中文版 | English
题名

铝硅电子封装材料的显微组织调控和性能研究

其他题名
STUDY ON MICROSTRUCTURE REGULATION AND PROPERTIES OF ALUMINUM SILICON ELECTRONIC PACKAGING MATERIALS
姓名
姓名拼音
DING Chao
学号
12031283
学位类型
博士
学位专业
0805 材料科学与工程
学科门类/专业学位类别
08 工学
导师
卢周广
导师单位
材料科学与工程系
论文答辩日期
2024-05-07
论文提交日期
2024-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着电子元器件的高度集成化,散热问题已经成为半导体器件性能提升的主要障碍。为了确保电子元器件的安全和稳定工作,迫切需要发展高导热、低膨胀的先进电子封装材料。Al-Si电子封装材料具备Al的高导热率(TC)和Si的低热膨胀系数(CTE),通过调控Si含量可优化热学性能,以适用不同应用领域。铝硅合金成本低、重量轻,同时具有优异的焊接性和可加工性能,因此在航空、航天、军工和消费类电子领域有广泛应用前景。本论文采用粉末热挤出工艺、热处理工艺和添加碳纳米管(CNT)制备Al-Si基电子封装材料,涵盖了从低Si含量的Al-20Si合金到高Si含量的Al-50Si合金,再到CNT/Al-50Si三元复合材料,系统研究了制备工艺、显微组织和性能之间的构效关系。

首先,通过消除共晶Si提升Al-20Si合金热学和力学性能。实验发现在低挤出温度(350 ℃)获得的超细共晶Si颗粒(~500 nm)样品的热膨胀系数较高,而高温550 ℃挤出的具有较粗的Si颗粒的样品具有最低热膨胀系数。这与传统上认为均匀细小的Si颗粒可以降低Al-Si电子封装材料热膨胀系数的规律相反。本研究通过原位热分析方法发现细小共晶Si在受热过程中发生溶解或团聚,Al基体内部压应力瞬间释放,从而导致热膨胀系数异常升高。而采用高温550 ℃的热挤出消除了共晶Si,引入了低膨胀系数的原位Al2O3颗粒,稳定了组织结构,从而获得了具有低热膨胀系数的Al-20Si合金。为了进一步减少小颗粒共晶Si对热学和力学性能的影响,在热挤出前对Al-20Si粉末进行550 ℃热处理,以消除粉末内部的共晶Si颗粒,提高了材料的塑性变形能力,降低了电子和声子的散射,从而提升了热导率。所制备的Al-20Si合金综合性能优异,致密度高达100%,抗拉强度~170 MPa,伸长率~10.8%,热导率~195 Wm-1K-1,热膨胀系数约为14×10-6/K。与未进行粉末热处理的合金相比,其伸长率提升了130%,热导率提升了20%,热膨胀系数降低了约14%

其次,通过热处理工艺调控AlSi的晶粒尺寸,实现了Al-50Si合金热导率的提升。采用粉末热挤出工艺和铜包套制备了高质量无裂纹的Al-50Si合金,发现增大粉末粒径和提高挤出温度可以提升热导率。在共晶点之下的550 ℃Al-50Si合金进行热处理,发现材料的热导率随热处理温度和时间的升高呈现波动性提高,这主要归因于Si颗粒的动态溶解和析出,导致Al发生二次再结晶,使得晶粒尺寸出现波动。随后通过两阶段热处理工艺(850 ℃×2 h-550 ℃×140 h),获得尺寸~1 mm Al晶粒和80 μm Si晶粒的组织结构,其热导率高达~180 Wm-1K-1

最后,通过添加CNT进一步改善Al-50Si合金的热学和力学性能。采用原位化学气相沉积制备了Al-CNTCNT/Al-50Si复合粉末。研究发现原位气相沉积能够获得均匀分散的CNT,避免粉末严重氧化,保证粉末结构完整性,保证复合材料具有较高热导率。在随后的热处理过程中(850 ℃×2 h),CNT/Al-50Si复合材料中的CNT逐步发生反应,先生成Al4C3然后转化为共晶SiCAl),最终形成颗粒状SiC。原位引入SiC后,Al-50Si合金的热膨胀系数显著降低至约8.7×10-6/K,同时保持了优异的热导率和抗弯强度,分别为约162 Wm-1K-1253 MPa

本论文通过消除共晶Si、调控晶粒尺寸和添加CNTAl-Si基电子封装材料组织进行调控,实现了材料的热学和力学性能的提升,揭示了组织结构对性能的影响机制。研究结果为获得优异热力学性能的Al-Si基电子封装材料提供了重要的理论依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] GORDON M. Cramming more component onto integrated circuits[J]. Electronics, 1965, 38: 33-35.
