[1] OICA. Global Monthly Sales Data External[EB/OL]. 2023
[2023-12-27]. https://www.oica.net/.
[2] KAIWARTYA O, ABDULLAH A H, CAO Y, et al. Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects[J]. IEEE Access, 2016, 4: 5356-5373.
[3] TAEIHAGH A, LIM H S M. Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks[J]. Transport Reviews, 2019, 39(1): 103-128.
[4] ONDRUŠ J, KOLLA E, VERTAL’ P, et al. How do autonomous cars work?[J]. Transportation Research Procedia, 2020, 44: 226-233.
[5] RÖSMANN C, FEITEN W, WÖSCH T, et al. Trajectory modification considering dynamic constraints of autonomous robots[C]//ROBOTIK 2012; 7th German Conference on Robotics. VDE, 2012: 1-6.
[6] LIMEBEER D J, MASSARO M. Dynamics and optimal control of road vehicles[M]. Oxford University Press, 2018.
[7] JAZAR R N. Vehicle Dynamics Theory and Application[M/OL]. Springer Cham, 2017. https://doi.org/10.1007/978-3-319-53441-1.
[8] GUIGGIANI M. The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars[M/OL]. Springer International Publishing, 2018. https://books.google.com.hk/books?id=SARaDwAAQBAJ.
[9] FARAZANDEH A, AHMED A, RAKHEJA S. Performance enhancement of road vehicles using active independent front steering (AIFS)[J]. SAE International Journal of Passenger Cars-mechanical Systems, 2012, 5(2012-01-2013): 1273-1284.
[10] WANG D, QI F. Trajectory planning for a four-wheel-steering vehicle[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164): volume 4. IEEE, 2001: 3320-3325.
[11] MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors [C]//2011 IEEE International Conference on Robotics and Automation. IEEE, 2011: 2520-2525.
[12] MURRAY R M, RATHINAM M, SLUIS W. Differential flatness of mechanical control systems: A catalog of prototype systems[C]//ASME International Mechanical Engineering Congress and Exposition. Citeseer, 1995.
[13] HAN Z, WU Y, LI T, et al. An efficient spatial-temporal trajectory planner for autonomous vehicles in unstructured environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2023.
[14] MURRAY R M, SASTRY S S. Nonholonomic motion planning: Steering using sinusoids[J]. IEEE Transactions on Automatic Control, 1993, 38(5): 700-716.
[15] FUCHSHUMER S, SCHLACHER K, RITTENSCHOBER T. Nonlinear vehicle dynamicscontrol-a flatness based approach[C]//Proceedings of the 44th IEEE Conference on Decision and Control. IEEE, 2005: 6492-6497.
[16] PETERS S C, FRAZZOLI E, IAGNEMMA K. Differential flatness of a front-steered vehicle with tire force control[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011: 298-304.
[17] SETLUR P, WAGNER J R, DAWSON D M, et al. A trajectory tracking steer-by-wire control system for ground vehicles[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 76-85.
[18] HWAN JEON J, COWLAGI R V, PETERS S C, et al. Optimal motion planning with the half-car dynamical model for autonomous high-speed driving[C]//2013 American Control Conference. IEEE, 2013: 188-193.
[19] WANG X, SUN W. Trajectory tracking of autonomous vehicle: A differential flatness approach with disturbance-observer-based control[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8 (2): 1368-1379.
[20] WANG Z, DU W, WANG J, et al. Research and application of improved adaptive MOMEDA fault diagnosis method[J]. Measurement, 2019, 140: 63-75.
[21] GAO B, YANG Q, PENG Z, et al. A direct random sampling method for the Fourier amplitude sensitivity test of nonuniformly distributed uncertainty inputs and its application in C/C nozzles [J]. Aerospace Science and Technology, 2020, 100: 105830.
[22] CHEN H, CHEN H, QIANG L. Multi-UAV 3D formation path planning based on improved artificial potential field[J]. Journal of System Simulation, 2020, 32(3): 414-420.
[23] TANG G, TANG C, CLARAMUNT C, et al. Geometric A-star algorithm: An improved A-star algorithm for AGV path planning in a port environment[J]. IEEE Access, 2021, 9: 59196-59210.
