中文版 | English
题名

低质量比下二维细长椭圆柱的流致振动数值模拟研究

其他题名
NUMERICAL STUDY OF FLUID-INDUCED VIBRATION OF TWO-DIMENSIONAL SLIM ELLIPTIC CYLINDER UNDER LOW MASS RATIO
姓名
姓名拼音
HUANG Chengcheng
学号
12132393
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
余鹏
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-20
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

海豹可以在视听条件受限的环境中依靠晶须来识别和追踪水中游鱼,对其进行研究将有助于开发研制新型水下探测器。由于晶须是具有7个表面特征参数的复杂结构,因此在研究和设计时与晶须截面等效的椭圆柱是值得考虑的替代方案。故本文以揭示椭圆柱水力探测机理为目的,研究柱体与晶须类似的涡激振动干扰信号抑制机理和超灵敏尾激振动响应机制。采用有限体积法,对具有晶须等效直径的细长椭圆柱在均匀流场中的涡激振动问题和在尾迹流场中的尾激振动问题进行数值仿真计算,准确模拟柱体随来流的流固耦合运动,探讨仿生晶须传感器对来流信号的响应规律。主要研究工作如下:

(1)对均匀来流作用下的细长椭圆柱的涡激振动问题进行数值模拟。主要研究约化速度和质量比对椭圆柱结构动力响应的影响以及柱体响应中的滞回现象,对柱体的振动响应规律、升阻力系数、频率响应、运动轨迹以及流场分布进行了分析。研究结果表明,细长椭圆柱的涡激振动仅存在下分支响应,最大响应振幅显著小于圆柱;质量比不是影响椭圆柱振动响应的主要因素;椭圆柱的尾涡脱落一直维持2S模态,仅在锁定开始时为C(2S)模态,对应一个极窄的滞回跳跃区。

(2)对均匀来流作用下的细长椭圆柱阵列的涡激振动问题进行数值模拟。主要研究约化速度对多椭圆柱结构动力响应的影响,对各个柱体的振动响应规律、升阻力系数、频率响应、运动轨迹以及流场分布进行了分析。研究结果表明,阵列中的上游椭圆柱的响应形态与单个椭圆柱工况接近,仍具有良好的减阻抑振能力;而下游椭圆柱的响应形态则受上游柱体尾涡和两侧流场的影响,在两方向的受力和振幅趋势均出现较大区别,并且在流向方向产生了极高振幅。

