[1] KLEMM S L, SHIPONY Z, GREENLEAF W J. Chromatin accessibility and the regulatory epigenome[J]. Nature Reviews Genetics, 2019, 20(4): 207-220.
[2] THURMAN R E, RYNES E, HUMBERT R, et al. The accessible chromatin landscape of the human genome[J]. Nature, 2012, 489(7414): 75-82.
[3] ANDERSSON R, SANDELIN A. Determinants of enhancer and promoter activities of regulatory elements[J]. Nature Reviews Genetics, 2020, 21(2): 71-87.
[4] SPITZ F, FURLONG E E. Transcription factors: from enhancer binding to developmental control[J]. Nature Reviews Genetics, 2012, 13(9): 613-626.
[5] SCHOENFELDER S, FRASER P. Long-range enhancer-promoter contacts in gene expression control[J]. Nature Reviews Genetics, 2019, 20(8): 437-455.
[6] BANERJI J, RUSCONI S, SCHAFFNER W. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences[J]. Cell, 1981, 27(2 Pt 1): 299-308.
[7] ABDULGHANI M, JAIN A, TUTEJA G. Genome-wide identification of enhancer elements in the placenta[J]. Placenta, 2019, 79: 72-77.
[8] RAZIN S V, ULIANOV S V, IAROVAIA O V. Enhancer Function in the 3D Genome[J]. Genes (Basel), 2023, 14(6)
[9] NARITA T, HIGASHIJIMA Y, KILIC S, et al. Acetylation of histone H2B marks active enhancers and predicts CBP/p300 target genes[J]. Nature Genetics, 2023, 55(4): 679-692.
[10] WANG Y, ZHANG C, WANG Y, et al. Enhancer RNA (eRNA) in Human Diseases[J]. Int J Mol Sci, 2022, 23(19)
[11] ANDERSSON R, GEBHARD C, MIGUEL-ESCALADA I, et al. An atlas of active enhancers across human cell types and tissues[J]. Nature, 2014, 507(7493): 455-+.
[12] SCHWALB B, MICHEL M, ZACHER B, et al. TT-seq maps the human transient transcriptome[J]. Science, 2016, 352(6290): 1225-1228.
[13] CONSORTIUM E P, MOORE J E, PURCARO M J, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes[J]. Nature, 2020, 583(7818): 699-710.
[14] NORD A S, BLOW M J, ATTANASIO C, et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development[J]. Cell, 2013, 155(7): 1521-1531.
[15] CORCES M R, BUENROSTRO J D, WU B, et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution[J]. Nature Genetics, 2016, 48(10): 1193-1203.
[16] O'FARRELL P H. Growing an Embryo from a Single Cell: A Hurdle in Animal Life[J]. Cold Spring Harb Perspect Biol, 2015, 7(11)
[17] TADROS W, LIPSHITZ H D. The maternal-to-zygotic transition: a play in two acts[J]. Development, 2009, 136(18): 3033-3042.
[18] HARVEY E B. Development of half-eggs of Chaetopterus pergamentaceus with special reference to parthenogenetic merogony[J]. Biological Bulletin, 1939, 76(3): 384-404.
[19] YUAN S L, ZHAN J H, ZHANG J Y, et al. Human zygotic genome activation is initiated from paternal genome[J]. Cell Discovery, 2023, 9(1)
[20] JUKAM D, SHARIATI S A M, SKOTHEIM J M. Zygotic Genome Activation in Vertebrates[J]. Dev Cell, 2017, 42(4): 316-332.
[21] COLLART C, OWENS N D L, BHAW-ROSUN L, et al. High-resolution analysis of gene activity during the Xenopus mid-blastula transition[J]. Development, 2014, 141(9): 1927-1939.
[22] OWENS N D L, BLITZ I L, LANE M A, et al. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development[J]. Cell Reports, 2016, 14(3): 632-647.
[23] IWAO Y, UCHIDA Y, UENO S, et al. Midblastula transition (MBT) of the cell cycles in the yolk and pigment granule-free translucent blastomeres obtained from centrifuged Xenopus embryos[J]. Development Growth & Differentiation, 2005, 47(5): 283-294.
[24] HEYN P, KIRCHER M, DAHL A, et al. The earliest transcribed zygotic genes are short, newly evolved, and different across species[J]. Cell Rep, 2014, 6(2): 285-292.
[25] AANES H, WINATA C L, LIN C H, et al. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition[J]. Genome Res, 2011, 21(8): 1328-1338.
[26] YANG H X, ZHOU Y, GU J L, et al. Deep mRNA Sequencing Analysis to Capture the Transcriptome Landscape of Zebrafish Embryos and Larvae[J]. PLoS One, 2013, 8(6)
[27] MATHAVAN S, LEE S G P, MAK A, et al. Transcriptome analysis of zebrafish embryogenesis using microarrays[J]. Plos Genetics, 2005, 1(2): 260-276.
[28] FLACH G, JOHNSON M H, BRAUDE P R, et al. The transition from maternal to embryonic control in the 2-cell mouse embryo[J]. Embo j, 1982, 1(6): 681-686.
