中文版 | English
题名

基于有机胺混合体系的 CO2 捕集性能及机理研究

其他题名
PERFORMANCE AND MECHANISM STUDY OF CO2 CAPTURE USING AMINE-BASED MIXED SYSTEMS
姓名
姓名拼音
LI Guanghuan
学号
12232273
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
张作泰
导师单位
环境科学与工程学院
论文答辩日期
2024-05-14
论文提交日期
2024-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  为实现双碳目标,发展经济高效的CO2捕集技术至关重要。目前工业上常用吸收剂存在吸收性能差,再生能耗高的缺点,由此,本文从多元混合以及进一步多元相变两个角度出发,开发了DEEA/PZ/PD三元混合以及PD/PZ/NMP无水相变吸收体系,获得主要成果如下:

  系统研究了7种胺溶液的吸收性能,优化得到了DEEA/PZ/PD的最佳吸收体系,与MEA水溶液相比,其吸收容量提高了79%,循环容量提高了2.7倍,再生能耗下降了43.7%。通过定量核磁阐明了DEEA/PZ/PD的性能提升机制:(1)初始反应阶段,PDPZCO2进行快速吸收;(2)反应后期,PDCOO-DEEACO2反应形成HCO3-,从而增强吸收容量;(3)反应产物主要由HCO3-和不稳定的氨基甲酸盐(PZ(COO-)2PDCOO-)组成,有助于降低再生能耗。

  进一步开发了PD/PZ/NMP固液相变体系。该吸收剂的CO2饱和吸收量可达到0.86 mol CO2/mol amine,且固相体积仅占38%。经过4次循环后,吸收量仍能达到0.73 mol CO2/mol amine。通过对离子对相互作用进行计算,揭示了PZ对产物性状的调节机制。PD吸收CO2后的产物PDH+COO-会自聚集形成粘稠状物质;加入PZ后,其与CO2反应生成的PZH+PZCOO-通过弱作用力与PDH+COO-结合,抑制了其自聚集,促进了产物的粉末化。

  综上,本研究所开发的DEEA/PD/PZPD/PZ/NMP体系具有优异的CO2吸收和解吸性能。为液胺吸收剂的优化升级、扩大化应用提供了一定的理论指导。


 

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] HANSEN J, RUEDY R, SATO M, et al. Global surface temperature change[J]. Reviews of Geophysics, (2010), 48(4), RG4004.
[2] GOLLEDGE N R, KELLER E D, GOMEZ N, et al. Global environmental con-sequences of twenty-first-century ice-sheet melt[J]. Nature, 2019, 566(7742): 65-72.
[3] WIGLEY T M L, JONES P D, KELLY P M. Global warming[J]. Nature, 1981, 291(5813): 285-285.
[4] ANDEREGG W R L, PRALL J W, HAROLD J, et al. Expert credibility in climate change[J]. Proceedings of the National Academy of Sciences, 2010, 107(27): 12107-12109.
[5] HOUSE J I, HUNTINGFORD C, KNORR W, et al. What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy[J]. Environmental Research Letters, 2008, 3(4): 044002.
[6] ZHANG J, SEWELL C D, HUANG H, et al. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization[J]. Advanced Energy Materials, 2021, 11(47): 2102767.
[7] VENTEREA R T. Climate Change 2007: Mitigation of Climate Change[J]. Journal of Environmental Quality, 2009, 38(2): 837.
[8] MAC DOWELL N, FENNELL P S, SHAH N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017, 7(4): 243-249.
[9] 吕清刚, 柴祯. “双碳” 目标下的化石能源高效清洁利用[J]. 中国科学院院刊, 2022, 37(4): 541-548.
[10] 谢剑,苗湃林.中国能源消费结构多目标优化研究[J].科学决策,2023(07):159-167.
[11] 徐燕洁. 用于烟气 CO2 捕集的双胺类少水吸收剂性能研究[D]. 浙江大学, 2021.
[12] SANZ-PÉREZ E S, MURDOCK C R, DIDAS S A, et al. Direct capture of CO2 from ambient air[J]. Chemical Reviews, 2016, 116(19): 11840-11876.
