[1] DEHNHARDTG,MAUCKB,BLECKMANNH. Sealwhiskers detect water movements[J]. Nature, 1998, 394(6690): 235-236.
[2] EBERHARDT W C, WAKEFIELD B F, MURPHY C T, et al. Development of an artificial sensor for hydrodynamic detection inspired by a seal’s whisker array[J]. Bioinspiration & Biomimetics, 2016, 11(5): 056011.
[3] HANKEW,WITTEM,MIERSCHL,etal.Harborsealvibrissamorphologysuppressesvortexinduced vibrations[J]. Journal of Experimental Biology, 2010, 213(15): 2665-2672.
[4] SCHULTE-PELKUMN, WIESKOTTENS,HANKEW,etal. Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina)[J]. Journal of Experimental Biology, 2007, 210 (5): 781-787.
[5] WITTEM,HANKEW,WIESKOTTENS,etal. Onthewakeflowdynamicsbehindharborseal vibrissae–a fluid mechanical explanation for an extraordinary capability[J]. Nature-Inspired Fluid Mechanics: Results of the DFG Priority Programme 1207”Nature-inspired Fluid Mechanics”2006-2012, 2012: 271-289.
[6] 宋立群,及春宁,张晓娜. 斑海豹胡须涡激振动及其尾流循迹机理直接数值模拟[J]. 力学学报,2021, 53(2): 395-412.
[7] BEEM H, HILDNER M, TRIANTAFYLLOU M. Calibration and validation of a harbor seal whisker-inspired flow sensor[J]. Smart Materials and Structures, 2012, 22(1): 014012.
[8] STOCKING J, EBERHARDT W, SHAKHSHEER Y, et al. A capacitance-based whisker-like artificial sensor for fluid motion sensing[C]//SENSORS, 2010 IEEE. IEEE, 2010: 2224-2229.
[9] GULJZ,SUKY,CHOIKH. Fully3Dprintedmulti-material soft bio-inspired whisker sensor for underwater-induced vortex detection[J]. Soft Robotics, 2018, 5(2): 122-132.
[10] BERNITSASMM,RAGHAVANK,BEN-SIMONY,etal. VIVACE(vortexinducedvibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[C]//International Conference on Offshore Mechanics and Arctic Engineering: Vol. 47470. 2006: 619-637.
[11] PETTIGREW M, TAYLOR C. Vibration analysis of shell-and-tube heat exchangers: an overview—Part 1: flow, damping, fluidelastic instability[J]. Journal of Fluids and Structures, 2003, 18(5): 469-483.
[12] WILLIAMSON C H. Vortex dynamics in the cylinder wake[J]. Annual Review of Fluid Mechanics, 1996, 28(1): 477-539.
[13] BEARMAN P W. Vortex shedding from oscillating bluff bodies[J]. Annual Review of Fluid Mechanics, 1984, 16(1): 195-222.
[14] FREDSOEJ,SUMERBM. Hydrodynamicsaround cylindrical structures: Vol. 12[M]. World Scientific, 1997.
[15] FENG C. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. University of British Columbia, 1968.
[16] BLACKBURNHM,HENDERSONRD. Astudyoftwo-dimensionalflowpastanoscillating cylinder[J]. Journal of Fluid Mechanics, 1999, 385: 255-286.
[17] WILLIAMSONCH,ROSHKOA. Vortexformation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures, 1988, 2(4): 355-381.
[18] KHALAKA,WILLIAMSONC. Dynamicsofahydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5): 455-472.
[19] KHALAK A, WILLIAMSON C. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of Fluids and Structures, 1997, 11(8): 973-982.
[20] KHALAK A, WILLIAMSON C H. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7-8): 813-851.
[21] GOVARDHANR,WILLIAMSONC. Modesofvortexformationandfrequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420: 85-130.
[22] SINGH S, MITTAL S. Vortex-induced oscillations at low Reynolds numbers: Hysteresis and vortex-shedding modes[J]. Journal of Fluids and Structures, 2005, 20(8): 1085-1104.
[23] JI C, XIAOZ,WANGY,etal. Numerical investigation on vortex-induced vibration of an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method [J]. International Journal of Computational Fluid Dynamics, 2011, 25(4): 207-221.
[24] CASTIGLIAD,BALABANIS,PAPADAKISG,etal. Anexperimentalandnumericalstudyof the flow past elliptic cylinder arrays[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(11): 1287-1301.