[29] AOKI F, WORRAD D M, SCHULTZ R M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo[J]. Dev Biol, 1997, 181(2): 296-307.
[30] HAMATANI T, CARTER M G, SHAROV A A, et al. Dynamics of global gene expression changes during mouse preimplantation development[J]. Dev Cell, 2004, 6(1): 117-131.
[31] YAN L, YANG M, GUO H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells[J]. Nature Structural & Molecular Biology, 2013, 20(9): 1131-1139.
[32] XUE L, CAI J Y, MA J, et al. Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis[J]. BMC Genomics, 2013, 14: 568.
[33] KONG Q, YANG X, ZHANG H, et al. Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig[J]. FASEB J, 2020, 34(1): 691-705.
[34] PRITCHARD D K, SCHUBIGER G. Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio[J]. Genes & Development, 1996, 10(9): 1131-1142.
[35] LEFEBVRE F A, LECUYER E. Flying the RNA Nest: Drosophila Reveals Novel Insights into the Transcriptome Dynamics of Early Development[J]. Journal of Developmental Biology, 2018, 6(1)
[36] SWINBURNE I A, SILVER P A. Intron delays and transcriptional timing during development[J]. Developmental Cell, 2008, 14(3): 324-330.
[37] SHERMOEN A W, OFARRELL P H. Progression of the Cell-Cycle through Mitosis Leads to Abortion of Nascent Transcripts[J]. Cell, 1991, 67(2): 303-310.
[38] PERSSON J, EKWALL K. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation[J]. Experimental Cell Research, 2010, 316(8): 1316-1323.
[39] HAN M H, ISSAGULOVA D, PARK M. Interplay between epigenome and 3D chromatin structure[J]. BMB Rep, 2023, 56(12): 633-644.
[40] MOORE L D, LE T, FAN G P. DNA Methylation and Its Basic Function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38.
[41] BRAUN R E. Packaging paternal chromosomes with protamine[J]. Nature Genetics, 2001, 28(1): 10-12.
[42] KIMMINS S, SASSONE-CORSI P. Chromatin remodelling and epigenetic features of germ cells[J]. Nature, 2005, 434(7033): 583-589.
[43] BRYKCZYNSKA U, HISANO M, ERKEK S, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa[J]. Nature Structural & Molecular Biology, 2010, 17(6): 679-687.
[44] VAN DE WERKEN C, VAN DER HEIJDEN G W, ELEVELD C, et al. Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications[J]. Nature Communications, 2014, 5
[45] MHANNI A A, MCGOWAN R A. Global changes in genomic methylation levels during early development of the zebrafish embryo[J]. Dev Genes Evol, 2004, 214(8): 412-417.
[46] OSWALD J, ENGEMANN S, LANE N, et al. Active demethylation of the paternal genome in the mouse zygote[J]. Curr Biol, 2000, 10(8): 475-478.
[47] SANTOS F, HENDRICH B, REIK W, et al. Dynamic reprogramming of DNA methylation in the early mouse embryo[J]. Developmental Biology, 2002, 241(1): 172-182.
[48] SMITH Z D, CHAN M M, MIKKELSEN T S, et al. A unique regulatory phase of DNA methylation in the early mammalian embryo[J]. Nature, 2012, 484(7394): 339-344.
[49] STANCHEVA I, EL-MAARRI O, WALTER J, et al. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos[J]. Developmental Biology, 2002, 243(1): 155-165.
[50] POTOK M E, NIX D A, PARNELL T J, et al. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern[J]. Cell, 2013, 153(4): 759-772.
[51] KOBAYASHI W, TACHIBANA K. Awakening of the zygotic genome by pioneer transcription factors[J]. Curr Opin Struct Biol, 2021, 71: 94-100.
[52] SCHULZ K N, BONDRA E R, MOSHE A, et al. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo[J]. Genome Research, 2015, 25(11): 1715-1726.
[53] LIANG H L, NIEN C Y, LIU H Y, et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila[J]. Nature, 2008, 456(7220): 400-U467.
[54] RIBEIRO L, TOBIAS-SANTOS V, SANTOS D, et al. Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects[J]. Plos Genetics, 2017, 13(7): e1006868.
[55] DUAN J, RIEDER L, COLONNETTA M M, et al. CLAMP and Zelda function together to promote Drosophila zygotic genome activation[J]. Elife, 2021, 10
[56] GASKILL M M, GIBSON T J, LARSON E D, et al. GAF is essential for zygotic genome activation and chromatin accessibility in the early Drosophila embryo[J]. Elife, 2021, 10
[57] PALFY M, SCHULZE G, VALEN E, et al. Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation[J]. Plos Genetics, 2020, 16(1): e1008546.
[58] VEIL M, YAMPOLSKY L Y, GRÜNING B, et al. Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation[J]. Genome Res, 2019, 29(3): 383-395.