[13] ZHANG S, LIU L, ZHANG L, et al. An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China[J]. Applied Energy, 2018, 231: 194-206.
[14] DE S K, WON D I, KIM J, et al. Integrated CO2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis[J]. Chemical Society Reviews, 2023,52, 5744.
[15] HONG J, CHAUDHRY G, BRISSON J G, et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy, 2009, 34(9): 1332-1340.
[16] WANG M, LAWAL A, STEPHENSON P, et al. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624.
[17] VEGA F, BAENA-MORENO F M, FERNÁNDEZ L M G, et al. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale[J]. Applied Energy, 2020, 260: 114313.
[18] CAPLOW, M. Kinetics of carbamate formation and breakdown[J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803.
[19] DANCKWERTS, P. V. The reaction of CO2 with ethanolamines[J]. Chemical Engineering Science, 1979, 34(4): 443-446
[20] MENG F, HAN S, MENG Y, et al. A comparative study of the effects of aqueous mixed amines on biogas upgrading based on 13C nuclear magnetic resonance (NMR) analysis[J]. Journal of Cleaner Production, 2022, 369: 133288.
[21] WU Z, LIU S, GAO H, et al. A study of structure-activity relationships of aqueous diamine solutions with low heat of regeneration for post-combustion CO2 capture[J]. Energy, 2019, 167: 359-368.
[22] MIRZAEI S, SHAMIRI A, AROUA M K. CO2 absorption/desorption in aqueous single and novel hybrid solvents of glycerol and monoethanolamine in a pilot-scale packed bed column[J]. Energy & Fuels, 2020, 34(7): 8503-8515.
[23] KANG M K, JEON S B, CHO J H, et al. Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions[J]. International Journal of Greenhouse Gas Control, 2017, 63: 281-288.
[24] KANG M K, CHO J H, LEE J H, et al. Kinetic reaction characteristics of quasi-aqueous and nonaqueous sorbents for CO2 absorption using MEA/H2O/ethylene glycol[J]. Energy & Fuels, 2017, 31(8): 8383-8391.
[25] ROMEO L M, BOLEA I, ESCOSA J M. Integration of power plant and amine scrubbing to reduce CO2 capture costs[J]. Applied Thermal Engineering, 2008, 28(8-9): 1039-1046.
[26] AGHEL B, JANATI S, WONGWISES S, et al. Review on CO2 capture by blended amine solutions[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715.
[27] ARCIS H, RODIER L, COXAM J Y. Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol[J]. The Journal of Chemical Thermodynamics, 2007, 39(6): 878-887.
[28] AGHEL B, JANATI S, WONGWISES S, et al. Review on CO2 capture by blended amine solutions[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715.
[29] SARTORI G, SAVAGE D W. Sterically hindered amines for carbon dioxide removal from gases[J]. Industrial & Engineering Chemistry Fundamentals, 1983, 22(2): 239-249.
[30] DONALDSON, T. L.; NGUYEN, Y. N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Industrial and Engineering Chemistry Fundamentals, 1980, 19(3), 260-266.
[31] WANG F, ZHAO J, MIAO H, et al. Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process[J]. Applied Energy, 2018, 230: 734-749.
[32] YU H. Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2255-2265.
[33] 韩中合, 白亚开. 燃煤电厂氨法脱碳工艺流程仿真及能耗分析[J]. 环境科学与技术, 2016, 39(8): 147-153.
[34] LI L, HAN W, YU H, et al. CO2 absorption by piperazine promoted aqueous ammonia solution: absorption kinetics and ammonia loss[J]. Greenhouse Gases: Science and Technology, 2013, 3(3): 231-245.
[35] SHUANGCHEN M, GONGDA C, TINGTING H, et al. Experimental study on the effect of Ni (II) additive on ammonia escape in CO2 capture using ammonia solution[J]. International Journal of Greenhouse Gas Control, 2015, 37: 249-255.
[36] BORHANI T N G, AZARPOUR A, AKBARI V, et al. CO2 capture with potassium carbonate solutions: A state-of-the-art review[J]. International journal of greenhouse gas control, 2015, 41: 142-162.
