[1] FRAZIER W E. Metal Additive Manufacturing: A Review[J]. Journal of Materials Engineering and Performance, 2014, 23: 1917-1928.
[2] 赫新宇, 黎兴刚, 黄禹赫, 等. 气体雾化制粉工艺中基于气体整流的卫星粉控制技术[J]. 粉末冶金技术, 2022, 39: 1-16.
[3] 阮刚. 面向金属增材制造的气体雾化与离心雾化粉末性能比较研究[D]. 南方科技大学, 2022.
[4] 黎兴刚, 刘畅, 朱强. 面向金属增材制造的气体雾化制粉技术研究进展[J]. 航空制造技术, 2019, 62(22): 22-34.
[5] ÖZBILEN S. Satellite Formation Mechanism in Gas Atomised Powders[J]. Powder Metallurgy, 1999, 42(1): 70-78.
[6] DUNKLEY J, TELFORD B. Control of Satellite Particles in Gas Atomisation[J]. Advances in Powder Metallurgy and Particulate Materials, 2002, 1(3): 3-103.
[7] UHLENWINKEL V, SCHWENCK D, ELLENDT N, et al. Gas Recirculation Affects the Powder Quality[C]//Proceedings of the Advances in Powder Metallurgy and Particulate Materials. Orlando, Florida, 2014: 18-22.
[8] BECKERS D, ELLENDT N, FRITSCHING U, et al. Impact of Process Flow Conditions on Particle Morphology in Metal Powder Production via Gas Atomization[J]. Advanced Powder Technology, 2020, 31(1): 300-311.
[9] ANDERSON I E, WHITE E M, DEHOFF R. Feedstock Powder Processing Research Needs for Additive Manufacturing Development[J]. Current Opinion in Solid State and Materials Science, 2018, 22(1): 8-15.
[10] 杨谨如. 超微气流磨中粒径控制机理的研究[D]. 重庆科技学院, 2021.
[11] 林胜. 我国超细粉碎设备的现状与展望[J]. 中国粉体技术, 2016: 1.
[12] 苏偲禹. 气流粉碎对粉体物性的影响及破碎机理研究[D]. 大连理工大学, 2020.
[13] 侯志远, 杨永民. 气流磨粉磨超细矿渣粉的粉体性能和微观形貌研究[J]. 材料开发与应用, 2009(4): 5.
[14] 张军, 刘建国, 王宾. 粉体加工中气流粉碎技术的研究进展[J]. 现代矿业, 2020, 36(11): 8.
[15] 吉晓莉, 梅心涛, 王浩, 等. 流化床气流磨粉碎制备超细SiC 片晶的实验研究[J]. 中国粉体技术, 2006, 12(1): 4.
[16] MARCHISIO D L, FOX R O. Computational Models for Polydisperse Particulate and Multiphase Systems[M]. Cambridge University Press, 2013.
[17] RAMKRISHNA D. Population Balances: Theory and Applications to Particulate Systems in Engineering[M]. Elsevier, 2000.
[18] RIEBER M, FROHN A. Three-Dimensional Navier-Stokes Simulation of Binary Collisions Between Droplets of Equal Size[J]. Journal of Aerosol Science, 1995, 26: 929-930.
[19] SCHELKLE M, FROHN A. Three-Dimensional Lattice Boltzmann Simulations of Binary Collisions Between Equal Droplets[J]. Journal of Aerosol Science, 1995, 1(26): 145-146.
[20] Van der HOEVEN M. Particle-Droplet Collisions in Spray Drying[D]. The University of Queensland, 2008.
[21] NIKOLOPOULOS N, STROTOS G, NIKAS K, et al. The Effect of Weber Number on the Central Binary Collision Outcome Between Unequal-Sized Droplets[J]. International Journal of Heat and Mass Transfer, 2012, 55(7-8): 2137-2150.
[22] FOCKE C, KUSCHEL M, SOMMERFELD M, et al. Collision Between High and Low Viscosity Droplets: Direct Numerical Simulations and Experiments[J]. International Journal of Multiphase Flow, 2013, 56: 81-92.
[23] SUN K, JIA M, WANG T. Numerical Investigation on the Head-on Collision Between Unequal-Sized Droplets With Multiple-Relaxation-Time Lattice Boltzmann Model[J]. International Journal of Heat and Mass Transfer, 2014, 70: 629-640.
[24] LI X G, FRITSCHING U. Numerical Investigation of Solid Particle Penetration into Liquid Droplet: Numerische Untersuchung des Eindringverhaltens von Feststoffpartikeln in Flüssigkeitstropfen[J]. Materialwissenschaft und Werkstofftechnik, 2014, 45(8): 666-682.