[59] GAGNON J A, OBBAD K, SCHIER A F. The primary role of zebrafish nanog is in extra-embryonic tissue[J]. Development, 2018, 145(1)
[60] POWNALL M E, MIAO L Y, VEJNAR C E, et al. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin[J]. Science, 2023, 381(6653): 92-99.
[61] STANNEY W, 3RD, LADAM F, DONALDSON I J, et al. Combinatorial action of NF-Y and TALE at embryonic enhancers defines distinct gene expression programs during zygotic genome activation in zebrafish[J]. Dev Biol, 2020, 459(2): 161-180.
[62] MEIER M, GRANT J, DOWDLE A, et al. Cohesin facilitates zygotic genome activation in zebrafish[J]. Development, 2018, 145(1)
[63] PRADHAN S J, REDDY P C, SMUTNY M, et al. Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis[J]. Nature Communications, 2021, 12(1)
[64] COLLART C, ALLEN G E, BRADSHAW C R, et al. Titration of Four Replication Factors Is Essential for the Xenopus laevis Midblastula Transition[J]. Science, 2013, 341(6148): 893-896.
[65] LU F, LIU Y, INOUE A, et al. Establishing Chromatin Regulatory Landscape during Mouse Preimplantation Development[J]. Cell, 2016, 165(6): 1375-1388.
[66] GAO L, WU K, LIU Z, et al. Chromatin Accessibility Landscape in Human Early Embryos and Its Association with Evolution[J]. Cell, 2018, 173(1): 248-259 e215.
[67] DE IACO A, PLANET E, COLUCCIO A, et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals[J]. Nature Genetics, 2017, 49(6): 941-+.
[68] CHEN Z Y, ZHANG Y. Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development[J]. Nature Genetics, 2019, 51(6): 947-+.
[69] ABBASSI L, MALKI S, COCKBURN K, et al. Multiple Mechanisms Cooperate to Constitutively Exclude the Transcriptional Co-Activator YAP from the Nucleus During Murine Oogenesis[J]. Biol Reprod, 2016, 94(5): 102.
[70] GASSLER J, KOBAYASHI W, GASPAR I, et al. Zygotic genome activation by the totipotency pioneer factor Nr5a2[J]. Science, 2022, 378(6626): 1305-1315.
[71] WU J, HUANG B, CHEN H, et al. The landscape of accessible chromatin in mammalian preimplantation embryos[J]. Nature, 2016, 534(7609): 652-657.
[72] JI S, CHEN F, STEIN P, et al. OBOX regulates murine zygotic genome activation and early development[J]. Nature, 2023
[73] FALCO G, LEE S L, STANGHELLINI I, et al. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells[J]. Dev Biol, 2007, 307(2): 539-550.
[74] WANG C, CHEN C, LIU X, et al. Dynamic nucleosome organization after fertilization reveals regulatory factors for mouse zygotic genome activation[J]. Cell Res, 2022, 32(9): 801-813.
[75] ZHAO Y, ZHAI Y, FU C, et al. Transcription factor ELK1 regulates the expression of histone 3 lysine 9 to affect developmental potential of porcine preimplantation embryos[J]. Theriogenology, 2023, 206: 170-180.
[76] JIANG W J, SUN M H, LI X H, et al. Y-box binding protein 1 influences zygotic genome activation by regulating N6-methyladenosine in porcine embryos[J]. J Cell Physiol, 2023, 238(7): 1592-1604.
[77] LI X H, SUN M H, JIANG W J, et al. ZSCAN4 Regulates Zygotic Genome Activation and Telomere Elongation in Porcine Parthenogenetic Embryos[J]. Int J Mol Sci, 2023, 24(15)
[78] CHO T, SAKAI S, NAGATA M, et al. Involvement of chromatin structure in the regulation of mouse zygotic gene activation[J]. Animal Science Journal, 2002, 73(2): 113-122.
[79] NIU L, SHEN W, SHI Z, et al. Three-dimensional folding dynamics of the Xenopus tropicalis genome[J]. Nature Genetics, 2021, 53(7): 1075-1087.
[80] KAAIJ L J T, VAN DER WEIDE R H, KETTING R F, et al. Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development[J]. Cell Rep, 2018, 24(1): 1-10.e14.
[81] WIKE C L, GUO Y X, TAN M Y, et al. Chromatin architecture transitions from zebrafish sperm through early embryogenesis[J]. Genome Research, 2021, 31(6): 981-994.
[82] GALITSYNA A, ULIANOV S V, BYKOV N S, et al. Extrusion fountains are hallmarks of chromosome organization emerging upon zygotic genome activation[J]. bioRxiv, 2023
[83] PATEL L, KANG R, ROSENBERG S C, et al. Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase[J]. Nature Structural & Molecular Biology, 2019, 26(3): 164-174.
[84] DU Z H, ZHENG H, HUANG B, et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development[J]. Nature, 2017, 547(7662): 232-+.
[85] CHEN X, KE Y, WU K, et al. Key role for CTCF in establishing chromatin structure in human embryos[J]. Nature, 2019, 576(7786): 306-310.