[37] 赵然磊, 马文涛, 徐晓等. 二氧化碳捕集化学吸收剂的研究进展[J]. 精细化工, 2023, 40(01): 1-9.
[38] FENG Q, SUN B, WANG L, et al. Enhancement of CO2 absorption into K2CO3 solution by cyclohexane in a high-shear reactor[J]. Energy & Fuels, 2019, 33(7): 6628-6633.
[39] KIM Y E, CHOI J H, NAM S C, et al. CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 105-110.
[40] THEE H, SMITH K H, DA SILVA G, et al. Carbon dioxide absorption into unpromoted and borate-catalyzed potassium carbonate solutions[J]. Chemical Engineering Journal, 2012, 181: 694-701.
[41] MUSTAFA N F A, MOHD SHARIFF A, TAY W H, et al. Mass transfer performance study for CO2 absorption into non-precipitated potassium carbonate promoted with glycine using packed absorption column[J]. Sustainability, 2020, 12(9): 3873.
[42] ZHANG S, LU Y. Kinetic performance of CO2 absorption into a potassium carbonate solution promoted with the enzyme carbonic anhydrase: Comparison with a monoethanolamine solution[J]. Chemical Engineering Journal, 2015, 279: 335-343.
[43] RAMAZANI R, MAZINANI S, JAHANMIRI A, et al. Experimental investigation of the effect of addition of different activators to aqueous solution of potassium carbonate: absorption rate and solubility[J]. International Journal of Greenhouse Gas Control, 2016, 45: 27-33.
[44] BIŃCZAK G, POHORECKI R, MONIUK W, et al. Investigation of new potential amine activa-tors for carbon dioxide absorption in carbonate solutions[J]. Chemical and Process Engineering, 2018: 353–365-353–365.
[45] ZHAO C, GUO Y, LI C, et al. Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents[J]. Applied Energy, 2014, 124: 241-247.
[46] LI Y, TAN Z, ZHANG Z, et al. Experimental studies on carbon dioxide absorption using potassium carbonate solutions with amino acid salts[J]. Separation and Purification Technology, 2019, 219: 47-54.
[47] SHAO P, CHEN H, YING Q, et al. Structure–activity relationship of carbonic anhydrase enzyme immobilized on various silica-based mesoporous molecular sieves for CO2 absorption into a potassium carbonate solution[J]. Energy & Fuels, 2020, 34(2): 2089-2096.
[48] SANG SEFIDI V, LUIS P. Advanced amino acid-based technologies for CO2 capture: A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20181-20194.
[49] HU G, SMITH K H, WU Y, et al. Carbon dioxide capture by solvent absorption using amino acids: A review[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2229-2237.
[50] HOLST J, VERSTEEG G F, BRILMAN D W F, et al. Kinetic study of CO2 with various amino acid salts in aqueous solution[J]. Chemical Engineering Science, 2009, 64(1): 59-68.
[51] HE F, WANG T, FANG M, et al. Screening test of amino acid salts for CO2 absorption at flue gas temperature in a membrane contactor[J]. Energy & Fuels, 2017, 31(1): 770-777.
[52] YAN S, HE Q, ZHAO S, et al. CO2 removal from biogas by using green amino acid salts: Performance evaluation[J]. Fuel Processing Technology, 2015, 129: 203-212.
[53] CASTRO M, GÓMEZ-DÍAZ D, NAVAZA J M, et al. Carbon dioxide capture by chemical solvents based on amino acids: absorption and regeneration[J]. Chemical Engineering & Technology, 2021, 44(2): 248-257.
[54] ZHANG Z, LI Y, ZHANG W, et al. Effectiveness of amino acid salt solutions in capturing CO2: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 179-188.
[55] RANGWALA H A, MORRELL B R, MATHER A E, et al. Absorption of CO2 into aqueous tertiary amine/MEA solutions[J]. The Canadian Journal of Chemical Engineering, 1992, 70(3): 482-490.
[56] CONWAY W, BRUGGINK S, BEYAD Y, et al. CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes[J]. Chemical Engineering Science, 2015, 126: 446-454.