(3)对上游静止圆柱-下游自由振动椭圆柱的尾激振动问题进行数值模拟。主要研究尺寸比、间距比和约化速度对下游椭圆柱结构动力响应的影响,对柱体的振动响应规律、升阻力系数、频率响应、运动轨迹以及流场分布进行了分析。研究结果表明,椭圆柱的振动响应频率始终等于上游圆柱的尾涡频率;尺寸比和间距比的增大均改变了尾激振动系统的流动状态,重附着模式通过影响柱体周围的压力分布,使其产生了更强的两方向受力和振动响应,共同脱落模式的流向振动响应相较而言被显著抑制,而延展体脱落模式的两方向受力和振动响应均被抑制。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] DEHNHARDTG,MAUCKB,BLECKMANNH. Sealwhiskers detect water movements[J]. Nature, 1998, 394(6690): 235-236.
[2] EBERHARDT W C, WAKEFIELD B F, MURPHY C T, et al. Development of an artificial sensor for hydrodynamic detection inspired by a seal’s whisker array[J]. Bioinspiration & Biomimetics, 2016, 11(5): 056011.
[3] HANKEW,WITTEM,MIERSCHL,etal.Harborsealvibrissamorphologysuppressesvortexinduced vibrations[J]. Journal of Experimental Biology, 2010, 213(15): 2665-2672.
[4] SCHULTE-PELKUMN, WIESKOTTENS,HANKEW,etal. Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina)[J]. Journal of Experimental Biology, 2007, 210 (5): 781-787.
[5] WITTEM,HANKEW,WIESKOTTENS,etal. Onthewakeflowdynamicsbehindharborseal vibrissae–a fluid mechanical explanation for an extraordinary capability[J]. Nature-Inspired Fluid Mechanics: Results of the DFG Priority Programme 1207”Nature-inspired Fluid Mechanics”2006-2012, 2012: 271-289.
[6] 宋立群,及春宁,张晓娜. 斑海豹胡须涡激振动及其尾流循迹机理直接数值模拟[J]. 力学学报,2021, 53(2): 395-412.
[7] BEEM H, HILDNER M, TRIANTAFYLLOU M. Calibration and validation of a harbor seal whisker-inspired flow sensor[J]. Smart Materials and Structures, 2012, 22(1): 014012.
[8] STOCKING J, EBERHARDT W, SHAKHSHEER Y, et al. A capacitance-based whisker-like artificial sensor for fluid motion sensing[C]//SENSORS, 2010 IEEE. IEEE, 2010: 2224-2229.
[9] GULJZ,SUKY,CHOIKH. Fully3Dprintedmulti-material soft bio-inspired whisker sensor for underwater-induced vortex detection[J]. Soft Robotics, 2018, 5(2): 122-132.
[10] BERNITSASMM,RAGHAVANK,BEN-SIMONY,etal. VIVACE(vortexinducedvibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[C]//International Conference on Offshore Mechanics and Arctic Engineering: Vol. 47470. 2006: 619-637.
[11] PETTIGREW M, TAYLOR C. Vibration analysis of shell-and-tube heat exchangers: an overview—Part 1: flow, damping, fluidelastic instability[J]. Journal of Fluids and Structures, 2003, 18(5): 469-483.
[12] WILLIAMSON C H. Vortex dynamics in the cylinder wake[J]. Annual Review of Fluid Mechanics, 1996, 28(1): 477-539.
[13] BEARMAN P W. Vortex shedding from oscillating bluff bodies[J]. Annual Review of Fluid Mechanics, 1984, 16(1): 195-222.
[14] FREDSOEJ,SUMERBM. Hydrodynamicsaround cylindrical structures: Vol. 12[M]. World Scientific, 1997.
[15] FENG C. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. University of British Columbia, 1968.
[16] BLACKBURNHM,HENDERSONRD. Astudyoftwo-dimensionalflowpastanoscillating cylinder[J]. Journal of Fluid Mechanics, 1999, 385: 255-286.
[17] WILLIAMSONCH,ROSHKOA. Vortexformation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures, 1988, 2(4): 355-381.
[18] KHALAKA,WILLIAMSONC. Dynamicsofahydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5): 455-472.
[19] KHALAK A, WILLIAMSON C. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of Fluids and Structures, 1997, 11(8): 973-982.
[20] KHALAK A, WILLIAMSON C H. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7-8): 813-851.
[21] GOVARDHANR,WILLIAMSONC. Modesofvortexformationandfrequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420: 85-130.
[22] SINGH S, MITTAL S. Vortex-induced oscillations at low Reynolds numbers: Hysteresis and vortex-shedding modes[J]. Journal of Fluids and Structures, 2005, 20(8): 1085-1104.
[23] JI C, XIAOZ,WANGY,etal. Numerical investigation on vortex-induced vibration of an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method [J]. International Journal of Computational Fluid Dynamics, 2011, 25(4): 207-221.
[24] CASTIGLIAD,BALABANIS,PAPADAKISG,etal. Anexperimentalandnumericalstudyof the flow past elliptic cylinder arrays[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(11): 1287-1301.