[86] BORGEL J, GUIBERT S, LI Y, et al. Targets and dynamics of promoter DNA methylation during early mouse development[J]. Nature Genetics, 2010, 42(12): 1093-1100.
[87] BOGDANOVIC O, LONG S W, VAN HEERINGEN S J, et al. Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis[J]. Genome Res, 2011, 21(8): 1313-1327.
[88] ANDERSEN I S, REINER A H, AANES H, et al. Developmental features of DNA methylation during activation of the embryonic zebrafish genome[J]. Genome Biol, 2012, 13(7): R65.
[89] STANCHEVA I, MEEHAN R R. Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos[J]. Genes Dev, 2000, 14(3): 313-327.
[90] CHEN F, LI M G, HUA Z D, et al. TET Family Members Are Integral to Porcine Oocyte Maturation and Parthenogenetic Pre-Implantation Embryogenesis[J]. Int J Mol Sci, 2023, 24(15)
[91] LI X Y, HARRISON M M, VILLALTA J E, et al. Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition[J]. Elife, 2014, 3
[92] CHEN K, JOHNSTON J, SHAO W Q, et al. A global change in RNA polymerase II pausing during the Drosophila midblastula transition[J]. Elife, 2013, 2
[93] ZHANG B, WU X, ZHANG W, et al. Widespread Enhancer Dememorization and Promoter Priming during Parental-to-Zygotic Transition[J]. Mol Cell, 2018, 72(4): 673-686.e676.
[94] ZHANG B J, WU X T, ZHANG W H, et al. Widespread Enhancer Dememorization and Promoter Priming during Parental-to-Zygotic Transition[J]. Molecular Cell, 2018, 72(4): 673-+.
[95] LINDEMAN L C, ANDERSEN I S, REINER A H, et al. Prepatterning of Developmental Gene Expression by Modified Histones before Zygotic Genome Activation[J]. Developmental Cell, 2011, 21(6): 993-1004.
[96] DAHL J A, JUNG I, AANES H, et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition[J]. Nature, 2016, 537(7621): 548-552.
[97] XIA W K, XU J W, YU G, et al. Resetting histone modifications during human parental-to-zygotic transition[J]. Science, 2019, 365(6451): 353-+.
[98] CHEN Z, DJEKIDEL M N, ZHANG Y. Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos[J]. Nature Genetics, 2021, 53(4): 551-563.
[99] MEI H, KOZUKA C, HAYASHI R, et al. H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos[J]. Nature Genetics, 2021, 53(4): 539-550.
[100] YEZHANG ZHU J Y, YAN RONG, YUN-WEN WU, YANG LI, LEJIAO ZHANG, YINGHAO PAN, HENG-YU FAN, LI SHEN,. Genomewide decoupling of H2AK119ub1 and H3K27me3 in early mouse development,[J]. Science Bulletin, 2021, Volume 66, Issue 24: 2489-2497.
[101] HICKEY G J M, WIKE C, NIE X, et al. Establishment of Developmental Gene Silencing by Ordered Polycomb Complex Recruitment in Early Zebrafish Embryos[J]. bioRxiv, 2021: 2021.2003.2016.435592.
[102] BERNSTEIN B E, MIKKELSEN T S, XIE X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells[J]. Cell, 2006, 125(2): 315-326.
[103] WU K L, FAN D D, ZHAO H, et al. Dynamics of histone acetylation during human early embryogenesis[J]. Cell Discovery, 2023, 9(1)
[104] CAO X, MA T, FAN R, et al. Broad H3K4me3 Domain Is Associated with Spatial Coherence during Mammalian Embryonic Development[J]. bioRxiv, 2023: 2023.2012.2011.570452.
[105] BU G, ZHU W, LIU X, et al. Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos[J]. Genome Res, 2022, 32(8): 1487-1501.
[106] WU J, XU J, LIU B, et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA[J]. Nature, 2018, 557(7704): 256-260.
[107] ZHANG B, ZHENG H, HUANG B, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development[J]. Nature, 2016, 537(7621): 553-557.
[108] NEWPORT J, KIRSCHNER M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage[J]. Cell, 1982, 30(3): 675-686.
[109] NEWPORT J, KIRSCHNER M. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription[J]. Cell, 1982, 30(3): 687-696.
[110] JUKAM D, KAPOOR R R, STRAIGHT A F, et al. The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus[J]. Curr Biol, 2021, 31(19): 4269-4281 e4268.
[111] DEKENS M P S, PELEGRI F J, MAISCHEIN H M, et al. The maternal-effect gene futile cycle is essential for pronuclear congression and mitotic spindle assembly in the zebrafish zygote[J]. Development, 2003, 130(17): 3907-3916.
[112] LU X M, LI J M, ELEMENTO O, et al. Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition[J]. Development, 2009, 136(12): 2101-2110.
[113] CHAN S H, TANG Y, MIAO L, et al. Brd4 and P300 Confer Transcriptional Competency during Zygotic Genome Activation[J]. Dev Cell, 2019, 49(6): 867-881 e868.
[114] SCHULZ K N, HARRISON M M. Mechanisms regulating zygotic genome activation[J]. Nature Reviews Genetics, 2019, 20(4): 221-234.