[57] LI H, LI L, NGUYEN T, et al. Characterization of piperazine/2-aminomethylpropanol for carbon dioxide capture[J]. Energy Procedia, 2013, 37: 340-352.
[58] CHEN X, CLOSMANN F, ROCHELLE G T. Accurate screening of amines by the wetted wall column[J]. Energy Procedia, 2011, 4: 101-108.
[59] CLOSMANN F, NGUYEN T, ROCHELLE G T. MDEA/Piperazine as a solvent for CO2 capture[J]. Energy Procedia, 2009, 1(1): 1351-1357.
[60] EL HADRI N, QUANG D V, GOETHEER E L V, et al. Aqueous amine solution characterization for post-combustion CO2 capture process[J]. Applied Energy, 2017, 185: 1433-1449.
[61] CHAKRAVARTY T, PHUKAN U K, WEILUND R H. Reaction of acid gases with mixtures of amines[J]. Chemical Engineering Progress, 1985, 81(4): 32-36.
[62] AROONWILAS A, VEAWAB A. Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 2228-2237.
[63] MANDAL B P, GUHA M, BISWAS A K, et al. Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions[J]. Chemical Engineering Science, 2001, 56(21-22): 6217-6224.
[64] MUCHAN P, SAIWAN C, NARKU-TETTEH J, et al. Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture[J]. Chemical Engineering Science, 2017, 170: 574-582.
[65] DU Y, YUAN Y, ROCHELLE G T. Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture[J]. Chemical Engineering Science, 2016, 155: 397-404.
[66] SHARIF M, FAN H, WU X, et al. Assessment of novel solvent system for CO2 capture applications[J]. Fuel, 2023, 337: 127218.
[67] ZHAO D, XIAO X, WANG S, et al. Comprehensive analysis of thermodynamic models for CO2 absorption into a blended N,N-diethylethanolamine-1,6-hexamethyl diamine (DEEA-HMDA) amine[J]. AIChE Journal, 2023, 69(10): e18174.
[68] NWAOHA C, SAIWAN C, SUPAP T, et al. Regeneration energy analysis of aqueous tri–solvent blends containing 2–amino–2–methyl–1–propanol (AMP), methyl-diethanolamine (MDEA) and diethylenetriamine (DETA) for carbon dioxide (CO2) capture[J]. Energy Procedia, 2017, 114: 2039-2046.
[69] LIU Y, FAN W, WANG K, et al. Studies of CO2 absorption/regeneration performances of novel aqueous monothanlamine (MEA)-based solutions[J]. Journal of Cleaner Production, 2016, 112: 4012-4021.
[70] XIAO M, CUI D, ZOU L, et al. Experimental and modeling studies of bicarbonate forming amines for CO2 capture by NMR spectroscopy and VLE[J]. Separation and Purification Technology, 2020, 234: 116097.
[71] POLESSO B B, DUCZINSKI R, BERNARD F L, et al. New water-based nanocapsules of poly (diallyldimethylammonium tetrafluoroborate)/ionic liquid for CO2 capture[J]. Heliyon, 2023, 9(2): e13298.
[72] MIRZAEI M, HEKMAT SHOAR S, SHARIFI A, et al. CO2 and N2 adsorption performance of [Rmim][NO3] ionic liquids impregnated onto mesoporous silica at ambient pressure[J]. Journal of Porous Materials, 2023: 1-11.
[73] BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927.
[74] WANG C, GUO Y, ZHU X, et al. Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination[J]. Chemical Communications, 2012, 48(52): 6526-6528.
[75] SÁNCHEZ L M G, MEINDERSMA G W, DE HAAN A B. Kinetics of absorption of CO2 in amino-functionalized ionic liquids[J]. Chemical Engineering Journal, 2011, 166(3): 1104-1115.
[76] YU H, WU Y T, JIANG Y Y, et al. Low viscosity amino acid ionic liquids with asymmetric tetraalkylammonium cations for fast absorption of CO2[J]. New Journal of Chemistry, 2009, 33(12): 2385-2390.