[2] AFAYNOU I, FARAJI H, CHOUKAIRY K, et al. Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: A review of recent advances[J]. International Communications in Heat and Mass Transfer, 2023, 143: 106690.
[3] KIM J C, REN Z, YUKSEL A, et al. Recent advances in thermal metamaterials and their future applications for electronics packaging[J]. Journal of Electronic Packaging, 2021, 143(1): 010801.
[4] TONG X C. Advanced materials for thermal management of electronic packaging[M]. Springer Science & Business Media, 2011.
[5] HOGG S C, LAMBOURNE A, OGILVY A, et al. Microstructural characterisation of spray formed Si-30Al for thermal management applications[J]. Scripta Materialia, 2006, 55(1): 111-114.
[6] PANG X, SONG Y, SHI N, et al. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites[J]. Composites Part B: Engineering, 2022, 238: 109883.
[7] XU D, CHENG J, CHEN P, et al. Recent progress in research on bonding technologies of W/Cu monoblocks as the divertor for nuclear fusion reactors[J]. Nuclear Materials and Energy, 2023, 36: 101482.
[8] 刘猛. 电子封装用高导热颗粒增强金属基复合材料制备与研究[D]. 湖南: 国防科学技术大学材料科学与工程系, 2017.
[9] NIE Q, CHEN G, BING W, et al. Process optimization, microstructures and mechanical/thermal properties of Cu/Invar bi-metal matrix composites fabricated by spark plasma sintering[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(10): 3050-3062.
[10] 肖静. 电子封装用颗粒增强铝基复合材料半固态压力钎焊研究[D]. 湖南: 国防科技大学材料科学与工程系, 2019.
[11] WANG Y, ZHUO L, YIN E. Progress, challenges and potentials/trends of tungsten-copper (WCu) composites/pseudo-alloys: Fabrication, regulation and application[J]. International Journal of Refractory Metals and Hard Materials, 2021, 100: 105648.
[12] HONG Y, LIU J, WU Y. The interface reaction of SiC/Al composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2023, 949: 169895.
[13] 董致远. 可加工金刚石/铝复合材料的制备技术与组织性能研究[D]. 安徽, 中国科学院技术大学, 2023.
[14] LTD SANDVIK OSPREY, http://www.cealloys.com/TechPapers.html 2017.
[15] 王旭磊. 液相硅溶渗制备金刚石/碳化硅复合材料及性能研究[D]. 北京: 北京科技大学材料科学与工程系, 2021.
[16] 3D microelectronic packaging: from architectures to applications[M]. Springer Nature, 2020.
[17] ZHANG S, LI Z, ZHOU H, et al. Challenges and recent prospectives of 3D heterogeneous integration[J]. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2022, 2: 100052.
[18] SU Y, SHI J, HSU Y M, et al. Volumetric nondestructive metrology for 3D semiconductor packaging: A review [J]. Measurement, 2024, 225(15): 114065.
[19] 顾晓峰. SiCp/Al复合材料的制备及其器件的研制[D]. 湖北: 武汉理工大学材料系, 2006.
[20] MEINSHAUSEN L, WEIDE-ZAAGE K, FRÉMONT H. Electro-and thermo-migration induced failure mechanisms in package on package[J]. Microelectronics Reliability, 2012, 52(12): 2889-2906.
[21] CHAN Y C, YANG D. Failure mechanisms of solder interconnects under current stressing in advanced electronic packages[J]. Progress in Materials Science, 2010, 55(5): 428-475.
[22] HUESGEN T. Printed circuit board embedded power semiconductors: A technology review[J]. Power Electronic Devices and Components, 2022, 3: 100017.
[23] 汪冬梅. 电子封装用3D-SiC/Al互穿复合材料的无压熔渗制备及其界面调控[D].合肥工业大学材料科学与工程系, 2019.