[115] JOSEPH S R, PÁLFY M, HILBERT L, et al. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos[J]. Elife, 2017, 6
[116] SHEN W, GONG B, XING C, et al. Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation[J]. Cell, 2022, 185(26): 4954-4970 e4920.
[117] SCHOLER H R, DRESSLER G R, BALLING R, et al. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex[J]. Embo j, 1990, 9(7): 2185-2195.
[118] NICHOLS J, ZEVNIK B, ANASTASSIADIS K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4[J]. Cell, 1998, 95(3): 379-391.
[119] AVILION A A, NICOLIS S K, PEVNY L H, et al. Multipotent cell lineages in early mouse development depend on SOX2 function[J]. Genes Dev, 2003, 17(1): 126-140.
[120] CAO S, YU S, LI D, et al. Chromatin Accessibility Dynamics during Chemical Induction of Pluripotency[J]. Cell Stem Cell, 2018, 22(4): 529-542 e525.
[121] DU Z, ZHANG K, XIE W. Epigenetic Reprogramming in Early Animal Development[J]. Cold Spring Harb Perspect Biol, 2021
[122] CONCHA M L, REIG G. Origin, form and function of extraembryonic structures in teleost fishes[J]. Philos Trans R Soc Lond B Biol Sci, 2022, 377(1865): 20210264.
[123] KIMMEL C B, WARGA R M, SCHILLING T F. Origin and organization of the zebrafish fate map[J]. Development, 1990, 108(4): 581-594.
[124] LACHNIT M, KUR E, DRIEVER W. Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZ zebrafish embryos[J]. Developmental Biology, 2008, 315(1): 1-17.
[125] SABEL J L, D'ALENCON C, O'BRIEN E K, et al. Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in and embryos[J]. Developmental Biology, 2009, 325(1): 249-262.
[126] KOTKAMP K, MOSSNER R, ALLEN A, et al. A Pou5f1/Oct4 dependent Klf2a, Klf2b, and Klf17 regulatory sub-network contributes to EVL and ectoderm development during zebrafish embryogenesis[J]. Dev Biol, 2014, 385(2): 433-447.
[127] FARRELL J A, WANG Y, RIESENFELD S J, et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[J]. Science, 2018, 360(6392)
[128] KRENS S F G, MÖLLMERT S, HEISENBERG C P. Enveloping cell-layer differentiation at the surface of zebrafish germ-layer tissue explants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): E9-E10.
[129] WILLIAMS D W, MULLER F, LAVENDER F L, et al. High transgene activity in the yolk syncytial layer affects quantitative transient expression assays in zebrafish Danio rerio) embryos[J]. Transgenic Res, 1996, 5(6): 433-442.
[130] CHEN S, KIMELMAN D. The role of the yolk syncytial layer in germ layer patterning in zebrafish[J]. Development, 2000, 127(21): 4681-4689.
[131] BETCHAKU T, TRINKAUS J P. Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of fundulus before and during epiboly[J]. J Exp Zool, 1978, 206(3): 381-426.
[132] SIDDIQUI M, SHEIKH H, TRAN C, et al. The Tight Junction Component Claudin E is Required for Zebrafish Epiboly[J]. Developmental Dynamics, 2010, 239(2): 715-722.
[133] WHITE M D, ANGIOLINI J F, ALVAREZ Y D, et al. Long-Lived Binding of Sox2 to DNA Predicts Cell Fate in the Four-Cell Mouse Embryo[J]. Cell, 2016, 165(1): 75-87.
[134] WICKLOW E, BLIJ S, FRUM T, et al. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst[J]. Plos Genetics, 2014, 10(10): e1004618.
[135] NIWA H, TOYOOKA T, SHIMOSATO D, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation[J]. Cell, 2005, 123(5): 917-929.
[136] HOME P, KUMAR R P, GANGULY A, et al. Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development[J]. Development, 2017, 144(5): 876-888.
[137] TORRES-PADILLA M E, PARFITT D E, KOUZARIDES T, et al. Histone arginine methylation regulates pluripotency in the early mouse embryo[J]. Nature, 2007, 445(7124): 214-218.
[138] WHITE M D, BISSIERE S, ALVAREZ Y D, et al. Mouse Embryo Compaction[J]. Curr Top Dev Biol, 2016, 120: 235-258.
[139] GOOLAM M, SCIALDONE A, GRAHAM S J L, et al. Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos[J]. Cell, 2016, 165(1): 61-74.
[140] SAKAUE M, OHTA H, KUMAKI Y, et al. DNA Methylation Is Dispensable for the Growth and Survival of the Extraembryonic Lineages[J]. Current Biology, 2010, 20(16): 1452-1457.
[141] AL-MOUSAWI J, BOSKOVIC A. Transcriptional and epigenetic control of early life cell fate decisions[J]. Curr Opin Oncol, 2022, 34(2): 148-154.
[142] YAO C, ZHANG W, SHUAI L. The first cell fate decision in pre-implantation mouse embryos[J]. Cell Regen, 2019, 8(2): 51-57.
