中文版 | English
题名

火星上游拾起离子激发质子回旋波的研究

其他题名
Excitation of Proton Cyclotron Waves by Pickup Ions Upstream of Mars
姓名
姓名拼音
CHENG Kun
学号
11930867
学位类型
博士
学位专业
0708 地球物理学
学科门类/专业学位类别
07 理学
导师
刘凯军
导师单位
地球与空间科学系
论文答辩日期
2024-05-14
论文提交日期
2024-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
火星弓激波上游观测到的质子回旋波被认为是火星大气和太阳风之间相互作
用的结果。观测结果表明这些波动和火星激波上游区域的“拾起离子”密切相关。 本论文考虑了束分布、环分布和环-束分布三种速度分布类型的火星上游拾起离子, 综合应用线性理论分析、混合模拟和 PIC 模拟方法,深入研究了不同分布类型的 拾起离子所能激发的等离子体波动,揭示了这些波动的演化过程呈现出的多样性,并探讨了其与火星上游质子回旋波的联系。  
研究结果表明,束分布和准束分布的拾起离子能够同时激发平行传播和斜传
播特性的波动。在波动增长初期,斜传播波动占主导地位,但随着波动能量的增 长,平行传播的波动逐渐成为主导。这些平行传播的波动经多普勒频移后,可被探 测器识别为质子回旋波。研究还发现,随着太阳风速度的增加,斜传播波动的最大 增长率和传播角度均会增大,而平行传播波动的最大增长率变化较小,其波数和频率则随太阳风速度增加而降低。对于束分布的拾起离子,其激发的波动最终都会演化为平行传播的波动,并且波动饱和能量随太阳风速度的增加而增大。
此外,本论文的结论揭示,环分布的拾起离子能同时激发离子回旋波、离子伯
恩斯坦波和磁镜波。虽然环分布的拾起离子能导致较高的波动增长率,但其激发波动的饱和能量却低于束分布的拾起离子所激发的波动饱和能量。当波动能量饱和时,斜传播的磁镜波成为主导,这种波动不符合质子回旋波的观测特征。
火星上游的拾起离子更广泛的情况下具有环-束速度分布。本论文的研究结果 显示,环-束分布的拾起离子在平行方向上能激发左旋波动和两个频段的右旋波动,其中高频右旋波动的增长率最大。随着拾起角度的增加,左旋波动的增长率上升,两个频段的右旋波动趋向合并。一维模拟表明,尽管高频右旋波动初始增长率较高,但波动最终演化为低频右旋波动。低频的右旋波动将使拾起离子形成回旋相位角聚束分布。
最后,通过模拟研究,我们还发现拾起离子所激发的波动会对拾起离子进行
投掷角散射,进而导致拾起离子向壳分布演化。本研究的发现不仅丰富了我们对火星大气与太阳风相互作用机制的理解,而且为进一步探索行星大气逃逸过程提供了重要的理论基础。
关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-07
参考文献列表

[1] Langlais B, Purucker M, Mandea M. Crustal magnetic field of Mars[J]. Journal of GeophysicalResearch: Planets, 2004, 109(E2).
[2] Usui T, Bajo K i, Fujiya W, et al. The importance of Phobos sample return for understandingthe Mars-moon system[J]. Space Science Reviews, 2020, 216: 1-18.
[3] Jakosky B M, Lin R P, Grebowsky J M, et al. The Mars atmosphere and volatile evolution(MAVEN) mission[J]. Space Science Reviews, 2015, 195: 3-48.
[4] Chicarro A, Martin P, Trautner R. The Mars Express mission: an overview[J]. Mars Express:the scientific payload, 2004, 1240: 3-13.
[5] Zou Y, Zhu Y, Bai Y, et al. Scientific objectives and payloads of Tianwen-1, China’s first Marsexploration mission[J]. Advances in Space Research, 2021, 67(2): 812-823.
[6] Chassefiere E, Leblanc F. Mars atmospheric escape and evolution; interaction with the solarwind[J]. Planetary & Space Science, 2004, 52(11): 1039-1058.
[7] Jakosky B M, Slipski M, Benna M, et al. Mars’ atmospheric history derived from upperatmosphere measurements of 38Ar/36Ar[J]. Science, 2017, 355(6332): 1408-1410.
