[1] 陈运泰. 地震预测: 回顾与展望[J]. 中国科学: D 辑, 2009, (12): 1633-58.
[2] BRACE W, BYERLEE J. Stick-slip as a mechanism for earthquakes[J]. Science, 1966, 153(3739): 990-2.
[3] JOHNSON P A, FERDOWSI B, KAPROTH B M, et al. Acoustic emission and microslip precursors to stick-slip failure in sheared granular material[J]. Geophysical Research Letters, 2013, 40(21): 5627-31.
[4] RIVIERE J, LV Z, JOHNSON P A, et al. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults[J]. Earth and Planetary Science Letters, 2018, 482: 407-13.
[5] BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433).
[6] 吕征. 含颗粒物模拟断层粘滑运动机制的实验研究[D]; 清华大学, 2019.
[7] ZHUO Y-Q, LIU P, CHEN S, et al. Laboratory Observations of Tremor-Like Events Generated During Preslip[J]. Geophys Res Lett, 2018, 45(14): 6926-34.
[8] DAHMEN K A, BEN-ZION Y, UHL J T. A simple analytic theory for the statistics of avalanches in sheared granular materials[J]. Nature Physics, 2011, 7(7): 554-7.
[9] RIVIèRE J, LV Z, JOHNSON P A, et al. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults[J]. Earth and Planetary Science Letters, 2018, 482: 407-13.
[10] DOROSTKAR O, GUYER R A, JOHNSON P A, et al. On the micromechanics of slip events in sheared, fluid-saturated fault gouge[J]. 2017, 44(12): 6101-8.
[11] BRZINSKI T A, DANIELS K E. Sounds of Failure: Passive Acoustic Measurements of Excited Vibrational Modes[J]. Physical Review Letters, 2018, 120(21): 218003.
[12] GAO K, EUSER B J, ROUGIER E, et al. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method[J]. J Geophys Res Solid Earth, 2018, 123: 5774– 92.
[13] ROUET-LEDUC B, HULBERT C, LUBBERS N, et al. Machine Learning Predicts Laboratory Earthquakes[J]. Geophys Res Lett, 2017, 44(18): 9276-82.
[14] JASPERSON H, BOLTON D C, JOHNSON P, et al. Attention Network Forecasts Time-to-Failure in Laboratory Shear Experiments[J]. J Geophys Res Solid Earth, 2021, 126(11): e2021JB022195.
[15] MCBECK J A, AIKEN J M, MATHIESEN J, et al. Deformation Precursors to Catastrophic Failure in Rocks[J]. Geophys Res Lett, 2020, 47(24): e2020GL090255.
[16] SHREEDHARAN S, BOLTON D C, RIVIèRE J, et al. Machine Learning Predicts the Timing and Shear Stress Evolution of Lab Earthquakes Using Active Seismic Monitoring of Fault Zone Processes[J]. J Geophys Res Solid Earth, 2021, 126(7): e2020JB021588.
[17] CHAIPORNKAEW L, ELSTON H, COOKE M, et al. Predicting Off-Fault Deformation From Experimental Strike-Slip Fault Images Using Convolutional Neural Networks[J]. Geophys Res Lett, 2022, 49(2): e2021GL096854.
[18] JOHNSON P A, ROUET-LEDUC B, PYRAK-NOLTE L J, et al. Laboratory earthquake forecasting: A machine learning competition[J]. Proceedings of the National Academy of Sciences, 2021, 118(5): e2011362118.
[19] MIGNAN A, BROCCARDO M. Neural Network Applications in Earthquake Prediction (1994-2019): Meta-Analytic and Statistical Insights on Their Limitations[J]. Seismological Research Letters, 2020, 91(4): 2330-42.
[20] BEROZA G C, SEGOU M, MOSTAFA MOUSAVI S. Machine learning and earthquake forecasting—next steps[J]. Nature Communications, 2021, 12(1): 4761.