[143] NISHIOKA N, INOUE K, ADACHI K, et al. The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass[J]. Developmental Cell, 2009, 16(3): 398-410.
[144] FRUM T, WATTS J L, RALSTON A. TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage[J]. Development, 2019, 146(17)
[145] LEUNG C Y, ZERNICKA-GOETZ M. Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms[J]. Nature Communications, 2013, 4
[146] HIRATE Y, HIRAHARA S, INOUE K, et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos[J]. Curr Biol, 2013, 23(13): 1181-1194.
[147] HIRATE Y, SASAKI H. The role of angiomotin phosphorylation in the Hippo pathway during preimplantation mouse development[J]. Tissue Barriers, 2014, 2(1): e28127.
[148] WANG J, WANG L, FENG G, et al. Asymmetric Expression of LincGET Biases Cell Fate in Two-Cell Mouse Embryos[J]. Cell, 2018, 175(7): 1887-1901 e1818.
[149] WANG Y, ZHENG X, CHENG R, et al. Asymmetric expression of maternal mRNA governs first cell-fate decision[J]. FASEB J, 2021, 35(11): e22006.
[150] SOTERO-CAIO C G, PLATT R N, 2ND, SUH A, et al. Evolution and Diversity of Transposable Elements in Vertebrate Genomes[J]. Genome Biol Evol, 2017, 9(1): 161-177.
[151] MODZELEWSKI A J, SHAO W, CHEN J, et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development[J]. Cell, 2021, 184(22): 5541-5558 e5522.
[152] SAKASHITA A, KITANO T, ISHIZU H, et al. Transcription of MERVL retrotransposons is required for preimplantation embryo development[J]. Nature Genetics, 2023, 55(3): 484-+.
[153] YANG J, COOK L, CHEN Z. Systematic Perturbation of Thousands of Retroviral LTRs in Mouse Embryos[J]. bioRxiv, 2023
[154] XU R, LI S, WU Q, et al. Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos[J]. Cell Stem Cell, 2022, 29(7): 1051-1066 e1058.
[155] CHANG N C, ROVIRA Q, WELLS J, et al. Zebrafish transposable elements show extensive diversification in age, genomic distribution, and developmental expression[J]. Genome Res, 2022, 32(7): 1408-1423.
[156] HENDRICKSON P G, DORAIS J A, GROW E J, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons[J]. Nature Genetics, 2017, 49(6): 925-934.
[157] SAVARESE F, DAVILA A, NECHANITZKY R, et al. Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression[J]. Genes & Development, 2009, 23(22): 2625-2638.
[158] WITTNER M, HAMPERL S, STOCKL U, et al. Establishment and Maintenance of Alternative Chromatin States at a Multicopy Gene Locus[J]. Cell, 2011, 145(4): 543-554.
[159] STEWART-MORGAN K R, REVERON-GOMEZ N, GROTH A. Transcription Restart Establishes Chromatin Accessibility after DNA Replication (vol 75, pg 284, 2019)[J]. Molecular Cell, 2019, 75(2): 408-414.
[160] JIANG Y P, HUANG J, LUN K H, et al. Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol II, and Pol III[J]. Genome Biology, 2020, 21(1)
[161] SONG L, CRAWFORD G E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells[J]. Cold Spring Harb Protoc, 2010, 2010(2): pdb prot5384.
[162] SABO P J, KUEHN M S, THURMAN R, et al. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays[J]. Nature Methods, 2006, 3(7): 511-518.
[163] BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nature Methods, 2013, 10(12): 1213-+.
[164] ALLAN J, FRASER R M, OWEN-HUGHES T, et al. Micrococcal nuclease does not substantially bias nucleosome mapping[J]. J Mol Biol, 2012, 417(3): 152-164.
[165] BUENROSTRO J D, WU B, LITZENBURGER U M, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-490.
[166] SATPATHY A T, GRANJA J M, YOST K E, et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion[J]. Nat Biotechnol, 2019, 37(8): 925-936.
[167] CUSANOVICH D A, DAZA R, ADEY A, et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing[J]. Science, 2015, 348(6237): 910-914.
[168] CHEN X, LITZENBURGER U M, WEI Y, et al. Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity[J]. Nat Commun, 2018, 9(1): 4590.
[169] RUBIN A J, PARKER K R, SATPATHY A T, et al. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks[J]. Cell, 2019, 176(1-2): 361-376 e317.
[170] BAEK S, LEE I. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation[J]. Comput Struct Biotechnol J, 2020, 18: 1429-1439.
[171] WAGNER D E, WEINREB C, COLLINS Z M, et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo[J]. Science, 2018, 360(6392): 981-987.
[172] SUR A, WANG Y, CAPAR P, et al. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development[J]. Dev Cell, 2023, 58(24): 3028-3047 e3012.
[173] LIU C, LI R, LI Y, et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis[J]. Developmental Cell, 2022, 57(10): 1284-1298.e1285.