[8] Kurokawa H, Kurosawa K, Usui T. A lower limit of atmospheric pressure on early Mars inferredfrom nitrogen and argon isotopic compositions[J]. Icarus, 2017, 299: 443-459.
[9] Hunten D, McElroy M. Production and escape of hydrogen on Mars[J]. Journal of GeophysicalResearch, 1970, 75(31): 5989-6001.
[10] Cravens T E, Hamil O, Houston S, et al. Estimates of ionospheric transport and ion loss atMars[J]. Journal of Geophysical Research: Space Physics, 2017, 122(10): 10-626.
[11] Dong Y, Fang X, Brain D, et al. Seasonal variability of Martian ion escape through the plumeand tail from MAVEN observations[J]. Journal of Geophysical Research: Space Physics, 2017,122(4): 4009-4022.
[12] Johnson B C, Liemohn M W, Frnz M, et al. Influence of the interplanetary convective electricfield on the distribution of heavy pickup ions around Mars[J]. Journal of Geophysical ResearchSpace Physics, 2018, 123(1): 473-484.
[13] Ramstad R, Barabash S, Futaana Y, et al. Global Mars-solar wind coupling and ion escape[J].Journal of Geophysical Research Space Physics, 2017, 122.
[14] Russell C, Luhmann J, Schwingenschuh K, et al. Upstream waves at mars: Phobos observations[J]. Geophysical Research Letters, 1990, 17(6): 897-900.
[15] Wei H, Russell C. Proton cyclotron waves at Mars: Exosphere structure and evidence for a fastneutral disk[J]. Geophysical research letters, 2006, 33(23).
[16] Halekas J S, Ruhunusiri S, Vaisberg O L, et al. Properties of plasma waves observed upstreamfrom Mars[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028221.
[17] Lillis R J, Brain D A, Bougher S W, et al. Characterizing atmospheric escape from Mars todayand through time, with MAVEN[J]. Space Science Reviews, 2015, 195: 357-422.
[18] Bertucci C, Mazelle C, Acuña M H. Interaction of the solar wind with Mars from Mars GlobalSurveyor MAG/ER observations[J]. Journal of atmospheric and solar-terrestrial physics, 2005,67(17-18): 1797-1808.
[19] Bertucci C, Mazelle C, Crider D, et al. Magnetic field draping enhancement at the Martianmagnetic pileup boundary from Mars global surveyor observations[J]. Geophysical researchletters, 2003, 30(2).
[20] Zhang M, Luhmann J, Nagy A, et al. Oxygen ionization rates at Mars and Venus: Relativecontributions of impact ionization and charge exchange[J]. Journal of Geophysical Research:Planets, 1993, 98(E2): 3311-3318.
[21] Leblanc F, Johnson R. Sputtering of the Martian atmosphere by solar wind pick-up ions[J].Planetary and Space Science, 2001, 49(6): 645-656.
[22] Wei Y, Fraenz M, Dubinin E, et al. Ablation of Venusian oxygen ions by unshocked solarwind[J]. Science Bulletin, 2017, 62: 1669-1672.
[23] Huddleston D, Johnstone A. Relationship between wave energy and free energy from pickupions in the comet Halley environment[J]. Journal of Geophysical Research: Space Physics,1992, 97(A8): 12217-12230.
[24] Huddleston D, Strangeway R, Warnecke J, et al. Ion cyclotron waves in the Io torus during theGalileo encounter: Warm plasma dispersion analysis[J]. Geophysical research letters, 1997, 24(17): 2143-2146.
[25] Gary S P. Electromagnetic ion/ion instabilities and their consequences in space plasmas: Areview[J]. Space Science Reviews, 1991, 56(3-4): 373-415.
[26] Brain D, Bagenal F, Acuna M, et al. Observations of low-frequency electromagnetic plasmawaves upstream from the Martian shock[J]. Journal of Geophysical Research: Space Physics,2002, 107(A6): SMP-9.
[27] Mazelle C, Winterhalter D, Sauer K, et al. Bow shock and upstream phenomena at Mars[J].Space Science Reviews, 2004, 111(1): 115-181.
[28] Schmid D, Narita Y, Plaschke F, et al. Pick-up ion cyclotron waves around Mercury[J]. Geophysical Research Letters, 2021.