[24] 叶晃青. 铜/碳纳米材料的制备及其在电子封装领域中的应用研究[D]. 广东, 中国科学院深圳技术研究院, 2020.
[25] 王冰成, 石墨烯/环氧树脂复合材料热运输的微观机理研究[D]. 山东: 山东大学, 2022.
[26] LIU D, HU J, ZHANG G, et al. Effect of synthesizing temperature of alumina powder with rose-like structure on the microstructure and mechanical property of alumina ceramic[J]. Journal of Materials Research and Technology, 2024, 28: 1907-1914.
[27] YIN S, WAN W, FANG X, et al. Mechanical and thermal properties of Si3N4 ceramics prepared by gelcasting using high-solid-loading slurries[J]. Ceramics International, 2023, 49(24): 40930-40941.
[28] 栾佰峰, 裴英飞, 黄天林, 等. 颗粒增强铝基复合材料的制备及热膨胀性能[J]. 重庆大学学报, 2010, (33): 136-142.
[29] MIZUUCHI K, INOUE K, AGARI Y, et al. Processing and thermal properties of Al/AlN composites in continuous solid-iquid co-existent state by spark plasma sintering[J]. Composites Part B: Engineering, 2012, 43(3): 1557-1563.
[30] BALOG M, KRIZIK P, DVORAK J, et al. Industrially fabricated in-situ Al-AlN metal matrix composites (part B): The mechanical, creep, and thermal properties[J]. Journal of Alloys and Compounds, 2022, 909: 164720.
[31] 车子瑶. 金刚石增强铝基复合材料界面形成机理及导热性能[D]. 北京: 北京科技大学材料科学与工程系, 2017.
[32] 刘婷婷. 短石墨纤维招电子封装材料的制备与性能研宄[D]. 北京: 北京科技大学材料科学与工程系, 2015.
[33] KIM Y M, CHOI S W, HONG S K. Influence of Si content on thermal expansion characteristic of Al-Si alloys[J]. Materials Science and Technology, 2020, 36(6): 709-716.
[34] JIA Y D, MA P, PRASHANTH K G, et al. Microstructure and thermal expansion behavior of Al-50Si synthesized by selective laser melting[J]. Journal of Alloys and Compounds, 2017, 699: 548-553.
[35] LIU W, HU L, SHEN J, et al. Microstructure evolution and mechanical properties of Al-8wt.% Si semi-solid billet fabricated by powder metallurgy liquid phase reaction sintering[J]. Materials Science and Engineering: A, 2021, 802: 140656.
[36] LIU J, ZHOU X. High-Si reinforced Al matrix composites prepared by powder semi-solid squeeze[J]. Journal of Alloys and Compounds, 2017, 726: 772-778.
[37] WANG K, LI W, JIN S, et al. Effect of thermal shock induced dislocation multiplication on the thermal conductivity of 60 vol% SiCp/Al-7Si composites[J]. Composites Communications, 2023, 39: 101554.
[38] SU B, YAN H G, CHEN G, et al. Study on the preparation of the SiCp/Al-20Si-3Cu functionally graded material using spray deposition[J]. Materials Science and Engineering: A, 2010, 527(24-25): 6660-6665.
[39] ZHANG A X, LI F, YU T, et al. Enhanced strength-ductility synergy of homogeneous isomeric Al-Cu-Mg sheet prepared by powder metallurgy[J]. Journal of Materials Research and Technology, 2023, 25: 6938-6948.
[40] GAN J, HUANG Y, CHENG W E N, et al. Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al-Si alloys[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 2879-2890.
[41] MURRAY J L, MCALISTER A J. The Al-Si (aluminum-silicon) system [J]. Bulletin of Alloy Phase Diagrams, 1984, 5(1): 74-84.、
[42] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础(第三版)[M]. 上海: 上海交通大学出版社, 2010.
[43] XU C L, WANG H Y, LIU C, et al. Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys[J]. Journal of Crystal Growth, 2006, 291(2): 540-547.
[44] WANG R, LU W, HOGAN L M. Growth morphology of primary silicon in cast Al-Si alloys and the mechanism of concentric growth[J]. Journal of Crystal Growth, 1999, 207(1-2): 43-54.