[174] SINGLEMAN C, HOLTZMAN N G. Growth and maturation in the zebrafish, Danio rerio: a staging tool for teaching and research[J]. Zebrafish, 2014, 11(4): 396-406.
[175] ILLUMINA. bcl2fastq[J]. bcl2fastq (RRID:SCR_015058), 2024
[176] CHEN S, ZHOU Y, CHEN Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890.
[177] KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nat Biotechnol, 2019, 37(8): 907-915.
[178] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079.
[179] QUINLAN A R, HALL I M. BEDTools: a flexible suite of utilities for comparing genomic features[J]. Bioinformatics, 2010, 26(6): 841-842.
[180] RAMIREZ F, DUNDAR F, DIEHL S, et al. deepTools: a flexible platform for exploring deep-sequencing data[J]. Nucleic Acids Res, 2014, 42(Web Server issue): W187-191.
[181] INSTITUTE B. Picard Toolkit[J]. 2019
[182] ZHANG Y, LIU T, MEYER C A, et al. Model-based analysis of ChIP-Seq (MACS)[J]. Genome Biol, 2008, 9(9): R137.
[183] MCLEAN C Y, BRISTOR D, HILLER M, et al. GREAT improves functional interpretation of cis-regulatory regions[J]. Nat Biotechnol, 2010, 28(5): 495-501.
[184] HEINZ S, BENNER C, SPANN N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities[J]. Mol Cell, 2010, 38(4): 576-589.
[185] KOSTER J, RAHMANN S. Snakemake--a scalable bioinformatics workflow engine[J]. Bioinformatics, 2012, 28(19): 2520-2522.
[186] HARRIS C R, MILLMAN K J, VAN DER WALT S J, et al. Array programming with NumPy[J]. Nature, 2020, 585(7825): 357-362.
[187] THE PANDAS DEVELOPMENT T. pandas-dev/pandas: Pandas[Z]. Zenodo. 2020.10.5281/zenodo.3509134
[188] VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[J]. Nature Methods, 2020, 17: 261-272.
[189] LI H. Tabix: fast retrieval of sequence features from generic TAB-delimited files[J]. Bioinformatics, 2011, 27(5): 718-719.
[190] THORVALDSDOTTIR H, ROBINSON J T, MESIROV J P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration[J]. Brief Bioinform, 2013, 14(2): 178-192.
[191] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine Learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830.
[192] WOLF F A, ANGERER P, THEIS F J. SCANPY: large-scale single-cell gene expression data analysis[J]. Genome Biol, 2018, 19(1): 15.
[193] TEAM R C. R: A language and environment for statistical computing[J]. MSOR connections, 2014, 1
[194] KENT W J, SUGNET C W, FUREY T S, et al. The human genome browser at UCSC[J]. Genome Research, 2002, 12(6): 996-1006.
[195] WHITE R J, COLLINS J E, SEALY I M, et al. A high-resolution mRNA expression time course of embryonic development in zebrafish[J]. Elife, 2017, 6
[196] NEPAL C, HADZHIEV Y, PREVITI C, et al. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis[J]. Genome Research, 2013, 23(11): 1938-1950.
[197] BOGDANOVIC O, FERNANDEZ-MINAN A, TENA J J, et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis[J]. Genome Res, 2012, 22(10): 2043-2053.
[198] ROSS S E, VAZQUEZ-MARIN J, GERT K R B, et al. Evolutionary conservation of embryonic DNA methylome remodelling in distantly related teleost species[J]. Nucleic Acids Res, 2023, 51(18): 9658-9671.
[199] CASTRO-MONDRAGON J A, RIUDAVETS-PUIG R, RAULUSEVICIUTE I, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles[J]. Nucleic Acids Res, 2022, 50(D1): D165-D173.
[200] STUART T, SRIVASTAVA A, MADAD S, et al. Single-cell chromatin state analysis with Signac[J]. Nature Methods, 2021, 18(11): 1333-1341.
[201] BECHT E, MCINNES L, HEALY J, et al. Dimensionality reduction for visualizing single-cell data using UMAP[J]. Nat Biotechnol, 2018
[202] POLANSKI K, YOUNG M D, MIAO Z, et al. BBKNN: fast batch alignment of single cell transcriptomes[J]. Bioinformatics, 2020, 36(3): 964-965.
[203] YU G, WANG L G, HE Q Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization[J]. Bioinformatics, 2015, 31(14): 2382-2383.
[204] LAWRENCE M, HUBER W, PAGES H, et al. Software for computing and annotating genomic ranges[J]. PLoS Comput Biol, 2013, 9(8): e1003118.
[205] ZHU L J, GAZIN C, LAWSON N D, et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data[J]. BMC Bioinformatics, 2010, 11: 237.
[206] SCHEP A N, WU B, BUENROSTRO J D, et al. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data[J]. Nature Methods, 2017, 14(10): 975-978.
[207] YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters[J]. Omics-a Journal of Integrative Biology, 2012, 16(5): 284-287.