[29] Delva M, Zhang T L, Volwerk M, et al. First upstream proton cyclotron wave observations atVenus[J]. Geophysical Research Letters, 2008, 35.
[30] Leisner J, Russell C, Dougherty M, et al. Ion cyclotron waves in Saturn’s E ring: Initial Cassiniobservations[J]. Geophysical Research Letters, 2006, 33(11).
[31] Leisner J, Russell C, Wei H, et al. Probing Saturn’s ion cyclotron waves on high-inclinationorbits: Lessons for wave generation[J]. Journal of Geophysical Research: Space Physics, 2011,116(A9).
[32] Volwerk M, Kivelson M, Khurana K. Wave activity in Europa’s wake: Implications for ionpickup[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A11): 26033-26048.
[33] Tsurutani B T, Smith E J. Strong hydromagnetic turbulence associated with comet GiacobiniZinner[J]. Geophysical research letters, 1986, 13(3): 259-262.
[34] Johnstone A, Glassmeier K, Acuna M, et al. Waves in the magnetic field and solar wind flowoutside the bow shock at comet Halley[C]// ESLAB Symposium on the Exploration of Halley’sComet: volume 250. 1986: 277.
[35] Glassmeier K H, Coates A, Acuna M, et al. Spectral characteristics of low-frequency plasmaturbulence upstream of comet P/Halley[J]. Journal of Geophysical Research: Space Physics,1989, 94(A1): 37-48.
[36] Mazelle C, Neubauer F M. Discrete wave packets at the proton cyclotron frequency at cometP/Halley[J]. Geophysical Research Letters, 2013, 20(2): 153-156.
[37] Jian L K, Wei H Y, Russell C T, et al. Electromagnetic waves near the proton cyclotron frequency: STEREO observations[J]. Astrophysical Journal, 2014, 786(2): 123.
[38] Barabash S, Lundin R. Reflected ions near Mars: PHOBOS-2 observations[J]. Geophysicalresearch letters, 1993, 20(9): 787-790.
[39] Bader A, Stenberg Wieser G, André M, et al. Proton temperature anisotropies in the plasmaenvironment of Venus[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3312-3330.
[40] Madanian H, Schwartz S J, Halekas J S, et al. Nonstationary quasiperpendicular shock and ionreflection at Mars[J]. Geophysical Research Letters, 2020, 47(11): e2020GL088309.
[41] Crawford G K, Strangeway R J, Russell C T. VLF emissions in the Venus foreshock: Comparisonwith terrestrial observations[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A9):15305-15317.
[42] Liu D, Rong Z, Gao J, et al. Statistical properties of solar wind upstream of Mars: MAVENobservations[J]. The Astrophysical Journal, 2021, 911(2): 113.
[43] Lee C, Hara T, Halekas J, et al. MAVEN observations of the solar cycle 24 space weatherconditions at Mars[J]. Journal of Geophysical Research: Space Physics, 2017, 122(3): 2768-2794.
[44] Romanelli N, Bertucci C, Gomez D, et al. Proton cyclotron waves upstream from Mars: observations from Mars global surveyor[J]. Planetary and Space Science, 2013, 76: 1-9.
[45] Romanelli N, Mazelle C, Chaufray J Y, et al. Proton cyclotron waves occurrence rate upstreamfrom Mars observed by MAVEN: Associated variability of the Martian upper atmosphere[J].Journal of Geophysical Research: Space Physics, 2016, 121(11): 11-113.
[46] Halekas J S. Seasonal variability of the hydrogen exosphere of Mars[J]. Journal of GeophysicalResearch: Planets, 2017, 122(5).
[47] Rahmati A, Larson D E, Cravens T E, et al. Seasonal variability of neutral escape from Marsas derived from MAVEN pickup ion observations[J]. Journal of Geophysical Research Planets,2018.
[48] Romeo O, Romanelli N, Espley J, et al. Variability of upstream proton cyclotron wave propertiesand occurrence at Mars observed by MAVEN[J]. Journal of Geophysical Research: SpacePhysics, 2021, 126(2): e2020JA028616.