[77] MOTA-MARTINEZ M T, BRANDL P, HALLETT J P, et al. Challenges and opportunities for the utilisation of ionic liquids as solvents for CO2 capture[J]. Molecular Systems Design & Engineering, 2018, 3(3): 560-571.
[78] ZHANG J, QIAO Y, WANG W, et al. Development of an energy-efficient CO2 capture process using thermomorphic biphasic solvents[J]. Energy Procedia, 2013, 37: 1254-1261.
[79] YE J, JIANG C, CHEN H, et al. Novel biphasic solvent with tunable phase separation for CO2 capture: Role of water content in mechanism, kinetics, and energy penalty[J]. Environmental Science & Technology, 2019, 53(8): 4470-4479.
[80] LIU F, FANG M, DONG W, et al. Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation[J]. Applied Energy, 2019, 233: 468-477.
[81] ZHANG W, JIN X, TU W, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195: 316-323.
[82] WANG R, LIU S, WANG L, et al. Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas[J]. Applied Energy, 2019, 242: 302-310.
[83] WANG R, JIANG L, LI Q, et al. Energy-saving CO2 capture using sulfolane-regulated biphasic solvent[J]. Energy, 2020, 211: 118667.
[84] WANG L, LIU S, WANG R, et al. Regulating phase separation behavior of a DEEA–TETA biphasic solvent using sulfolane for energy-saving CO2 capture[J]. Environmental Science & Technology, 2019, 53(21): 12873-12881.
[85] 涂智芳, 魏建文, 周小斌. 固-液相变二氧化碳吸收剂的研究进展[J]. 洁净煤技术, 2022, 28(9): 122-132.
[86] HASIB-UR-RAHMAN M, LARACHI F. Kinetic behavior of carbon dioxide absorption in diethanolamine/ionic-liquid emulsions[J]. Separation and Purification Technology, 2013, 118: 757-761.
[87] HASIB-UR-RAHMAN M, LARACHI F. CO2 capture in alkanolamine-RTIL blends via carbamate crystallization: route to efficient regeneration[J]. Environmental Science & Technology, 2012, 46(20): 11443-11450.
[88] ZHANG F, GAO K X, MENG Y N, et al. Intensification of dimethy-aminoethoxyethanol on CO2 absorption in ionic liquid of amino acid[J]. International Journal of Greenhouse Gas Control, 2016, 51: 415-422.
[89] SHEN S, BIAN Y, ZHAO Y. Energy-efficient CO2 capture using potassium prolinate/ethanol solution as a phase-changing absorbent[J]. International Journal of Greenhouse Gas Control, 2017, 56: 1-11.
[90] 边阳阳. 脯氨酸钾/乙醇相变吸收剂捕集CO2的应用基础研究[D]. 河北科技大学, 2018.
[91] MOHSIN H M, SHARIFF A M, JOHARI K. 3-Dimethylaminopropylamine (DMAPA) mixed with glycine (GLY) as an absorbent for carbon dioxide capture and subsequent utilization[J]. Separation and Purification Technology, 2019, 222: 297-308.
[92] BIAN Y, SHEN S. CO2 absorption into a phase change absorbent: Water-lean potassium prolinate/ethanol solution[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2318-2326.
[93] LI H, GUO H, SHEN S. Low-energy-consumption CO2 capture by liquid–solid phase change absorption using water-lean blends of amino acid salts and 2-alkoxyethanols[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12956-12967.
[94] ZHENG S, TAO M, LIU Q, et al. Capturing CO2 into the precipitate of a phase-changing solvent after absorption[J]. Environmental Science & Technology, 2014, 48(15): 8905-8910.
[95] 李誉. 三乙烯四胺/有机溶剂吸收剂捕集 CO2 基础性能研究[D]. 杭州: 浙江大学, 2021.
[96] CHEN Z, JING G, LV B, et al. An efficient solid–liquid biphasic solvent for CO2 capture: crystalline powder product and low heat duty[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14493-14503.
[97] GAO X, LI X, CHENG S, et al. A novel solid–liquid ‘phase controllable’biphasic amine absorbent for CO2 capture[J]. Chemical Engineering Journal, 2022, 430: 132932.