[45] SHANKAR S, RIDDLE Y W, MAKHLOUF M M. Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys[J]. Acta Materialia, 2004, 52(15): 4447-4460.
[46] NAFISI S, GHOMASHCHI R, VALI H. Eutectic nucleation in hypoeutectic Al-Si alloys[J]. Materials Characterization, 2008, 59(10): 1466-1473.
[47] LI J H, ALBU M, HOFER F, et al. Solute adsorption and entrapment during eutectic Si growth in A-Si-based alloys[J]. Acta Materialia, 2015, 83: 187-202.
[48] 许荣福. 亚共晶Al-Si合金热裂形成过程的研究[D]. 山东: 山东大学材料科学与工程系, 2014.
[49] 郭宇. 高导热铝硅合金设计制备及其导热机理[D]. 哈尔滨: 哈尔滨理工大学材料科学与工程系, 2020.
[50] DOVE M T. Introduction to the theory of lattice dynamics[J]. École Thématique de la Société Française de la Neutronique, 2011, 12: 123-159.
[51] HUA C, CHEN X, RAVICHANDRAN N K, et al. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces[J]. Physical Review B, 2017, 95(20): 205423.
[52] HASSELMAN D P H, JOHNSON L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987, 21(6): 508-515
[53] HOPKINS P E. Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance[J]. International Scholarly Research Notices, 2013, 2013: 682586.
[54] FLIEGENER S, HOHE J. An anisotropic creep model for continuously and discontinuously fiber reinforced thermoplastics[J]. Composites Science and Technology, 2020, 194: 108168.
[55] KAMIKAWA N, HIROOKA T, FURUHARA T. Yielding behaviour and Hall-Petch relationship in ultrafine-grained Al-Mg binary alloys[J]. Materials Science and Technology, 2021, 37(2): 210-223.
[56] 颜家维. Al-1%Si合金中第二相Si析出的调控机理及其对力学性能的影响[D]. 上海: 上海交通大学材料科学与工程系, 2020.
[57] SZAJEWSKI B A, CRONE J C, KNAP J. Analytic model for the Orowan dislocation-precipitate bypass mechanism[J]. Materialia, 2020, 11: 100671.
[58] TIMPEL M, WANDERKA N, SCHLESIGER R, et al. The role of strontium in modifying aluminium-silicon alloys[J]. Acta Materialia, 2012, 60(9): 3920-3928.
[59] LI Q, LI B, LI J, et al. Effect of yttrium addition on the microstructures and mechanical properties of hypereutectic Al-20Si alloy[J]. Materials Science and Engineering: A, 2018, 722: 47-57.
[60] YU S, WANG R, PENG C, et al. Effect of minor scandium addition on the microstructure and properties of Al-50Si alloys for electronic packaging[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 20770-20777.
[61] WANG K, LÜ X, ZHU Y M, et al. In-situ synthesis of novel Al-PO master alloy and its refinement and modification effects on Si phases in hypereutectic Al-30Si alloys[J]. Materials Characterization, 2019, 157: 109900.
[62] LI Q, XIA T, LAN Y, et al. Effects of rare earth Er addition on microstructure and mechanical properties of hypereutectic Al-20% Si alloy[J]. Materials Science and Engineering: A, 2013, 588: 97-102.
[63] 贾延东. Al-50wt.%Si合金硅相控制及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[64] CAI Z, ZHANG C, WANG R, et al. Preparation of Al-Si alloys by a rapid solidification and powder metallurgy route[J]. Materials & Design, 2015, 87: 996-1002.
[65] LIU J, JIANG D, ZHOU X, et al. Microstructure and properties of Al-60wt.% Si composites prepared by powder semi-solid squeeze[J]. Powder Technology, 2019, 343: 95-100.
[66] SADHU K K, MANDAL N, SAHOO R R. SiC/graphene reinforced aluminum metal matrix composites prepared by powder metallurgy: A review[J]. Journal of Manufacturing Processes, 2023, 91: 10-43.
[67] KUMAR P L, LOMBARDI A, BYCZYNSKI G, et al. Recent advances in aluminium matrix composites reinforced with graphene-based nanomaterial: A critical review[J]. Progress in Materials Science, 2022, 128: 100948.
[68] MA P, WEI Z J, JIA Y D, et al. Mechanism of formation of fibrous eutectic Si and thermal conductivity of SiCp/Al-20Si composites solidified under high pressure[J]. Journal of Alloys and Compounds, 2017, 709: 329-336.