[208] PLINER H A, PACKER J S, MCFALINE-FIGUEROA J L, et al. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data[J]. Mol Cell, 2018, 71(5): 858-871 e858.
[209] HAGHVERDI L, BUTTNER M, WOLF F A, et al. Diffusion pseudotime robustly reconstructs lineage branching[J]. Nature Methods, 2016, 13(10): 845-848.
[210] YEE T W. Vector Generalized Linear and Additive Models: With an Implementation in R[J]. Springers New York, 2015
[211] LIU G, WANG W, HU S, et al. Inherited DNA methylation primes the establishment of accessible chromatin during genome activation[J]. Genome Res, 2018, 28(7): 998-1007.
[212] LIN X, YANG X, CHEN C, et al. Single-nucleus chromatin landscapes during zebrafish early embryogenesis[J]. Sci Data, 2023, 10(1): 464.
[213] BHAT P, CABRERA-QUIO L E, HERZOG V A, et al. SLAMseq resolves the kinetics of maternal and zygotic gene expression during early zebrafish embryogenesis[J]. Cell Rep, 2023, 42(2): 112070.
[214] GÖGELEIN H, HÜBY A. Interaction of saponin and digitonin with black lipid membranes and lipid monolayers[J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1984, 773(1): 32-38.
[215] BROUDE N E, BUDOWSKY E I. The reaction of glyoxal with nucleic acid components. 3. Kinetics of the reaction with monomers[J]. Biochim Biophys Acta, 1971, 254(3): 380-388.
[216] CHANNATHODIYIL P, HOUSELEY J. Glyoxal fixation facilitates transcriptome analysis after antigen staining and cell sorting by flow cytometry[J]. PLoS One, 2021, 16(1): e0240769.
[217] RICHTER K N, REVELO N H, SEITZ K J, et al. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy[J]. Embo j, 2018, 37(1): 139-159.
[218] BAGERITZ J, KRAUSSE N, YOUSEFIAN S, et al. Glyoxal as an alternative fixative for single-cell RNA sequencing[J]. G3 (Bethesda), 2023, 13(10)
[219] LISCOVITCH-BRAUER N, MONTALBANO A, DENG J, et al. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens[J]. Nat Biotechnol, 2021
[220] CHEN X, MIRAGAIA R J, NATARAJAN K N, et al. A rapid and robust method for single cell chromatin accessibility profiling[J]. Nat Commun, 2018, 9(1): 5345.
[221] XU W, WEN Y, LIANG Y, et al. A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility[J]. Nat Protoc, 2021, 16(8): 4084-4107.
[222] STAPEL L C, ZECHNER C, VASTENHOUW N L. Uniform gene expression in embryos is achieved by temporal averaging of transcription noise[J]. Genes Dev, 2017, 31(16): 1635-1640.
[223] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
[224] CHEN L, XU W, LIU K, et al. 5' Half of specific tRNAs feeds back to promote corresponding tRNA gene transcription in vertebrate embryos[J]. Sci Adv, 2021, 7(47): eabh0494.
[225] DUBIN M, FUCHS J, GRAF R, et al. Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis[J]. Nucleic Acids Res, 2010, 38(21): 7526-7537.
[226] HABERLE V, LI N, HADZHIEV Y, et al. Two independent transcription initiation codes overlap on vertebrate core promoters[J]. Nature, 2014, 507(7492): 381-+.
[227] TAKESONO A, MOGER J, FAROOQ S, et al. Solute carrier family 3 member 2 (Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubule networks in the zebrafish embryo[J]. Proc Natl Acad Sci U S A, 2012, 109(9): 3371-3376.
[228] BERGER M F, BADIS G, GEHRKE A R, et al. Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences[J]. Cell, 2008, 133(7): 1266-1276.
[229] HUME M A, BARRERA L A, GISSELBRECHT S S, et al. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions[J]. Nucleic Acids Res, 2015, 43(Database issue): D117-122.
[230] YAMANAKA Y, MIZUNO T, SASAI Y, et al. A novel homeobox gene, can induce the organizer in a non-cell-autonomous manner[J]. Genes & Development, 1998, 12(15): 2345-2353.
[231] CARVALHO L, HEISENBERG C P. The yolk syncytial layer in early zebrafish development[J]. Trends Cell Biol, 2010, 20(10): 586-592.
[232] WEIRAUCH M T, YANG A, ALBU M, et al. Determination and inference of eukaryotic transcription factor sequence specificity[J]. Cell, 2014, 158(6): 1431-1443.
[233] NOYES M B, CHRISTENSEN R G, WAKABAYASHI A, et al. Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites[J]. Cell, 2008, 133(7): 1277-1289.
[234] LIBERZON A, RIDNER G, WALKER M D. Role of intrinsic DNA binding specificity in defining target genes of the mammalian transcription factor PDX1[J]. Nucleic Acids Res, 2004, 32(1): 54-64.
[235] SUN J, HE N, NIU L, et al. Global Quantitative Mapping of Enhancers in Rice by STARR-seq[J]. Genomics Proteomics Bioinformatics, 2019, 17(2): 140-153.
修改评论