[98] JOU F Y, MATHER A E, OTTO F D. The solubility of CO2 in a 30 mass percent monoethanolamine solution[J]. The Canadian Journal of Chemical Engineering, 1995, 73(1): 140-147.
[99] SHEN K P, LI M H. Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine[J]. Journal of Chemical and Engineering Data, 1992, 37(1): 96-100.
[100]ZHANG R, ZHANG X, YANG Q, et al. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)[J]. Applied Energy, 2017, 205: 1002-1011.
[101]LI X, LIU J, JIANG W, et al. Low energy-consuming CO2 capture by phase change absorbents of amine/alcohol/H2O[J]. Separation and Purification Technology, 2021, 275: 119181.
[102]RAYER A V, HENNI A. Heats of absorption of CO2 in aqueous solutions of tertiary amines: N-methyldiethanolamine, 3-dimethylamino-1-propanol, and 1-dimethylamino-2-propanol[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4953-4965.
[103]FU K, LIU C, WANG L, et al. Performance and mechanism of CO2 absorption in 2-ethylhexan-1-amine+ glyme non-aqueous solutions[J]. Energy, 2021, 220: 119735.
[104]ÁLVAREZ-GUTIÉRREZ N, GIL M V, RUBIERA F, et al. Kinetics of CO2 adsorption on cherry stone-based carbons in CO2/CH4 separations[J]. Chemical Engineering Journal, 2017, 307: 249-257.
[105]LOPES E C N, DOS ANJOS F S C, VIEIRA E F S, et al. An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg (II) with thin chitosan membranes[J]. Journal of Colloid and Interface Science, 2003, 263(2): 542-547.
[106]CESTARI A R, VIEIRA E F S, MATOS J D S, et al. Determination of kinetic parameters of Cu (II) interaction with chemically modified thin chitosan membranes[J]. Journal of Colloid and Interface Science, 2005, 285(1): 288-295.
[107]LIU H, LI M, LUO X, et al. Investigation mechanism of DEA as an activator on aqueous MEA solution for postcombustion CO2 capture[J]. AIChE Journal, 2018, 64(7): 2515-2525.
[108]GARCÉS-POLO S I, VILLARROEL-ROCHA J, SAPAG K, et al. A comparative study of CO2 diffusion from adsorption kinetic measurements on microporous materials at low pressures and temperatures[J]. Chemical Engineering Journal, 2016, 302: 278-286.
[109]WEBER W, MORRIS J. Advances in water pollution research: removal of biologically resistant pollutants fromwastewaters by adsorption[C].International Conference Water Pollution Symposium. 1962, 231-236.
[110]LOGANATHAN S, TIKMANI M, EDUBILLI S, et al. CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature[J]. Chemical Engineering Journal, 2014, 256: 1-8.
[111]MOHAN D, SINGH K P. Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste[J]. Water Research, 2002, 36(9): 2304-2318.
[112]BARZAGLI F, GIORGI C, MANI F, et al. Comparative study of CO2 capture by aqueous and nonaqueous 2-amino-2-methyl-1-propanol based absorbents carried out by 13C NMR and enthalpy analysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4364-4373.
[113]BARZAGLI F, GIORGI C, MANI F, et al. Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: A comparative analysis carried out by 13C NMR spectroscopy[J]. Applied Energy, 2018, 220: 208-219.
[114]LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[115]HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
[116]SCHEURER M, RODENKIRCH P, SIGGEL M, et al. PyContact: rapid, customizable, and visual analysis of noncovalent interactions in MD simulations[J]. Biophysical Journal, 2018, 114(3): 577-583.
[117]ZHANG J, LU T. Efficient evaluation of electrostatic potential with computerized optimized code[J]. Physical Chemistry Chemical Physics, 2021, 23(36): 20323-20328.
[118]MENG F, JU T, HAN S, et al. Study on biogas upgrading characteristics and reaction mechanism of low energy consumption 2-Amino-2-methylpropanol (AMP)/piperazine (PZ)/H2O mixed amines[J]. Separation and Purification Technology, 2023, 310: 123195..