[69] HAYUN S, PARIS V, MITRANI R, et al. Microstructure and mechanical properties of silicon carbide processed by Spark Plasma Sintering (SPS)[J]. Ceramics International, 2012, 38(8): 6335-6340.
[70] SONG M, PENG K. Pre-oxidization of SiC on interfacial structure and mechanical properties of SiCp/Al composites prepared by vacuum-pressure infiltration[J]. Journal of Materials Research and Technology, 2023, 24: 6567-6577.
[71] YANG G, FAN T, ZHANG D. Interfacial reaction of Al matrix composites reinforced with TiO2-coated SiC particles during remelting[J]. Materials Letters, 2004, 58(10): 1546-1552.
[72] DU X, GAO T, LI D K, et al. A novel approach to synthesize SiC particles by in situ reaction in Al-Si-C alloys[J]. Journal of Alloys and Compounds, 2014, 588: 374-377.
[73] ZHANG R, ZOU C, WEI Z, et al. In situ formation of SiC in Al-40Si alloy during high-pressure solidification[J]. Ceramics International, 2021, 47(17): 24485-24493.
[74] OLESINSKI R W, ABBASCHIAN G J. The C-Si (carbon-silicon) system[J]. Bulletin of Alloy Phase Diagrams, 1984, 5(5): 486-489.
[75] LI N, ZHANG Y, ZHANG Y, et al. Realizing ultrahigh thermal conductivity in bimodal-diamond/Al composites via interface engineering[J]. Materials Today Physics, 2022, 28: 100901.
[76] ZHANG J, WANG J, ZHANG G, et al. A review of diamond synthesis, modification technology, and cutting tool application in ultra-precision machining[J]. Materials & Design, 2024, 237: 112577.
[77] ZHOU C, JI G, CHEN Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J]. Materials & Design, 2014, 63: 719-728.
[78] TJONG S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports, 2013, 74(10): 281-350.
[79] HUA Z, XIANG Y, WANG C, et al. Investigation of Ti alloying for microstructural evolution and strengthening mechanism: Avoiding Al4C3 formation in SiCp/Al composites via laser directed energy deposition[J]. Journal of Alloys and Compounds, 2024, 970: 172371.
[80] KANG N, CODDET P, AMMAR M R, et al. Characterization of the microstructure of a selective laser melting processed Al-50Si alloy: Effect of heat treatments[J]. Materials Characterization, 2017, 130: 243-249.
[81] CAO F, JIA Y, PRASHANTH K G, et al. Evolution of microstructure and mechanical properties of as-cast Al-50Si alloy due to heat treatment and P modifier content[J]. Materials & Design, 2015, 74: 150-156.
[82] LI K, ZHANG J, CHEN X, et al. Microstructure evolution of eutectic Si in Al-7Si binary alloy by heat treatment and its effect on enhancing thermal conductivity[J]. Journal of Materials Research and Technology, 2020, 9(4): 8780-8786.
[83] 张磊. Co包覆粗晶WC粉体的流化床化学气相沉积可控制制备及应用[D]. 北京:中国科学院大学, 2020.
[84] FARGEOT D, MERCURIO D, DAUGER A. Structural characterization of alumina metastable phases in plasma sprayed deposits[J]. Materials Chemistry and Physics, 1990, 24(3): 299-314.
[85] BALOG M, HU T, KRIZIK P, et al. On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network[J]. Materials Science and Engineering: A, 2015, 648: 61-71.
[86] BALOG M, KRIZIK P, BAJANA O, et al. Influence of grain boundaries with dispersed nanoscale Al2O3 particles on the strength of Al for a wide range of homologous temperatures[J]. Journal of Alloys and Compounds, 2019, 772: 472-481.
[87] LIU M, ZHENG R, XIAO W, et al. Bulk nanostructured Al-Si alloy with remarkable improvement in strength and ductility[J]. Scripta Materialia, 2021, 201: 113970.
[88] KABALNOV A. Ostwald ripening and related phenomena[J]. Journal of Dispersion Science and Technology, 2001, 22(1): 1-12.
[89] CHOI H, KONISHI H, LI X. Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al-20Si alloy[J]. Materials Science and Engineering: A, 2012, 541: 159-165.