[49] Liu D, Yao Z H, Wei Y, et al. Upstream proton cyclotron waves: occurrence and amplitudedependence on IMF cone angle at Mars —from MAVEN observations[J]. Earth and PlanetaryPhysics, 2020, 4.
[50] Mazelle C, Neubauer F M. Discrete wave packets at the proton cyclotron frequency at cometP/Halley[J]. Geophysical research letters, 1993, 20(2): 153-156.
[51] Brinca A. Cometary linear instabilities: From profusion to perspective: volume 61[M]. American Geophysical Union (AGU), 1991: 211-221.
[52] Watanabe Y, Terasawa T. On the excitation mechanism of the low-frequency upstream waves[J].Journal of Geophysical Research: Space Physics, 1984, 89(A8): 6623-6630.
[53] Cowee M, Winske D, Russell C, et al. 1D hybrid simulations of planetary ion-pickup: Energypartition[J]. Geophysical research letters, 2007, 34(2).
[54] Cowee M, Gary S, Wei H. Pickup ions and ion cyclotron wave amplitudes upstream of Mars:First results from the 1D hybrid simulation[J]. Geophysical research letters, 2012, 39(8).
[55] Cowee M, Gary S. Electromagnetic ion cyclotron wave generation by planetary pickup ions:One-dimensional hybrid simulations at sub-alfvénic pickup velocities[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A6).
[56] Wu C S, Davidson R. Electromagnetic instabilities produced by neutral-particle ionization ininterplanetary space[J]. Journal of Geophysical Research, 1972, 77(28): 5399-5406.
[57] Rahmati A, Cravens T, Nagy A, et al. Pickup ion measurements by MAVEN: A diagnosticof photochemical oxygen escape from Mars[J]. Geophysical Research Letters, 2014, 41(14):4812-4818.
[58] Gary S P. Theory of space plasma microinstabilities[M]. Cambridge University Press, 1993.
[59] Perraut S, Roux A, Robert P, et al. A systematic study of ULF waves above FH+ from GEOS1 and 2 measurements and their relationships with proton ring distributions[J]. Journal of Geophysical Research: Space Physics, 1982, 87(A8): 6219-6236.
[60] Min K, Liu K, Gary S P. Proton velocity ring-driven instabilities and their dependence on thering speed: Linear theory[J]. Journal of Geophysical Research: Space Physics, 2017, 122(8):7891-7906.
[61] Gary S P, Smith C W, Lee M A, et al. Electromagnetic ion beam instabilities[J]. The Physicsof fluids, 1984, 27(7): 1852-1862.
[62] Halekas J, Ruhunusiri S, Harada Y, et al. Structure, dynamics, and seasonal variability of theMars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results[J]. Journal of Geophysical Research: Space Physics, 2017, 122(1): 547-578.
[63] Rahmati A, Larson D, Cravens T, et al. MAVEN measured oxygen and hydrogen pickup ions:Probing the Martian exosphere and neutral escape[J]. Journal of Geophysical Research: SpacePhysics, 2017, 122(3): 3689-3706.
[64] Killen K, Omidi N, Krauss-Varban D, et al. Linear and nonlinear properties of ULF waves drivenby ring-beam distribution functions[J]. Journal of Geophysical Research: Space Physics, 1995,100(A4): 5835-5852.
[65] Gary S P, Madland C D. Electromagnetic ion instabilities in a cometary environment[J]. Journalof Geophysical Research: Space Physics, 1988, 93(A1): 235-241.
[66] Dong Y, Fang X, Brain D A, et al. Strong plume fluxes at Mars observed by MAVEN: Animportant planetary ion escape channel[J]. Geophysical Research Letters, 2016, 42(21): 8942-8950.
[67] Gurnett D A, Bhattacharjee A. Introduction to plasma physics: With space and laboratoryapplications[M]. Cambridge university press, 2005.
[68] Stix T H, Scott F. The theory of plasma waves[J]. American Journal of Physics, 1963, 31(10):816-816.
[69] Matthaeus W H, Goldstein M L. Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind[J]. Journal of Geophysical Research: Space Physics, 1982,87(A8): 6011-6028.
[70] Smith C W, Goldstein M L, Matthaeus W H. Turbulence analysis of the Jovian upstream wavephenomenon[J]. Journal of Geophysical Research: Space Physics, 1983, 88(A7): 5581-5593.