[119]ROCHELLE G, CHEN E, FREEMAN S, et al. Aqueous piperazine as the new standard for CO2 capture technology[J]. Chemical Engineering Journal, 2011, 171(3): 725-733.
[120]AYITTEY F K, SAPTORO A, KUMAR P, et al. Energy-saving process configurations for monoethanolamine-based CO2 capture system[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(1): e2576.
[121]SUTAR P N, JHA A, VAIDYA P D, et al. Secondary amines for CO2 capture: A kinetic investigation using N-ethylmonoethanolamine[J]. Chemical Engineering Journal, 2012, 207: 718-724.
[122]ZHANG Y, CHEN C C. Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model[J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 163-175.
[123]NWAOHA C, SAIWAN C, TONTIWACHWUTHIKUL P, et al. Carbon dioxide (CO2) capture: Absorption-regeneration capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 742-750.
[124]XIAO M, CUI D, YANG Q, et al. Role of mono-and diamines as kinetic promoters in mixed aqueous amine solution for CO2 capture[J]. Chemical Engineering Science, 2021, 229: 116009.
[125]SUTAR P N, VAIDYA P D, KENIG E Y. Activated DEEA solutions for CO2 capture—A study of equilibrium and kinetic characteristics[J]. Chemical Engineering Science, 2013, 100: 234-241.
[126]BOUGIE F, ILIUTA M C. Sterically hindered amine-based absorbents for the removal of CO2 from gas streams[J]. Journal of Chemical & Engineering Data, 2012, 57(3): 635-669.
[127]XIAO M, CUI D, YANG Q, ET AL. Advanced designer amines for CO2 capture: Interrogating speciation and physical properties[J]. International Journal of Greenhouse Gas Control, 2019, 82: 8-18.
[128]XIAO M, LIU H, GAO H, ET AL. CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine[J]. Applied Energy, 2019, 235: 311-319.
[129]HAN S, MENG Y, AIHEMAITI A, et al. Biogas upgrading with various single and blended amines solutions: Capacities and kinetics[J]. Energy, 2022, 253: 124195.
[130]DE MENEZES E W, LIMA E C, ROYER B, et al. Ionic silica based hybrid material containing the pyridinium group used as an adsorbent for textile dye[J]. Journal of Colloid and Interface Science, 2012, 378(1): 10-20.
[131]HOSSEINI-ARDALI S M, HAZRATI-KALBIBAKI M, FATTAHI M, et al. Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent[J]. Energy, 2020, 211: 119035.
[132]FANG M, LUIS P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives[J]. Desalination, 2016, 380: 93-99.
[133]MENG F, JU T, HAN S, et al. Novel monoethanolamine absorption using ionic liquids as phase splitter for CO2 capture in biogas upgrading: High CH4 purity and low energy consumption[J]. Chemical Engineering Journal, 2023, 462: 142296.
[134]ZHOU X, LIU F, LV B, et al. Evaluation of the novel biphasic solvents for CO2 capture: Performance and mechanism[J]. International Journal of Greenhouse Gas Control, 2017, 60: 120-128.
[135]CHOWDHURY F A, YAMADA H, HIGASHII T, et al. CO2 capture by tertiary amine absorbents: a performance comparison study[J]. Industrial & Engineering Chemistry Research, 2013, 52(24): 8323-8331.
[136]OTITOJU O, OKO E, WANG M. Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation[J]. Applied Energy, 2021, 292: 116893.
[137]KIM H, HWANG S J, LEE K S. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process[J]. Environmental Science & Technology, 2015, 49(3): 1478-1485.
[138]KHAN A A, HALDER G N, SAHA A K. Carbon dioxide capture characteristics from flue gas using aqueous 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA) solutions in packed bed absorption and regeneration columns[J]. International Journal of Greenhouse Gas Control, 2015, 32: 15-23.
[139]WAI S K, NWAOHA C, SAIWAN C, et al. Absorption heat, solubility, absorption and desorption rates, cyclic capacity, heat duty, and absorption kinetic modeling of AMP–DETA blend for post–combustion CO2 capture[J]. Separation and Purification Technology, 2018, 194: 89-95.