[90] LI Q, XIA T, LAN Y, et al. Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al-20% Si alloy[J]. Journal of Alloys and Compounds, 2013, 562: 25-32.
[91] JEON J H, SHIN J H, BAE D H. Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys[J]. Materials Science and Engineering: A, 2019, 748: 367-370.
[92] XU G, WANG K, LV X, et al. Synergistic effects of γ-Al2O3 nanoparticles and fast cooling on the microstructural evolution and mechanical properties of Al-20Si alloys[J]. Materials Characterization, 2021, 178: 111240.
[93] YANG W, CHEN G, QIAO J, et al. Graphene nanoflakes reinforced Al-20Si matrix composites prepared by pressure infiltration method[J]. Materials Science and Engineering: A, 2017, 700: 351-357.
[94] MA P, JIA Y, PRASHANTH K G, et al. Effect of Si content on the microstructure and properties of Al-Si alloys fabricated using hot extrusion[J]. Journal of Materials Research, 2017, 32(11): 2210-2217.
[95] ZHANG S, MA P, JIA Y, et al. Microstructure and mechanical properties of Al-(12-20) Si bi-material fabricated by selective laser melting[J]. Materials, 2019, 12(13): 2126.
[96] YANG Y, GENG K, LI S, et al. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting[J]. Journal of Materials Science & Technology, 2022, 110: 84-95.
[97] KIMURA T, NAKAMOTO T, MIZUNO M, et al. Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting[J]. Materials Science and Engineering: A, 2017, 682: 593-602.
[98] ZHANG C, DU Y, LIU S, et al. Thermal conductivity of Al-Cu-Mg-Si alloys: Experimental measurement and CALPHAD modeling[J]. Thermochimica Acta, 2016, 635: 8-16.
[99] CHANG J, ZHANG Q, LIN Y, et al. Layer by layer graphite film reinforced aluminum composites with an enhanced performance of thermal conduction in the thermal management applications[J]. Journal of Alloys and Compounds, 2018, 742: 601-609.
[100] HONG S J, KIM T S, KIM W T, et al. The effects of Cr and Zr addition on the microstructure and mechanical properties of rapidly solidified Al-20Si-5Fe alloys[J]. Materials Science and Engineering: A, 1997, 226: 878-882.
[101] WU S S, ZHONG G, LI W, et al. Microstructure and properties of rheo-diecast Al-20Si-2Cu-1Ni-0.4Mg alloy with direct ultrasonic vibration process[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: s763-s767.
[102] ZHONG G, WU S S, AN P, et al. Microstructure and properties of high silicon aluminum alloy with 2% Fe prepared by rheo-casting[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1603-1607.
[103] YOURDSHAHYAN Y, RUBERTO C, HALVARSSON M, et al. Theoretical structure determination of a complex material: κ‐Al2O3[J]. Journal of the American Ceramic Society, 1999, 82(6): 1365-1380.
[104] HUA C, CHEN X, RAVICHANDRAN N K, et al. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces[J]. Physical Review B, 2017, 95(20): 205423.
[105] DONLON W T. Precipitation of aluminum in the silicon phase contained in W319 and 356 aluminum alloys[J]. Metallurgical and Materials Transactions A, 2003, 34: 523-529.
[106] WANG Y, LU Y, ZHANG J, et al. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6 Mg alloy[J]. Journal of Materials Science & Technology, 2021, 67: 186-196.
[107] LIEN H H, WANG J, MISRA A. Plastic deformation induced microstructure transition in nano-fibrous Al-Si eutectics[J]. Materials & Design, 2022, 218: 110701.
[108] CHEN J, XU X, ZHOU J, et al. Interfacial thermal resistance: Past, present, and future[J]. Reviews of Modern Physics, 2022, 94(2): 025002.
[109] LUO J, WANG R, PENG C, et al. Precipitation behavior and properties of Al-50Si-0.5 X (X= Sc, La, Nb) alloys[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(10): 7380-7395.
[110] ARSHA A G, MANOJ V, AKHIL M G, et al. Squeeze infiltration processing and characterization of silicon reinforced composites[J]. Materials Today Communications, 2022, 32: 103870.