[25] CHOWDHARY S, REDDY S R, BANERJEE R. Detailed Numerical Simulations of Unequal Sized Off-Centre Binary Droplet Collisions[J]. International Journal of Multiphase Flow, 2020, 128: 103267.
[26] 徐喜庆, 杨正红. 激光衍射法粒度分析的准确性及其与图像法分析结果的比较[J]. 仪器仪表与分析监测, 2020, 1(004): 000.
[27] 郭永彩, 高潮, 胡学东, 等. 微细颗粒粒度分析方法与测试技术[J]. 重庆大学学报: 自然科学版, 2000, 23(5): 100-103.
[28] 蔡小舒, 苏明旭, 沈建琪, 等. 粒度测试技术的最新发展[C]//2007 年全国粉体工业技术大会. 2007.
[29] 李叶, 殷喜平, 杨正红. 颗粒球形度的表征、分级及其应用[J]. 现代科学仪器, 2020, 1: 1.
[30] DRITSELIS C, KARAPETSAS G. Open-Source Finite Volume Solvers for Multiphase (NPhase) Flows Involving Either Newtonian or Non-Newtonian Complex Fluids[J]. Computers & Fluids, 2022, 245: 105590.
[31] MA Z, WEI Z, FENG Y, et al. Experimental Study on the Collision Behaviors of Micron-Sized Aluminum Droplets With Solid Wall in High Temperature Burned Gas[J]. Aerospace Science and Technology, 2021, 115: 106791.
[32] LIU D, ZHANG P, LAW C K, et al. Collision Dynamics and Mixing of Unequal-Size Droplets[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 421-428.
[33] PAWAR S K, HENRIKSON F, FINOTELLO G, et al. An Experimental Study of Droplet-Particle Collisions[J]. Powder Technology, 2016, 300: 157-163.
[34] TKACHENKO P, SHLEGEL N, VOLKOV R, et al. Experimental Study of Miscibility of Liquids in Binary Droplet Collisions[J]. Chemical Engineering Research and Design, 2021, 168: 1-12.
[35] TKACHENKO P, SHLEGEL N, STRIZHAK P. Experimental Research of Liquid Droplets Colliding With Solid Particles in a Gaseous Medium[J]. Chemical Engineering Research and Design, 2022, 177: 200-209.
[36] PENG Y L, HAN S X, TIAN L L, et al. In Situ Investigation of Minor-Phase Globule Collision and the Structure in a Droplet-Shaped Immiscible Alloy[J]. Materials Letters, 2019, 254: 222-225.
[37] YOON I, SHIN S. Computational Study on Dynamic Behavior During Droplet-Particle Interaction[J]. Chemical Engineering Science, 2021, 241: 116656.
[38] TEMMLER A, PIRCH N, LUO J, et al. Numerical and Experimental Investigation on Formation of Surface Structures in Laser Remelting for Additive-Manufactured Inconel 718[J]. Surface and Coatings Technology, 2020, 403: 126370.
[39] POTTLACHER G, HOSAEUS H, KASCHNITZ E, et al. Thermophysical Properties of Solid and Liquid Inconel 718 Alloy[J]. Scandinavian Journal of Metallurgy, 2002, 31(3): 161-168.
[40] 全国有色金属标准化技术委员会. 金属材料中氢、氧、氮、碳和硫分析方法通则[S]. 北京: 中国标准出版社, 2017.
[41] 全国化学标准化技术委员会化学试剂分会. 化学试剂— 电感耦合等离子体原子发射光谱法通则[S]. 北京: 中国标准出版社, 2009.
[42] ISO Central Secretary. Representation of Results of Particle Size Analysis — Part 6: Descriptive and Quantitative Representation of Particle Shape and Morphology[S]. 2008.
[43] 全国颗粒表征与分检及筛网标准化技术委员会. 粒度分析结果的表述— 第6 部分:颗粒形状和形态的定性及定量表述[S]. 北京: 中国标准出版社, 2014.
[44] 全国有色金属标准化技术委员会. 金属粉末— 流动性的测定— 标准漏斗法(霍尔流速计)[S]. 北京: 中国标准出版社, 2010.
[45] 全国有色金属标准化技术委员会. 金属粉末— 松装密度的测定— 第1 部分:漏斗法[S]. 北京: 中国标准出版社, 2011.
[46] MENG L, MCWILLIAMS B, JAROSINSKI W, et al. Machine learning in additive manufacturing: a review[J]. Jom, 2020, 72: 2363-2377.
[47] 苏金龙, 陈乐群, 谭超林, 等. 基于机器学习的增材制造过程优化与新材料研发进展[J]. Chinese Journal of Lasers, 2022, 49(14): 1402101-1402101.
修改评论