[25] JOHNSONSA,THOMPSONMC,HOURIGANK. Predictedlowfrequencystructuresinthe wakeofelliptical cylinders[J]. European Journal of Mechanics-B/Fluids, 2004, 23(1): 229-239.
[26] THOMPSON MC,RADIA, RAOA,et al. Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate[J]. Journal of Fluid Mechanics, 2014, 751: 570-600.
[27] SHI X, ALAM M, BAI H. Wakes of elliptical cylinders at low Reynolds number[J]. International Journal of Heat and Fluid Flow, 2020, 82: 108553.
[28] WAN H, DESROCHES J A, PALAZOTTO A N, et al. Vortex-induced vibration of elliptic cylinders and the suppression using mixed-convection[J]. Journal of Fluids and Structures, 2021, 103: 103297.
[29] YOGESWARAN V, SEN S, MITTAL S, et al. Free vibrations of an elliptic cylinder at low Reynolds numbers[J]. Journal of Fluids and Structures, 2014, 51: 55-67.
[30] KUMARD,MITTALM,SENS. Modificationofresponseandsuppressionofvortex-shedding in vortex-induced vibrations of an elliptic cylinder[J]. International Journal of Heat and Fluid Flow, 2018, 71: 406-419.
[31] KUMARD,SINGHAK,SENS.Identificationofresponsebranchesforoscillatorswithcurved and straight contours executing VIV[J]. Ocean Engineering, 2018, 164: 616-627.
[32] HASHEMINEJAD S M, JARRAHI M. Numerical simulation of two dimensional vortexinduced vibrations of an elliptic cylinder at low Reynolds numbers[J]. Computers & Fluids, 2015, 107: 25-42.
[33] BEEMHR,TRIANTAFYLLOUMS. Wake-induced‘slaloming’responseexplainsexquisite sensitivity of seal whisker-like sensors[J]. Journal of Fluid Mechanics, 2015, 783: 306-322.
[34] MUTHURAMALINGAMM,BRUECKERC. Seal and sea lion whiskers detect slips of vortices similar as rats sense textures[J]. Scientific Reports, 2019, 9(1): 12808.
[35] HOVER F, TRIANTAFYLLOU M. Galloping response of a cylinder with upstream wake interference[J]. Journal of Fluids and Structures, 2001, 15(3-4): 503-512.
[36] BRIKA D, LANEVILLE A. The flow interaction between a stationary cylinder and a downstream flexible cylinder[J]. Journal of Fluids and Structures, 1999, 13(5): 579-606.
[37] ASSI GR, BEARMANP,MENEGHINIJ. Onthe wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism[J]. Journal of Fluid Mechanics, 2010, 661: 365-401.
[38] ASSI G R. Wake-induced vibration of tandem and staggered cylinders with two degrees of freedom[J]. Journal of Fluids and Structures, 2014, 50: 340-357.
[39] HUERA-HUARTEF,BEARMANP. Vortexandwake-inducedvibrationsofatandemarrangement of two flexible circular cylinders with near wake interference[J]. Journal of Fluids and Structures, 2011, 27(2): 193-211.
[40] HUERA-HUARTE F, BANGASH Z, GONZÁLEZ L. Multi-mode vortex and wake-induced vibrations of a flexible cylinder in tandem arrangement[J]. Journal of Fluids and Structures, 2016, 66: 571-588.
[41] MYSARC,KABOUDIANA,JAIMANRK. Ontheoriginofwake-inducedvibration in two tandem circular cylinders at low Reynolds number[J]. Journal of Fluids and Structures, 2016, 61: 76-98.
[42] CARMO B S, SHERWIN S J, BEARMAN P W, et al. Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number[J]. Journal of Fluids and Structures, 2011, 27(4): 503-522.
[43] SAYERSA,SABANA. Flowovertwocylinders of different diameters: The lock-in effect[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51(1): 43-54.
[44] 于定勇,刘洪超,王昌海. 不等直径串列双圆柱体绕流的数值模拟[J/OL].中国海洋大学学报(自然科学版),2012,42(Z2): 160-165. DOI: 10.16441/j.cnki.hdxb.2012.z2.025.
[45] LAMKM,TOA.Interferenceeffectofanupstreamlargercylinderonthelock-invibrationofa flexibly mounted circular cylinder[J]. Journal of Fluids and Structures, 2003, 17(8): 1059-1078.
[46] GAOY,SUNZ,TANDS,etal. Wakeflow behaviour behind a smaller cylinder oscillating in the wakeofanupstreamstationary cylinder[J]. Fluid Dynamics Research, 2014, 46(2): 025505.