[111] ZHOU H, LIU X, YIN Z, et al. The fabrication of functional gradient hypereutectic Al-Si composites by liquid-solid separation technology[J]. Journal of Alloys and Compounds, 2018, 763: 49-55.
[112] JIA Y, CAO F, MA P, et al. Microstructure and thermal conductivity of hypereutectic Al-high Si produced by casting and spray deposition[J]. Journal of Materials Research, 2016, 31(19): 2948-2955.
[113] CHONG G, LI-BIN N, LAN M, et al. Effects of Spark Plasma Sintering Parameters on Microstructure and Properties of Al-50 wt.% Si Alloys[J]. Powder Metallurgy and Metal Ceramics, 2022, 60(9-10): 556-566.
[114] KUN Y U, LI S, CHEN L, et al. Microstructure characterization and thermal properties of hypereutectic Si-Al alloy for electronic packaging applications[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1412-1417.
[115] SARASWAT E, MAHARANA H S, MURTY S V S N, et al. Fabrication of Al-Si controlled expansion alloys by unique combination of pressureless sintering and hot forging[J]. Advanced Powder Technology, 2020, 31(7): 2820-2832.
[116] HE C, YANG F, MENG L, et al. Effect of annealing atmospheres on secondary recrystallization in thin-gauge grain-oriented silicon steel: Microstructures and textures[J]. Journal of Magnetism and Magnetic Materials, 2017, 439: 397-402.
[117] LEZAACK M B, SIMAR A. Avoiding abnormal grain growth in thick 7XXX aluminium alloy friction stir welds during T6 post heat treatments[J]. Materials Science and Engineering: A, 2021, 807: 140901.
[118] YANG Y, FATHIDOOST M, OYEDEJI T D, et al. A diffuse-interface model of anisotropic interface thermal conductivity and its application in thermal homogenization of composites[J]. Scripta Materialia, 2022, 212: 114537.
[119] LIU Y, MENG S, GAO M, et al. Enhanced comprehensive performance via alloying and rheo-diecasting in a semi-solid Al-Si-Fe-Mg-Cu-Sr alloy[J]. Journal of Materials Research and Technology, 2023, 25: 420-439.
[120] GHASEMI A, FEREIDUNI E, BALBAA M, et al. Unraveling the low thermal conductivity of the LPBF fabricated pure Al, AlSi12, and AlSi10Mg alloys through substrate preheating[J]. Additive Manufacturing, 2022, 59: 103148.
[121] BRADLEY J M, STRINGER J. Hall effect measurements in aluminium alloys[J]. Journal of Physics F: Metal Physics, 1974, 4(6): 839.
[122] PHANI P S, VISHNUKANTHAN V, SUNDARARAJAN G. Effect of heat treatment on properties of cold sprayed nanocrystalline copper alumina coatings[J]. Acta Materialia, 2007, 55(14): 4741-4751.
[123] WRIEDT H A. The Al-O (aluminum-oxygen) system[J]. Bulletin of Alloy Phase Diagrams, 1985, 6(6): 548-553.
[124] BALIMA F, LARGETEAU A. Phase transformation of alumina induced by high pressure spark plasma sintering (HP-SPS)[J]. Scripta Materialia, 2019, 158: 20-23.
[125] CHEN B, KONDOH K, LI J S, et al. Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in-situ alumina nanoparticles[J]. Composites Part B: Engineering, 2020, 183: 107691.
[126] OUYANG Y, QIU L, ZHANG X, et al. Modulating heat transport inside CNT assemblies: multi-level optimization and structural synergy[J]. Carbon, 2023, 205: 236-252.
[127] VAN TRINH P, VAN LUAN N, PHUONG D D, et al. Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 126-137.
[128] XU R, TAN Z, FAN G, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying[J]. Composites Part A: Applied Science and Manufacturing, 2018, 111: 1-11.
[129] YANG P, YOU X, YI J, et al. Simultaneous achievement of high strength, excellent ductility, and good electrical conductivity in carbon nanotube/copper composites[J]. Journal of Alloys and Compounds, 2018, 752: 431-439.
[130] GUO B, CHEN Y, WANG Z, et al. Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites[J]. Carbon, 2020, 159: 201-212.
[131] YANG X, LIU E, SHI C, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds, 2013, 563: 216-220.