[25] JOHNSONSA,THOMPSONMC,HOURIGANK. Predictedlowfrequencystructuresinthe wakeofelliptical cylinders[J]. European Journal of Mechanics-B/Fluids, 2004, 23(1): 229-239.
[26] THOMPSON MC,RADIA, RAOA,et al. Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate[J]. Journal of Fluid Mechanics, 2014, 751: 570-600.
[27] SHI X, ALAM M, BAI H. Wakes of elliptical cylinders at low Reynolds number[J]. International Journal of Heat and Fluid Flow, 2020, 82: 108553.
[28] WAN H, DESROCHES J A, PALAZOTTO A N, et al. Vortex-induced vibration of elliptic cylinders and the suppression using mixed-convection[J]. Journal of Fluids and Structures, 2021, 103: 103297.
[29] YOGESWARAN V, SEN S, MITTAL S, et al. Free vibrations of an elliptic cylinder at low Reynolds numbers[J]. Journal of Fluids and Structures, 2014, 51: 55-67.
[30] KUMARD,MITTALM,SENS. Modificationofresponseandsuppressionofvortex-shedding in vortex-induced vibrations of an elliptic cylinder[J]. International Journal of Heat and Fluid Flow, 2018, 71: 406-419.
[31] KUMARD,SINGHAK,SENS.Identificationofresponsebranchesforoscillatorswithcurved and straight contours executing VIV[J]. Ocean Engineering, 2018, 164: 616-627.
[32] HASHEMINEJAD S M, JARRAHI M. Numerical simulation of two dimensional vortexinduced vibrations of an elliptic cylinder at low Reynolds numbers[J]. Computers & Fluids, 2015, 107: 25-42.
[33] BEEMHR,TRIANTAFYLLOUMS. Wake-induced‘slaloming’responseexplainsexquisite sensitivity of seal whisker-like sensors[J]. Journal of Fluid Mechanics, 2015, 783: 306-322.
[34] MUTHURAMALINGAMM,BRUECKERC. Seal and sea lion whiskers detect slips of vortices similar as rats sense textures[J]. Scientific Reports, 2019, 9(1): 12808.
[35] HOVER F, TRIANTAFYLLOU M. Galloping response of a cylinder with upstream wake interference[J]. Journal of Fluids and Structures, 2001, 15(3-4): 503-512.
[36] BRIKA D, LANEVILLE A. The flow interaction between a stationary cylinder and a downstream flexible cylinder[J]. Journal of Fluids and Structures, 1999, 13(5): 579-606.
[37] ASSI GR, BEARMANP,MENEGHINIJ. Onthe wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism[J]. Journal of Fluid Mechanics, 2010, 661: 365-401.
[38] ASSI G R. Wake-induced vibration of tandem and staggered cylinders with two degrees of freedom[J]. Journal of Fluids and Structures, 2014, 50: 340-357.
[39] HUERA-HUARTEF,BEARMANP. Vortexandwake-inducedvibrationsofatandemarrangement of two flexible circular cylinders with near wake interference[J]. Journal of Fluids and Structures, 2011, 27(2): 193-211.
[40] HUERA-HUARTE F, BANGASH Z, GONZÁLEZ L. Multi-mode vortex and wake-induced vibrations of a flexible cylinder in tandem arrangement[J]. Journal of Fluids and Structures, 2016, 66: 571-588.
[41] MYSARC,KABOUDIANA,JAIMANRK. Ontheoriginofwake-inducedvibration in two tandem circular cylinders at low Reynolds number[J]. Journal of Fluids and Structures, 2016, 61: 76-98.
[42] CARMO B S, SHERWIN S J, BEARMAN P W, et al. Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number[J]. Journal of Fluids and Structures, 2011, 27(4): 503-522.
[43] SAYERSA,SABANA. Flowovertwocylinders of different diameters: The lock-in effect[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51(1): 43-54.
[44] 于定勇,刘洪超,王昌海. 不等直径串列双圆柱体绕流的数值模拟[J/OL].中国海洋大学学报(自然科学版),2012,42(Z2): 160-165. DOI: 10.16441/j.cnki.hdxb.2012.z2.025.
[45] LAMKM,TOA.Interferenceeffectofanupstreamlargercylinderonthelock-invibrationofa flexibly mounted circular cylinder[J]. Journal of Fluids and Structures, 2003, 17(8): 1059-1078.
[46] GAOY,SUNZ,TANDS,etal. Wakeflow behaviour behind a smaller cylinder oscillating in the wakeofanupstreamstationary cylinder[J]. Fluid Dynamics Research, 2014, 46(2): 025505.
[47] CHEN W L, YANG W H, XU F, et al. Complex wake-induced vibration of aligned hangers behind tower of long-span suspension bridge[J]. Journal of Fluids and Structures, 2020, 92: 102829.