[71] Winske D, Yin L, Omidi N, et al. Hybrid simulation codes: Past, present and future—a tutorial[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 136-165.
[72] Harned D S. Quasineutral hybrid simulation of macroscopic plasma phenomena[J]. Journal ofComputational Physics, 1982, 47(3): 452-462.
[73] Kunz M W, Stone J M, Bai X N. Pegasus: A new hybrid-kinetic particle-in-cell code for astrophysical plasma dynamics[J]. Journal of Computational Physics, 2014, 259: 154-174.
[74] Matthews A P. Current advance method and cyclic leapfrog for 2D multispecies hybrid plasmasimulations[J]. Journal of Computational Physics, 1994, 112(1): 102-116.
[75] Terasawa T, Hoshino M, Sakai J I, et al. Decay instability of finite-amplitude circularly polarized Alfvén waves: A numerical simulation of stimulated Brillouin scattering[J]. Journal ofGeophysical Research: Space Physics, 1986, 91(A4): 4171-4187.
[76] Büchner J, Dum C, Scholer M. Space plasma simulation: volume 615[M]. Springer Science &Business Media, 2003.
[77] Langdon A B. Analysis of the time integration in plasma simulation[J]. Journal of Computational Physics, 1979, 30(2): 202-221.
[78] Yee K, et al. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Trans. Antenna Propagation, 1966, 14(302).
[79] Brain D, Barabash S, Boesswetter A, et al. A comparison of global models for the solar windinteraction with Mars[J]. Icarus, 2010, 206(1): 139-151.
[80] Fried B D, Conte S D. The plasma dispersion function: The Hilbert transform of theGaussian[M]. Academic press, 2015.
[81] Abramowitz M. Handbook of mathematical functions, National Bureau of Standards[J]. Applied mathematics series, 1964(55).
[82] Umeda T, Matsukiyo S, Amano T, et al. A numerical electromagnetic linear dispersion relationfor Maxwellian ring-beam velocity distributions[J]. Physics of Plasmas, 2012, 19(7): 072107.
[83] Gary S P, Gosling J T, Forslund D W. The electromagnetic ion beam instability upstream of theEarth’s bow shock[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A8): 6691-6696.
[84] Gary S P, Madland C D, Tsurutani B T. Electromagnetic ion beam instabilities. ii[J]. Astrophysical Journal, 1985, 28(12): 3691-3695.
[85] Cheng K, Liu K, Mousavi A, et al. Hybrid simulation of proton cyclotron waves upstream ofMars generated by pickup ion beam distribution[J]. Geophysical Research Letters, 2023, 50(11): e2023GL103180.
[86] Gary S P, Hinata S, Madland C D, et al. The development of shell-like distributions fromnewborn cometary ions[J]. Geophysical research letters, 1986, 13(13): 1364-1367.
[87] Winske D, Quest K. Electromagnetic ion beam instabilities: Comparison of one-and twodimensional simulations[J]. Journal of Geophysical Research: Space Physics, 1986, 91(A8):8789-8797.
[88] Ruhunusiri S, Halekas J, Connerney J, et al. MAVEN observation of an obliquely propagatinglow-frequency wave upstream of Mars[J]. Journal of Geophysical Research: Space Physics,2016, 121(3): 2374-2389.
[89] Goldstein M, Wong H, Glassmeier K. Generation of low-frequency waves at comet Halley[J].Journal of Geophysical Research: Space Physics, 1990, 95(A2): 947-955.
[90] Smith C W, Goldstein M L, Gary S P, et al. Beam-driven ion cyclotron harmonic resonancesin the terrestrial foreshock[J]. Journal of Geophysical Research: Space Physics, 1985, 90(A2):1429-1434.
[91] Kodera K, Gendrin R, de Villedary C. Complex representation of a polarized signal and itsapplication to the analysis of ulf waves[J]. Journal of Geophysical Research, 1977, 82(7): 1245-1255.
[92] Hu Y, Denton R. Two-dimensional hybrid code simulation of electromagnetic ion cyclotronwaves in a dipole magnetic field[J]. Journal of Geophysical Research: Space Physics, 2009,114(A12).