[21] VAN KLAVEREN S, VASCONCELOS I, NIEMEIJER A. Predicting laboratory earthquakes with machine learning[J]. arXiv preprint arXiv:201106669, 2020.
[22] BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323.
[23] ROSS Z E, MEIER M A, HAUKSSON E. P Wave Arrival Picking and First-Motion Polarity Determination With Deep Learning[J]. J Geophys Res-Sol Ea, 2018, 123(6): 5120-9.
[24] LI Z, MEIER M-A, HAUKSSON E, et al. Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning[J]. Geophysical Research Letters, 2018, 45(10): 4773-9.
[25] BIANCO M J, GERSTOFT P, OLSEN K B, et al. High-resolution seismic tomography of Long Beach, CA using machine learning[J]. Sci Rep, 2019, 9(1): 14987.
[26] BAI T, TAHMASEBI P. Efficient and data-driven prediction of water breakthrough in subsurface systems using deep long short-term memory machine learning[J]. Computational Geosciences, 2020, 25(1): 285-97.
[27] DEVRIES P M R, VIEGAS F, WATTENBERG M, et al. Deep learning of aftershock patterns following large earthquakes[J]. Nature, 2018, 560(7720): 632-+.
[28] BREGMAN Y, RABIN N. Aftershock Identification Using Diffusion Maps[J]. Seismological Research Letters, 2018, 90(2A): 539-45.
[29] HAYES G P, EARLE P S, BENZ H M, et al. National earthquake information center strategic plan, 2019–23[R]: US Geological Survey, 2019.
[30] PANAKKAT A, ADELI H. Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators[J]. Computer‐Aided Civil and Infrastructure Engineering, 2009, 24(4): 280-92.
[31] ALLEN R M, MELGAR D. Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs[J]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 361-88.
[32] BRYKOV M N, PETRYSHYNETS I, PRUNCU C I, et al. Machine Learning Modelling and Feature Engineering in Seismology Experiment[J]. Sensors (Basel), 2020, 20(15).
[33] ASIM K M, MARTíNEZ-ÁLVAREZ F, BASIT A, et al. Earthquake magnitude prediction in Hindukush region using machine learning techniques[J]. Natural Hazards, 2017, 85: 471-86.
[34] ROUET-LEDUC B, HULBERT C, JOHNSON P A. Continuous chatter of the Cascadia subduction zone revealed by machine learning[J]. Nature Geoscience, 2019, 12(1): 75-9.
[35] MAIR K, FRYE K M, MARONE C. Influence of grain characteristics on the friction of granular shear zones[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): ECV 4-1-ECV 4-9.
[36] IKARI M J, MARONE C, SAFFER D M. On the relation between fault strength and frictional stability[J]. Geology, 2011, 39(1): 83-6.
[37] XU S, FUKUYAMA E, YAMASHITA F, et al. Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments[J]. Tectonophysics, 2018, 733: 209-31.
[38] RUBINO V, LAPUSTA N, ROSAKIS A J. Intermittent lab earthquakes in dynamically weakening fault gouge[J]. Nature, 2022, 606(7916): 922-9.
[39] XU S, FUKUYAMA E, YAMASHITA F. Robust Estimation of Rupture Properties at Propagating Front of Laboratory Earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 766-87.
[40] AHARONOV E, SPARKS D. Stick-slip motion in simulated granular layers[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B9).
[41] FERDOWSI B, GRIFFA M, GUYER R A, et al. Three-dimensional discrete element modeling of triggered slip in sheared granular media[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2014, 89(4): 042204.
[42] MA G, ZOU Y, GAO K, et al. Size polydispersity tunes slip avalanches of granular gouge[J]. Geophysical Research Letters, 2020, 47(23): e2020GL090458.
[43] GAO K, GUYER R A, ROUGIER E, et al. Plate motion in sheared granular fault system[J]. Earth Planet Sc Lett, 2020, 548: 116481.
[44] GAO K, GUYER R, ROUGIER E, et al. From Stress Chains to Acoustic Emission[J]. Phys Rev Lett, 2019, 123(4): 048003.