[140]LIU H, ZHANG X, GAO H, et al. Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7656-7664.
[141]ZHOU X, SHEN Y, LIU F, et al. A novel dual-stage phase separation process for CO2 absorption into a biphasic solvent with low energy penalty[J]. Environmental Science & Technology, 2021, 55(22): 15313-15322.
[142]YORO K O, DARAMOLA M O, SEKOAI P T, et al. Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111241.
[143]ZHANG R, ZHANG X, YANG Q, et al. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)[J]. Applied Energy, 2017, 205: 1002-1011.
[144]SHI H, CHENG X, PENG J, et al. The CO2 absorption and desorption analysis of tri-solvent MEA+EAE+AMP compared with MEA+BEA+AMP along with coordination effects evaluation[J]. Environmental Science and Pollution Research, 2022, 29(27): 40686-40700.
[145]HE X, HE H, BARZAGLI F, et al. Analysis of the energy consumption in solvent regeneration processes using binary amine blends for CO2 capture[J]. Energy, 2023, 270: 126903.
[146]HU X, HUANG J, HE X, et al. Analyzing the potential benefits of trio-amine systems for enhancing the CO2 desorption processes[J]. Fuel, 2022, 316: 123216.
[147]ZHANG R, LI Y, HE X, et al. Investigation of the improvement of the CO2 capture performance of aqueous amine sorbents by switching from dual-amine to trio-amine systems[J]. Separation and Purification Technology, 2023, 316: 123810.
[148]PERINU C, BERNHARDSEN I M, PINTO D D D, et al. NMR Speciation of Aqueous MAPA, Tertiary Amines, and Their Blends in the Presence of CO2: Influence of p K a and Reaction Mechanisms[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1337-1349.
[149]DONALDSON T L, NGUYEN Y N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes[J]. Industrial & Engineering Chemistry Fundamentals, 1980, 19(3): 260-266.
[150]SVENSSON H, EDFELDT J, VELASCO V Z, et al. Solubility of carbon dioxide in mixtures of 2-amino-2-methyl-1-propanol and organic solvents[J]. International Journal of Greenhouse Gas Control, 2014, 27: 247-254.
[151]LV B, WU J, LIN C, et al. Kinetic and heat duty study of aprotic heterocyclic anion-based dual functionalized ionic liquid solutions for carbon capture[J]. Fuel, 2020, 263: 116676.
[152]HELDEBRANT D J, KOECH P K, GLEZAKOU V A, et al. Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook[J]. Chemical Reviews, 2017, 117(14): 9594-9624.
[153]任恩泽, 张巍松, 王育力等. 液固相变吸收剂的CO2吸收性能及相分离行为机理研究[J]. 低碳化学与化工, 2023, 48(04): 114-120.
[154]ZHAO W, ZHAO Q, ZHANG Z, et al. Liquid-solid phase-change absorption of acidic gas by polyamine in nonaqueous organic solvent[J]. Fuel, 2017, 209: 69-75.
[155]HAN S, MENG Y, AIHEMAITI A, et al. Biogas upgrading with various single and blended amines solutions: Capacities and kinetics[J]. Energy, 2022, 253: 124195.
[156]TAO M, XU N, GAO J, et al. Phase-change mechanism for capturing CO2 into an environmentally benign nonaqueous solution: a combined NMR and molecular dynamics simulation study[J]. Energy & Fuels, 2018, 33(1): 474-483.
[157]LEE B, STOWE H M, LEE K H, et al. Understanding CO2 capture mechanisms in aqueous hydrazine via combined NMR and first-principles studies[J]. Physical Chemistry Chemical Physics, 2017, 19(35): 24067-24075

所在学位评定分委会
材料与化工
国内图书分类号
X701
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766215
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
李光环. 基于有机胺混合体系的 CO2 捕集性能及机理研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232273-李光环-环境科学与工程(5433KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李光环]的文章
百度学术
百度学术中相似的文章
[李光环]的文章
必应学术
必应学术中相似的文章
[李光环]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。