAO S, ZHENG Y, et al. Seismic performance of precast column-beam joint with artificial plastic hinge[J]. Journal of Building Engineering, 2023, 67: 105942.
[157] YANG Z, CAO W, QIAO Q, et al. Experimental and numerical study on the prefabricated double L-shaped beam-column joint with triangular stiffener[J]. Journal of Building Engineering, 2023, 69: 106315.
[158] YANG C, XIE L, LI A, et al. Development of a double-stage-yield dissipative beam-to-column joint: Experimental study and application for structural response control[J]. Soil Dynamics and Earthquake Engineering, 2023, 171: 107997.
[159] LU X, XU H, ZHANG X, et al. Experimental investigation on seismic performance of self-centering frictional cast-in-situ beam-column joints[J]. Engineering Structures, 2023, 285: 116062.
[160] Li D, Uy B, Aslani F, Patel V. Behaviour and design of demountable CFST column-column connections under tension. Journal of Constructional Steel Research. 2017;138:761-73..
[161] LI D, UY B, PATEL V. Behaviour of demountable CFST column-column connections[C]// Advances in Structural Engineering and Mechanics. lncheon: ASEM15, 2015: 25-29.
[162] LI D, UY B, PATEL V, et al. Behaviour and design of demountable CFST column-column connections subjected to compression[J]. Journal of Constructional Steel Research, 2018, 141: 262-74.
[163] SAHA A, SAHA S, UY B, et al. Assessing the behavior of column-splice connections between CFSTS in axial tension[C]// PELLICER, E, ADAM, J. M, eds. The Ninth International Structural Engineering and Construction Conference. Valencia: Resilient Structures and Sustainable Construction, 2017.
[164] ZHU G, MA Y-X, TAN K H. Experimental and analytical investigation on precast concrete-encased concrete-filled steel tube column-to-column dry connections under axial tension[J]. Structures, 2022, 45: 523-41.
[165] GAN D, ZHANG Y, ZHOU X, et al. Seismic performance of concrete-filled steel tubular column connections using blind bolts[J]. Journal of Constructional Steel Research, 2023, 207: 107947.
[166] 赵启林, 高一峰, 李飞. 复合材料预紧力齿连接技术研究现状与进展[J]. 玻璃钢/复合材料, 2014, (12): 52-6.
[167] 赵启林, 高建岗, 陶杰, 等. 复合材料桁架桥的若干关键问题探讨[J]. 南京工业大学学报(自然科学版), 2017, 39(05): 146-52.
[168] JIN D Y D, HOU C, SHEN L M, et al. Numerical investigation of demountable CFST K-joints using blind bolts[J]. Journal of Constructional Steel Research, 2019, 160: 428-43.
[169] JIN D Y D, HOU C, SHEN L, et al. Numerical performance of blind-bolted demountable square CFST K-joints[J]. Journal of Building Engineering, 2021, 33: 101646.
[170] WANG W, LI M, CHEN Y, et al. Cyclic behavior of endplate connections to tubular columns with novel slip-critical blind bolts[J]. Engineering Structures, 2017, 148: 949-62.
[171] MOON J, ROEDER C W, LEHMAN D E, et al. Analytical modeling of bending of circular concrete-filled steel tubes[J]. Engineering Structures, 2012, 42: 349-61.
[172] OKTAVIANUS Y, GOLDSWORTHY H M, GAD E F. Cyclic behaviour of individual double headed anchored blind bolts within CFST[J]. Journal of Constructional Steel Research, 2017, 133: 522-34.
[173] NAJAR J. Continuous Damage of Brittle Solids[M]// KRAJCINOVIC D, LEMAITRE J. Continuum Damage Mechanics Theory and Application. Vienna: Springer Vienna. 1987: 233-94.
[174] KRAJCINOVIC D, FONSEKA G U J J O A M. The Continuous Damage Theory of Brittle Materials, Part 1: General Theory[J]. 1981, 48: 809-15.
[175] FONSEKA G U, KRAJCINOVIC D. The Continuous Damage Theory of Brittle Materials, Part 2: Uniaxial and Plane Response Modes[J]. Journal of Applied Mechanics, 1981, 48(4): 816-24.
[176] CEB-fib: Design of Fastenings in Concrete[M]// 2011: 74-150.
[177] Committee ACI. Building code requirements for structural concrete (ACI 318)[M]// Farmington Hills, MI: American Concrete Institute; 2019.
[178] KMIECIK P, KAMIŃSKI M. Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration[J]. Archives of Civil and Mechanical Engineering, 2011, 11(3): 623-36.
[179] JANKOWIAK I, KAKOL W, MADAJ A. Identification of a continuous composite beam numerical model, based on experimental tests[M]// 2005.
[180] British Standard. Structural use of steel work in building - Part 5. Code of practice for design of cold-formed sections (BS 5950)[M]// London: British Standards Institution, 1987.
[181] AISI Standard. North American specification for the design of cold-formed steel structural members (AISI S100)[M]// Washington, D.C: American Iron and Steel Institute; 2016.
[182] ELGHAZOULI A Y, MáLAGA-CHUQUITAYPE C, CASTRO J M, et al. Experimental monotonic and cyclic behaviour of blind-bolted angle connections[J]. Engineering Structures, 2009, 31(11): 2540-53.
[183] OKTAVIANUS Y, CHANG H, GOLDSWORTHY H M, et al. Component model for pull-out behaviour of headed anchored blind bolt within concrete filled circular hollow section[J]. Engineering Structures, 2017, 148: 210-24.
[184] PCI design handbook. Precast and Prestressed Concrete (5th ed)[M]// Chicago: Precast/ Prestressed Institute; 1999.
[185] PCI design handbook. Precast and Prestressed Concrete (6th ed)[M]// Chicago: Precast/ Prestressed Institute; 2004.
[186] European Committee for Standardization. Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN1992-4)[M]// 2018.
[187] MALLéE R, DR.-ING W, ELIGEHAUSEN R. Design of Fastenings for Use in Concrete - the CEN/TS 1992-4 Provisions[J]. Design of Fastenings for Use in Concrete - the CEN/TS 1992-4 Provisions, 2013.
[188] BODE H, ROIK K. Headed studs-embedded in concrete and loaded in tension[J]. Anchorage to Concrete, 1987: 61-88.
[189] SAWADE G. Energetic material model to describe the load-bearing behaviour of concrete under tension[D]. German; Universität Stuttgart, 1994.
[190] ELIGEHAUSEN R, COOK R, APPL J. Behavior and design of adhesive bonded anchors[J]. ACI Structural Journal, 2006, 103: 822-31.
[191] 中华人民共和国国家标准化管理委员会. GB/T 16823.2-1997. 螺纹紧固件紧固通则[S]. 北京: 中国质检出版社, 1997.
[192] PACKER JEFFREY A. Concrete-Filled HSS Connections[J]. Journal of Structural Engineering, 1995, 121(3): 458-67.

所在学位评定分委会
力学
国内图书分类号
TU398.9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766197
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
虞振波. 采用单边螺栓连接的可拆卸式钢管混凝土K形节点工作机理研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930908-虞振波-海洋科学与工程(56732KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[虞振波]的文章
百度学术
百度学术中相似的文章
[虞振波]的文章
必应学术
必应学术中相似的文章
[虞振波]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。