[45] ZHANG Y, GAO K, LI C. Two slip regimes in sheared granular fault[J]. Earth and Planetary Science Letters, 2023, 608: 118086.
[46] HULBERT C, ROUET-LEDUC B, JOHNSON P A, et al. Similarity of fast and slow earthquakes illuminated by machine learning[J]. Nature Geoscience, 2018, 12(1): 69-74.
[47] CORBI F, SANDRI L, BEDFORD J, et al. Machine learning can predict the timing and size of analog earthquakes[J]. Geophysical Research Letters, 2019, 46(3): 1303-11.
[48] LUBBERS N, BOLTON D C, MOHD‐YUSOF J, et al. Earthquake Catalog‐Based Machine Learning Identification of Laboratory Fault States and the Effects of Magnitude of Completeness[J]. Geophysical Research Letters, 2018, 45(24).
[49] SHREEDHARAN S, BOLTON D C, RIVIèRE J, et al. Machine Learning Predicts the Timing and Shear Stress Evolution of Lab Earthquakes Using Active Seismic Monitoring of Fault Zone Processes[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7).
[50] BOLTON D C, SHOKOUHI P, ROUET‐LEDUC B, et al. Characterizing Acoustic Signals and Searching for Precursors during the Laboratory Seismic Cycle Using Unsupervised Machine Learning[J]. Seismological Research Letters, 2019, 90(3): 1088-98.
[51] SHOKOUHI P, GIRKAR V, RIVIèRE J, et al. Deep learning can predict laboratory quakes from active source seismic data[J]. Geophysical Research Letters, 2021, 48(12): e2021GL093187.
[52] REN C X, DOROSTKAR O, ROUET‐LEDUC B, et al. Machine Learning Reveals the State of Intermittent Frictional Dynamics in a Sheared Granular Fault[J]. Geophysical Research Letters, 2019, 46(13): 7395-403.
[53] MA G, MEI J, GAO K, et al. Machine learning bridges microslips and slip avalanches of sheared granular gouges[J]. Earth and Planetary Science Letters, 2022, 579.
[54] MEI J, MA G, WANG Q, et al. Micro-and macroscopic aspects of the intermittent behaviors of granular materials related by graph neural network[J]. International Journal of Solids and Structures, 2022, 251: 111763.
[55] WANG K, JOHNSON C W, BENNETT K C, et al. Predicting fault slip via transfer learning[J]. Nat Commun, 2021, 12(1): 7319.
[56] MUNJIZA A, SMOLJANOVIĆ H, ŽIVALJIĆ N, et al. Structural applications of the combined finite–discrete element method[J]. Computational particle mechanics, 2020, 7: 1029-46.
[57] YAN C, ZHENG H, SUN G, et al. Combined finite-discrete element method for simulation of hydraulic fracturing[J]. Rock mechanics and rock engineering, 2016, 49: 1389-410.
[58] KNIGHT E E, ROUGIER E, LEI Z, et al. HOSS: an implementation of the combined finite-discrete element method[J]. Computational Particle Mechanics, 2020, 7: 765-87.
[59] GAO K, EUSER B J, ROUGIER E, et al. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 5774-92.
[60] CHEN T, HE T, BENESTY M, et al. Xgboost: extreme gradient boosting[J]. R package version 04-2, 2015, 1(4): 1-4.
[61] KE G, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[Z]. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA; Curran Associates Inc. 2017: 3149–57
[62] MUNJIZA A. Discrete elements in transient dynamics of fractured media[D]; Swansea University, 1992.
[63] GELLER D A, ECKE R E, DAHMEN K A, et al. Stick-slip behavior in a continuum-granular experiment[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2015, 92(6): 060201.
[64] TSAI J C, VOTH G A, GOLLUB J P. Internal granular dynamics, shear-induced crystallization, and compaction steps[J]. Physical Review Letters, 2003, 91(6): 064301.