[47] CHEN W L, YANG W H, XU F, et al. Complex wake-induced vibration of aligned hangers behind tower of long-span suspension bridge[J]. Journal of Fluids and Structures, 2020, 92: 102829.
[48] WANGH,YANGW,NGUYENKD,etal. Wake-inducedvibrationsofanelastically mounted cylinder located downstream ofastationary larger cylinder at low Reynoldsnumbers[J]. Journal of Fluids and Structures, 2014, 50: 479-496.
[49] TADDEI S, MANES C, GANAPATHISUBRAMANI B. Characterisation of drag and wake properties of canopy patches immersed in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2016, 798: 27-49.
[50] NICOLLEA,EAMESI. Numericalstudyofflowthrough and around a circular array of cylinders[J]. Journal of Fluid Mechanics, 2011, 679: 1-31.
[51] KUMAR R, SINGH N K. Three dimensional flow over elliptic cylinders arrays in octagonal arrangement[J]. Journal of Thermal Engineering, 2021, 7(Supp 14): 2031-2040.
[52] XU G, ZHOU Y. Strouhal numbers in the wake of two inline cylinders[J]. Experiments in Fluids, 2004, 37: 248-256.
[53] MITTAL S, KUMARV,RAGHUVANSHIA. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements[J]. International Journal for Numerical Methods in Fluids, 1997, 25(11): 1315-1344.
[54] IGARASHI T. Characteristics of the flow around two circular cylinders arranged in tandem: 1st report[J]. Bulletin of JSME, 1981, 24(188): 323-331.
[55] ZDRAVKOVICHM. Flowinducedoscillationsoftwointerferingcircular cylinders[J]. Journal of Sound and Vibration, 1985, 101(4): 511-521.
[56] BOKAIAN A, GEOOLAF. Proximity-induced galloping of two interfering circular cylinders [J]. Journal of Fluid Mechanics, 1984, 146: 417-449.
[57] BORAZJANI I, SOTIROPOULOS F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region[J]. Journal of Fluid Mechanics, 2009, 621: 321-364.
[58] MITTAL S, KUMAR V. Flow-induced oscillations of two cylinders in tandem and staggered arrangements[J]. Journal of Fluids and Structures, 2001, 15(5): 717-736.
[59] WUX,CHENF, ZHOUS. Stationary and flow-induced vibration of two elliptic cylinders in tandem by immersed boundary-MRT lattice Boltzmann flux solver[J]. Journal of Fluids and Structures, 2019, 91: 102762.
[60] CHEN W, JI C, WILLIAMS J, et al. Vortex-induced vibrations of three tandem cylinders in laminar cross-flow: Vibration response and galloping mechanism[J]. Journal of Fluids and Structures, 2018, 78: 215-238.
[61] ZHAO M, CHENG L, AN H, et al. Flow and flow-induced vibration of a square array of cylinders in steady currents[J]. Fluid Dynamics Research, 2015, 47(4): 045505.
[62] RAHMANIANM,CHENGL,ZHAOM,etal. Lock-instudyoftwoside-by-side cylinders of different diameters in close proximity in steady flow[J]. Journal of Fluids and Structures, 2014, 49: 386-411.
[63] ZHAOM,CHENGL,ZHOUT. Numericalsimulation of vortex-induced vibration of a square cylinder at a low Reynolds number[J]. Physics of Fluids, 2013, 25(2): 023603.
[64] LEONTINI J S, JACONO D L, THOMPSON M C. Stability analysis of the elliptic cylinder wake[J]. Journal of Fluid Mechanics, 2015, 763: 302-321.
[65] RAOA,LEONTINI J S, THOMPSON MC,et al. Three-dimensionality of elliptical cylinder wakes at low angles of incidence[J]. Journal of Fluid Mechanics, 2017, 825: 245-283.
[66] JAUVTIS N, WILLIAMSON C. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004, 509: 23-62.
[67] MITTAL S, KUMAR V. Finite element study of vortex-induced cross-flow and in-line oscillations of a circular cylinder at low Reynolds numbers[J]. International Journal for Numerical Methods in Fluids, 1999, 31(7): 1087-1120.
[68] CARMOBS. Onwakeinterference in the flow around two circular cylinders: direct stability analysis and flow-induced vibrations[D]. Citeseer, 2009.
[69] TAMIMI V, NAEENI S, ZEINODDINI M, et al. Effects of upstream sharp edge square and diamond cylinders on the FIV of a circular cylinder[J]. Marine Structures, 2018, 59: 237-250.
修改评论