[93] Hu Y, Denton R, Johnson J. Two-dimensional hybrid code simulation of electromagnetic ioncyclotron waves of multi-ion plasmas in a dipole magnetic field[J]. Journal of GeophysicalResearch: Space Physics, 2010, 115(A9).
[94] Min K, Liu K, Denton R E, et al. Two-dimensional hybrid particle-in-cell simulations of magnetosonic waves in the dipole magnetic field: On a constant L-Shell[J]. Journal of GeophysicalResearch: Space Physics, 2020, 125(10): e2020JA028414.
[95] Mousavi A, Liu K, Sadeghzadeh S. Particle-in-cell simulations of high-frequency waves drivenby pickup ion ring-beam distributions in the outer heliosheath[J]. Monthly Notices of the RoyalAstronomical Society, 2022, 512(3): 4291-4297.
[96] Akimoto K, Winske D. Ion-acoustic-like waves excited by the reflected ions at the Earth’s bowshock[J]. Journal of Geophysical Research: Space Physics, 1985, 90(A12): 12095-12103.
[97] Akimoto K, Omidi N. The generation of broadband electrostatic noise by an ion beam in themagnetotail[J]. Geophysical Research Letters, 1986, 13(2): 97-100.
[98] Gary S P, Omidi N. The ion-ion acoustic instability[J]. Journal of Plasma Physics, 1987, 37(1):45–61.
[99] Fuselier S A, Gary S P, Thomsen M F, et al. Ion beams and the ion/ion acoustic instabilityupstream from the Earth’s bow shock[J]. Journal of Geophysical Research: Space Physics,1987, 92(A5): 4740-4744.
[100] Romeo O M, Romanelli N, Espley J R, et al. Variability of upstream proton cyclotron waveproperties and occurrence at Mars observed by MAVEN[J]. Journal of Geophysical Research:Space Physics, 2021, 126(2): e2020JA028616.
[101] Thorne R M, Tsurutani B T. Resonant interactions between cometary ions and low frequencyelectromagnetic waves[J]. Planetary and Space Science, 1987, 35(12): 1501-1511.
[102] Gary S P, Madland C D. Electromagnetic ion instabilities in a cometary environment[J]. Journalof Geophysical Research: Space Physics, 1988, 93(A1): 235-241.
[103] Meredith N P, Horne R B, Anderson R R. Survey of magnetosonic waves and proton ringdistributions in the Earth’s inner magnetosphere[J]. Journal of Geophysical Research: SpacePhysics, 2008, 113(A6).
[104] Xiao F, Zhou Q, He Z, et al. Magnetosonic wave instability by proton ring distributions: Simultaneous data and modeling[J]. Journal of Geophysical Research: Space Physics, 2013, 118(7): 4053-4058.
[105] Min K, Liu K. Proton velocity ring-driven instabilities in the inner magnetosphere: Lineartheory and particle-in-cell simulations[J]. Journal of Geophysical Research: Space Physics,2016, 121(1): 475-491.
[106] Mousavi A, Liu K, Min K. Mirror instability driven by pickup ions in the outer heliosheath[J].The Astrophysical Journal, 2020, 901(2): 167.
[107] Liu K, Möbius E, Gary S P, et al. Pickup proton instabilities and scattering in the distant solarwind and the outer heliosheath: Hybrid simulations[J]. Journal of Geophysical Research: SpacePhysics, 2012, 117(A10).
[108] Summerlin E J, Viñas A F, Moore T E, et al. On the stability of pick-up ion ring distributionsin the outer heliosheath[J]. The Astrophysical Journal, 2014, 793(2): 93.
[109] Collinson G, Halekas J, Grebowsky J, et al. A hot flow anomaly at Mars[J]. GeophysicalResearch Letters, 2015, 42(21): 9121-9127.
[110] Collinson G, Wilson III L B, Omidi N, et al. Solar wind induced waves in the skies of Mars:Ionospheric compression, energization, and escape resulting from the impact of ultralow frequency magnetosonic waves generated upstream of the Martian bow shock[J]. Journal of Geophysical Research: Space Physics, 2018, 123(9): 7241-7256.
[111] Halekas J S, McFadden J P, Connerney J E P, et al. Time-dispersed ion signatures observedin the Martian magnetosphere by MAVEN[J]. Geophysical Research Letters, 2015, 42(21):8910-8916.