[132] GENG K, LI S, YANG Y F, et al. 3D printing of Al matrix composites through in situ impregnation of carbon nanotubes on Al powder[J]. Carbon, 2020, 162: 465-474.
[133] LIU Z, WANG H, HACHÉ M, et al. Formation of refined grains below 10 nm in size and nanoscale interlocking in the particle-particle interfacial regions of cold sprayed pure aluminum[J]. Scripta Materialia, 2020, 177: 96-100.
[134] ILTIS X, ZACHARIE-AUBRUN I, RYU H J, et al. Microstructure of as atomized and annealed U-Mo7 particles: A SEM/EBSD study of grain growth[J]. Journal of Nuclear Materials, 2017, 495: 249-266.
[135] SABARD A, HUSSAIN T. Inter-particle bonding in cold spray deposition of a gas-atomised and a solution heat-treated Al 6061 powder[J]. Journal of Materials Science, 2019, 54: 12061-12078.
[136] LIU Z Y, MA K, FAN G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimisation[J]. Carbon, 2020, 157: 602-613.
[137] LI S, YANG Y, MISRA R D K, et al. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder[J]. Carbon, 2020, 164: 378-390.
[138] XU R, TAN Z, FAN G, et al. Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites[J]. International Journal of Plasticity, 2019, 120: 278-295.
[139] YU Z, TAN Z, XU R, et al. Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites[J]. Carbon, 2019, 146: 155-161.
[140] KELLY A, TYSON W R. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(6): 329-350.
[141] HAGHGOO M, ANSARI R, HASSANZADEH-AGHDAM M K. Effective elastoplastic properties of carbon nanotube-reinforced aluminum nanocomposites considering the residual stresses[J]. Journal of Alloys and Compounds, 2018, 752: 476-488.
[142] CHEN B, ZHOU X Y, ZHANG B, et al. Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles[J]. Materials Science and Engineering: A, 2020, 795: 139930.
[143] LUO S, WANG H, GAO Z, et al. Interaction between high-velocity gas and liquid in gas atomization revealed by a new coupled simulation model[J]. Materials & Design, 2021, 212: 110264.
[144] AKBARPOUR M R, GAZANI F, MIRABAD H M, et al. Recent advances in processing, and mechanical, thermal and electrical properties of Cu-SiC metal matrix composites prepared by powder metallurgy[J]. Progress in Materials Science, 2023, 140: 101191.
[145] ZHOU H, RAN M, LI Y, et al. Improvement of thermal conductivity of diamond/Al composites by optimization of liquid-solid separation process[J]. Journal of Materials Processing Technology, 2021, 297: 117267.
[146] LI W, LIU Y, WU G. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon, 2015, 95: 545-551.
[147] ZHANG X, LI X, LIU L, et al. Interface regulation strategy of Al-CNTs composite induced by Al-Si eutectic reaction and its strengthening mechanism[J]. Journal of Materials Science & Technology, 2023, 151: 1-9.
[148] ZHOU W, BANG S, KURITA H, et al. Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites[J]. Carbon, 2016, 96: 919-928.
[149] MONACHON C, WEBER L, DAMES C. Thermal boundary conductance: A materials science perspective[J]. Annual Review of Materials Research, 2016, 46: 433-463.
[150] SUZUKI K, MATSUKI Y, MASAKI K, et al. Tensile and microbend tests of pure aluminum foils with different thicknesses[J]. Materials Science and Engineering: A, 2009, 513: 77-82.
[151] SHARPE W N, YUAN B, VAIDYANATHAN R, et al. Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon[C]//Proceedings IEEE the tenth annual international workshop on micro electro mechanical systems. An investigation of micro structures, sensors, actuators, machines and robots. IEEE, 1997: 424-429.
[152] ZHANG Q, ZHENG Y, ZHOU F, et al. Fragmentations of Alumina (Al2O3) and Silicon Carbide (SiC) under quasi-static compression[J]. International Journal of Mechanical Sciences, 2020, 167: 105119.

所在学位评定分委会
材料科学与工程
国内图书分类号
TG146.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766198
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
丁超. 铝硅电子封装材料的显微组织调控和性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031283-丁超-材料科学与工程系(15251KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[丁超]的文章
百度学术
百度学术中相似的文章
[丁超]的文章
必应学术
必应学术中相似的文章
[丁超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。