[65] WANG K, JOHNSON C W, BENNETT K C, et al. Predicting Future Laboratory Fault Friction Through Deep Learning Transformer Models[J]. Geophysical Research Letters, 2022, 49(19).
[66] LAURENTI L, TINTI E, GALASSO F, et al. Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress[J]. Earth and Planetary Science Letters, 2022, 598.
[67] JOHNSON P A, ROUET-LEDUC B, PYRAK-NOLTE L J, et al. Laboratory earthquake forecasting: A machine learning competition[J]. Proc Natl Acad Sci U S A, 2021, 118(5).
[68] JASPERSON H, BOLTON D C, JOHNSON P, et al. Attention Network Forecasts Time‐to‐Failure in Laboratory Shear Experiments[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11).
[69] TRUGMAN D T, MCBREARTY I W, BOLTON D C, et al. The Spatiotemporal Evolution of Granular Microslip Precursors to Laboratory Earthquakes[J]. Geophysical Research Letters, 2020, 47(16).
[70] SHREEDHARAN S, BOLTON D C, RIVIèRE J, et al. Preseismic Fault Creep and Elastic Wave Amplitude Precursors Scale With Lab Earthquake Magnitude for the Continuum of Tectonic Failure Modes[J]. Geophysical Research Letters, 2020, 47(8).
[71] BREIMAN L, FRIEDMAN J, OLSHEN R, et al. Cart[J]. Classification and regression trees, 1984.
[72] GéRON A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow[M]. " O'Reilly Media, Inc.", 2022.
[73] BREIMAN L. Random forests[J]. Machine learning, 2001, 45: 5-32.
[74] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. Annals of statistics, 2001: 1189-232.
[75] BREIMAN L. Bagging predictors[J]. Machine learning, 1996, 24: 123-40.
[76] SCHAPIRE R E. The boosting approach to machine learning: An overview[J]. Nonlinear estimation and classification, 2003: 149-71.
[77] WOLPERT D H. Stacked generalization[J]. Neural networks, 1992, 5(2): 241-59.
[78] USTUN T S, HUSSAIN S M S, ULUTAS A, et al. Machine learning-based intrusion detection for achieving cybersecurity in smart grids using IEC 61850 GOOSE messages[J]. Symmetry, 2021, 13(5): 826.
[79] LUNDBERG S M, ERION G G, LEE S-I. Consistent individualized feature attribution for tree ensembles[J]. arXiv preprint arXiv:180203888, 2018.
[80] RIBEIRO M T, SINGH S, GUESTRIN C. " Why should i trust you?" Explaining the predictions of any classifier, F 2016].
[81] FALK M L, LANGER J S. Dynamics of viscoplastic deformation in amorphous solids[J]. Phys Rev E, 1998, 57(6): 7192.
[82] MA G, ZOU Y, CHEN Y, et al. Spatial correlation and temporal evolution of plastic heterogeneity in sheared granular materials[J]. Powder technology, 2021, 378: 263-73.
[83] MOUSAVI S M, BEROZA G C. A Machine‐Learning Approach for Earthquake Magnitude Estimation[J]. Geophysical Research Letters, 2020, 47(1).
[84] MARTINEZ-CANTIN R. BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits[J]. J Mach Learn Res, 2014, 15(1): 3735-9.
[85] VICTORIA A H, MARAGATHAM G. Automatic tuning of hyperparameters using Bayesian optimization[J]. Evolving Systems, 2021, 12(1): 217-23.
[86] REN C X, PELTIER A, FERRAZZINI V, et al. Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano[J]. Geophys Res Lett, 2020, 47(3): e2019GL085523.
[87] KHOSRAVIKIA F, CLAYTON P. Machine learning in ground motion prediction[J]. Computers & Geosciences, 2021, 148.
[88] FERDOWSI B, GRIFFA M, GUYER R A, et al. Microslips as precursors of large slip events in the stick‐slip dynamics of sheared granular layers: A discrete element model analysis[J]. Geophysical Research Letters, 2013, 40(16): 4194-8.