[48] WANGH,YANGW,NGUYENKD,etal. Wake-inducedvibrationsofanelastically mounted cylinder located downstream ofastationary larger cylinder at low Reynoldsnumbers[J]. Journal of Fluids and Structures, 2014, 50: 479-496.
[49] TADDEI S, MANES C, GANAPATHISUBRAMANI B. Characterisation of drag and wake properties of canopy patches immersed in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2016, 798: 27-49.
[50] NICOLLEA,EAMESI. Numericalstudyofflowthrough and around a circular array of cylinders[J]. Journal of Fluid Mechanics, 2011, 679: 1-31.
[51] KUMAR R, SINGH N K. Three dimensional flow over elliptic cylinders arrays in octagonal arrangement[J]. Journal of Thermal Engineering, 2021, 7(Supp 14): 2031-2040.
[52] XU G, ZHOU Y. Strouhal numbers in the wake of two inline cylinders[J]. Experiments in Fluids, 2004, 37: 248-256.
[53] MITTAL S, KUMARV,RAGHUVANSHIA. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements[J]. International Journal for Numerical Methods in Fluids, 1997, 25(11): 1315-1344.
[54] IGARASHI T. Characteristics of the flow around two circular cylinders arranged in tandem: 1st report[J]. Bulletin of JSME, 1981, 24(188): 323-331.
[55] ZDRAVKOVICHM. Flowinducedoscillationsoftwointerferingcircular cylinders[J]. Journal of Sound and Vibration, 1985, 101(4): 511-521.
[56] BOKAIAN A, GEOOLAF. Proximity-induced galloping of two interfering circular cylinders [J]. Journal of Fluid Mechanics, 1984, 146: 417-449.
[57] BORAZJANI I, SOTIROPOULOS F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region[J]. Journal of Fluid Mechanics, 2009, 621: 321-364.
[58] MITTAL S, KUMAR V. Flow-induced oscillations of two cylinders in tandem and staggered arrangements[J]. Journal of Fluids and Structures, 2001, 15(5): 717-736.
[59] WUX,CHENF, ZHOUS. Stationary and flow-induced vibration of two elliptic cylinders in tandem by immersed boundary-MRT lattice Boltzmann flux solver[J]. Journal of Fluids and Structures, 2019, 91: 102762.
[60] CHEN W, JI C, WILLIAMS J, et al. Vortex-induced vibrations of three tandem cylinders in laminar cross-flow: Vibration response and galloping mechanism[J]. Journal of Fluids and Structures, 2018, 78: 215-238.
[61] ZHAO M, CHENG L, AN H, et al. Flow and flow-induced vibration of a square array of cylinders in steady currents[J]. Fluid Dynamics Research, 2015, 47(4): 045505.
[62] RAHMANIANM,CHENGL,ZHAOM,etal. Lock-instudyoftwoside-by-side cylinders of different diameters in close proximity in steady flow[J]. Journal of Fluids and Structures, 2014, 49: 386-411.
[63] ZHAOM,CHENGL,ZHOUT. Numericalsimulation of vortex-induced vibration of a square cylinder at a low Reynolds number[J]. Physics of Fluids, 2013, 25(2): 023603.
[64] LEONTINI J S, JACONO D L, THOMPSON M C. Stability analysis of the elliptic cylinder wake[J]. Journal of Fluid Mechanics, 2015, 763: 302-321.
[65] RAOA,LEONTINI J S, THOMPSON MC,et al. Three-dimensionality of elliptical cylinder wakes at low angles of incidence[J]. Journal of Fluid Mechanics, 2017, 825: 245-283.
[66] JAUVTIS N, WILLIAMSON C. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004, 509: 23-62.
[67] MITTAL S, KUMAR V. Finite element study of vortex-induced cross-flow and in-line oscillations of a circular cylinder at low Reynolds numbers[J]. International Journal for Numerical Methods in Fluids, 1999, 31(7): 1087-1120.
[68] CARMOBS. Onwakeinterference in the flow around two circular cylinders: direct stability analysis and flow-induced vibrations[D]. Citeseer, 2009.
[69] TAMIMI V, NAEENI S, ZEINODDINI M, et al. Effects of upstream sharp edge square and diamond cylinders on the FIV of a circular cylinder[J]. Marine Structures, 2018, 59: 237-250.

所在学位评定分委会
力学
国内图书分类号
O353.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766200
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
黄承丞. 低质量比下二维细长椭圆柱的流致振动数值模拟研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132393-黄承丞-力学与航空航天(17663KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄承丞]的文章
百度学术
百度学术中相似的文章
[黄承丞]的文章
必应学术
必应学术中相似的文章
[黄承丞]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。