[112] Fowler C M, Andersson L, Halekas J, et al. Electric and magnetic variations in the near-Marsenvironment[J]. Journal of Geophysical Research: Space Physics, 2017, 122(8): 8536-8559.
[113] Fowler C M, Andersson L, Ergun R E, et al. MAVEN observations of solar wind-driven magnetosonic waves heating the Martian dayside ionosphere[J]. Journal of Geophysical Research:Space Physics, 2018, 123(5): 4129-4149.
[114] Liu D, Rong Z, Gao J, et al. Statistical properties of solar wind upstream of Mars: MAVENobservations[J]. The Astrophysical Journal, 2021, 911(2): 113.
[115] Liu K. Particle-in-cell simulations of particle energization in the auroral region[D]. CornellUniversity, New York, 2007.
[116] Min K, Liu K. Contributions of mirror and ion bernstein instabilities to the scattering of pickupions in the outer heliosheath[J]. The Astrophysical Journal, 2018, 852(1): 39.
[117] Gary S P. The mirror and ion cyclotron anisotropy instabilities[J]. Journal of GeophysicalResearch: Space Physics, 1992, 97(A6): 8519-8529.
[118] Wei H, Cowee M, Russell C, et al. Ion cyclotron waves at Mars: Occurrence and wave properties[J]. Journal of Geophysical Research: Space Physics, 2014, 119(7): 5244-5258.
[119] Liu D, Yao Z, Wei Y, et al. Upstream proton cyclotron waves: Occurrence and amplitudedependence on IMF cone angle at Mars—from MAVEN observations[J]. Earth and PlanetaryPhysics, 2020, 4(1): 51-61.
[120] Florinski V, Zank G, Heerikhuisen J, et al. Stability of a pickup ion ring-beam population in theouter heliosheath: Implications for the IBEX ribbon[J]. The Astrophysical Journal, 2010, 719(2): 1097.
[121] Cowee M, Gary S, Wei H, et al. An explanation for the lack of ion cyclotron wave generation bypickup ions at Titan: 1-D hybrid simulation results[J]. Journal of Geophysical Research: SpacePhysics, 2010, 115(A10).
[122] Mousavi A, Liu K, Sadeghzadeh S. Stability analysis of the pickup ion ring-beam distributionsin the outer heliosheath[J]. Monthly Notices of the Royal Astronomical Society, 2021, 506(3):3662-3668.
[123] Mousavi A, Liu K, Sadeghzadeh S. Hybrid simulations of the ring-beam instabilities driven bythe pickup ions in the outer heliosheath[J]. Monthly Notices of the Royal Astronomical Society,2022, 510(1): 1031-1042.
[124] Summerlin E J, Viñas A F, Moore T E, et al. On the stability of pick-up ion ring distributionsin the outer heliosheath[J]. The Astrophysical Journal, 2014, 793(2): 93.
[125] Florinski V, Heerikhuisen J, Niemiec J, et al. The IBEX ribbon and the pickup ion ring stabilityin the outer heliosheath. I. Theory and hybrid simulations[J]. The Astrophysical Journal, 2016,826(2): 197.
[126] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes 3rd edition: The art ofscientific computing[M]. Cambridge university press, 2007.
[127] Brinca A L, Tsurutani B T. On the polarization, compression and nonoscillatory behavior ofhydromagnetic waves associated with pickup ions[J]. Geophysical Research Letters, 1987, 14(5): 495-498.
[128] Brinca A L, Tsurutani B T. Unusual characteristics of electromagnetic waves excited bycometary newborn ions with large perpendicular energies[C]// Grewing M, Praderie F, Reinhard R. Exploration of Halley’s Comet. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988:311-319.
[129] Isenberg P A, Lee M A, Hollweg J V. The kinetic shell model of coronal heating and accelerationby ion cyclotron waves: 1. Outward propagating waves[J]. Journal of Geophysical Research:Space Physics, 2001, 106(A4): 5649-5660.
[130] Isenberg P A, Lee M A. A dispersive analysis of bispherical pickup ion distributions[J]. Journalof Geophysical Research: Space Physics, 1996, 101(A5): 11055-11066.