[89] RUIZ S, ADEN-ANTONIOW F, BAEZ J C, et al. Nucleation Phase and Dynamic Inversion of theMw6.9 Valparaíso 2017 Earthquake in Central Chile[J]. Geophysical Research Letters, 2017, 44(20): 10,290-10,7.
[90] SOCQUET A, VALDES J P, JARA J, et al. An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust[J]. Geophysical Research Letters, 2017, 44(9): 4046-53.
[91] KATO A, OBARA K, IGARASHI T, et al. Propagation of slow slip leading up to the 2011 M w 9.0 Tohoku-Oki earthquake[J]. Science, 2012, 335(6069): 705-8.
[92] RUIZ S, METOIS M, FUENZALIDA A, et al. Intense foreshocks and a slow slip event preceded the 2014 Iquique M w 8.1 earthquake[J]. Science, 2014, 345(6201): 1165-9.
[93] GUERIN-MARTHE S, NIELSEN S, BIRD R, et al. Earthquake Nucleation Size: Evidence of Loading Rate Dependence in Laboratory Faults[J]. J Geophys Res Solid Earth, 2019, 124(1): 689-708.
[94] KANEKO Y, NIELSEN S B, CARPENTER B M. The onset of laboratory earthquakes explained by nucleating rupture on a rate-and-state fault[J]. 2016, 121(8): 6071-91.
[95] OHNAKA M. Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture: a physical model of earthquake generation processes[J]. Proceedings of the National Academy of Sciences, 1996, 93(9): 3795-802.
[96] DIETERICH J H. Earthquake nucleation on faults with rate-and state-dependent strength[J]. Tectonophysics, 1992, 211(1): 115-34.
[97] WECH A G, CREAGER K C, HOUSTON H, et al. An earthquake‐like magnitude‐frequency distribution of slow slip in northern Cascadia[J]. Geophysical Research Letters, 2010, 37(22).
[98] BOLTON D C, SHOKOUHI P, ROUET‐LEDUC B, et al. Characterizing acoustic signals and searching for precursors during the laboratory seismic cycle using unsupervised machine learning[J]. 2019, 90(3): 1088-98.
[99] KAO C S, CARVALHO F C S, LABUZ J F. Micromechanisms of fracture from acoustic emission[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(4): 666-73.
[100] RICE J R. Elastic wave emission from damage processes[J]. Journal of Nondestructive Evaluation, 1980, 1: 215-24.
[101] TRUGMAN D T, MCBREARTY I W, BOLTON D C, et al. The spatiotemporal evolution of granular microslip precursors to laboratory earthquakes[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088404.
[102] WANG K, JOHNSON C W, BENNETT K C, et al. Predicting fault slip via transfer learning[J]. Nature Communications, 2021, 12(1): 7319.
[103] DOROSTKAR O, GUYER R A, JOHNSON P A, et al. On the role of fluids in stick‐slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics‐discrete element approach[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(5): 3689-700.
[104] JOHNSON P A, FERDOWSI B, KAPROTH B M, et al. Acoustic emission and microslip precursors to stick‐slip failure in sheared granular material[J]. Geophysical Research Letters, 2013, 40(21): 5627-31.
[105] MEROZ Y, MEADE B J. Intermittent granular dynamics at a seismogenic plate boundary[J]. Physical Review Letters, 2017, 119(13): 138501.
[106] ANDERSON D L. New Theory of the Earth[M]. 2 ed. Cambridge: Cambridge University Press, 2007.
[107] HULBERT C, ROUET-LEDUC B, JOHNSON P A, et al. Similarity of fast and slow earthquakes illuminated by machine learning[J]. Nature Geoscience, 2019, 12(1): 69-74.
[108] OBARA K, KATO A. Connecting slow earthquakes to huge earthquakes[J]. Science, 2016, 353(6296): 253-7.
[109] LEI X, MA S. Laboratory acoustic emission study for earthquake generation process[J]. Earthquake Science, 2014, 27: 627-46.
修改评论