[131] Stix T. Waves in plasmas: volume 26[M]. American Institute of Physics Melville, NY, 1992: 6.
[132] Verniero J, Chandran B, Larson D, et al. Strong perpendicular velocity-space diffusion in protonbeams observed by parker solar probe[J]. The Astrophysical Journal, 2022, 924(2): 112.
[133] Bell T. Nonlinear Alfvén waves in a Vlasov plasma[J]. The Physics of Fluids, 1965, 8(10):1829-1839.
[134] Wang Z, Zhai H, Gao Z, et al. Gyrophase bunched ions in the plasma sheet[J]. Advances inSpace Research, 2017, 59(1): 274-282.
[135] Eastman T E, Anderson R R, Frank L A, et al. Upstream particles observed in the Earth’sforeshock region[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A6): 4379-4395.
[136] Gurgiolo C, Parks G, Mauk B, et al. Non-E×B ordered ion beams upstream of the Earth’s bowshock[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A6): 4415-4424.
[137] Gosling J, Thomsen M, Bame S, et al. Evidence for specularly reflected ions upstream from thequasi-parallel bow shock[J]. Geophysical Research Letters, 1982, 9(12): 1333-1336.
[138] Paschmann G, Sckopke N, Bame S, et al. Observations of gyrating ions in the foot of the nearlyperpendicular bow shock[J]. Geophysical Research Letters, 1982, 9(8): 881-884.
[139] Gurgiolo C, Parks G, Mauk B. Upstream gyrophase bunched ions: A mechanism for creation atthe bow shook and the growth of velocity space structure through gyrophase mixing[J]. Journalof Geophysical Research: Space Physics, 1983, 88(A11): 9093-9100.
[140] Gedalin M. Shock heating of directly transmitted ions[J]. The Astrophysical Journal, 2021, 912(2): 82.
[141] Thomsen M, Gosling J, Bame S, et al. Ion and electron heating at collisionless shocks nearthe critical Mach number[J]. Journal of Geophysical Research: Space Physics, 1985, 90(A1):137-148.
[142] Fuselier S, Thomsen M, Gosling J, et al. Gyrating and intermediate ion distributions upstreamfrom the Earth’s bow shock[J]. Journal of Geophysical Research: Space Physics, 1986, 91(A1):91-99.
[143] Burgess D, Schwartz S. The dynamics and upstream distributions of ions reflected at the Earth’sbow shock[J]. Journal of Geophysical Research: Space Physics, 1984, 89(A9): 7407-7422.
[144] Gurgiolo C, Wong H, Winske D. Low and high frequency waves generated by gyrophasebunched ions at oblique shocks[J]. Geophysical research letters, 1993, 20(9): 783-786.
[145] Meziane K, Mazelle C, Lin R, et al. Three-dimensional observations of gyrating ion distributions far upstream from the Earth’s bow shock and their association with low-frequencywaves[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A4): 5731-5742.
[146] Hoshino M, Terasawa T. Numerical study of the upstream wave excitation mechanism: 1.Nonlinear phase bunching of beam ions[J]. Journal of Geophysical Research: Space Physics,1985, 90(A1): 57-64.
[147] Romanelli N, Mazelle C, Meziane K. Nonlinear wave-particle interaction: Implications fornewborn planetary and backstreaming proton velocity distribution functions[J]. Journal of Geophysical Research: Space Physics, 2018, 123(2): 1100-1117.
[148] Gary S P, Thomsen M F, Fuselier S A. Electromagnetic instabilities and gyrophase-bunchedparticles[J]. The Physics of fluids, 1986, 29(2): 531-535.
[149] Gary S P, Tokar R L. The second-order theory of electromagnetic hot ion beam instabilities[J].Journal of Geophysical Research: Space Physics, 1985, 90(A1): 65-72.
[150] Bortnik J, Thorne R, Omidi N. Nonlinear evolution of EMIC waves in a uniform magnetic field:2. Test-particle scattering[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A12).

所在学位评定分委会
地球物理学
国内图书分类号
P354
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766213
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
程昆. 火星上游拾起离子激发质子回旋波的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930867-程昆-地球与空间科学系(12612KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[程昆]的文章
百度学术
百度学术中相似的文章
[程昆]的文章
必应学术
必应学术中相似的文章
[程昆]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。