[24] LIU L S, LIN J F, YAO J X, et al. Path planning for smart car based on Dijkstra algorithm and dynamic window approach[J]. Wireless Communications and Mobile Computing, 2021, 2021: 1-12.
[25] XIANGRONG T, YUKUN Z, XINXIN J. Improved A-star algorithm for robot path planning in static environment[C]//Journal of Physics: Conference Series: volume 1792. IOP Publishing, 2021: 012067.
[26] QING Z, XU L, LI P, et al. Path Planning for Mobile Robots Based on JPS and Improved A* Algorithm[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(11): 2233.
[27] KADRY S, ALFEROV G, FEDOROV V, et al. Path optimization for D-star algorithm modification[C]//AIP Conference Proceedings: volume 2425. AIP Publishing, 2022.
[28] MIN H, XIONG X, WANG P, et al. Autonomous driving path planning algorithm based on improved A* algorithm in unstructured environment[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(2-3): 513-526.
[29] WANG X, LIU Z, LIU J. Mobile robot path planning based on an improved A* algorithm[C]//International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2022): volume 12604. SPIE, 2023: 1093-1098.
[30] RAHEEM F A, HAMEED U I. Heuristic D* algorithm based on particle swarm optimization for path planning of two-link robot arm in dynamic environment[J]. Al-Khwarizmi Engineering Journal, 2019, 15(2): 108-123.
[31] ELBANHAWI M, SIMIC M. Sampling-based robot motion planning: A review[J]. IEEE Access, 2014, 2: 56-77.
[32] LAVALLE S. Rapidly-exploring random trees: A new tool for path planning[J]. Research Report 9811, 1998.
[33] SHKOLNIK A, WALTER M, TEDRAKE R. Reachability-guided sampling for planning under differential constraints[C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009: 2859-2865.
[34] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7): 846-894.
[35] WEBB D J, VAN DEN BERG J. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics[C]//2013 IEEE International Conference on Robotics and Automation. IEEE, 2013: 5054-5061.
[36] JIANG C, HU Z, MOURELATOS Z P, et al. R2-RRT*: Reliability-based robust mission planning of off-road autonomous ground vehicle under uncertain terrain environment[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19(2): 1030-1046.
[37] FERACO S, LUCIANI S, BONFITTO A, et al. A local trajectory planning and control method for autonomous vehicles based on the RRT algorithm[C]//2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT Automotive). IEEE, 2020: 1-6.
[38] KUMAR S, SIKANDER A. A modified probabilistic roadmap algorithm for efficient mobile robot path planning[J]. Engineering Optimization, 2023, 55(9): 1616-1634.
[39] RAVANKAR A A, RAVANKAR A, EMARU T, et al. HPPRM: hybrid potential based probabilistic roadmap algorithm for improved dynamic path planning of mobile robots[J]. IEEE Access, 2020, 8: 221743-221766.
[40] QIAO L, LUO X, LUO Q. An Optimized Probabilistic Roadmap Algorithm for Path Planning of Mobile Robots in Complex Environments with Narrow Channels[J]. Sensors, 2022, 22(22): 8983.
[41] AJANOVIC Z, LACEVIC B, SHYROKAU B, et al. Search-based optimal motion planning for automated driving[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 4523-4530.
[42] ZHU Z, SCHMERLING E, PAVONE M. A convex optimization approach to smooth trajectories for motion planning with car-like robots[C]//2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015: 835-842.
[43] ZHOU J, HE R, WANG Y, et al. Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization[J]. IEEE Robotics and Automation Letters, 2020, 6(2): 439-446.
[44] DING W, ZHANG L, CHEN J, et al. Safe trajectory generation for complex urban environments using spatio-temporal semantic corridor[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2997-3004.
[45] LIU C, LIN C Y, TOMIZUKA M. The convex feasible set algorithm for real time optimization in motion planning[J]. SIAM Journal on Control and optimization, 2018, 56(4): 2712-2733.
[46] CHEN R, YANG Z, CHENG J, et al. Motion Planning for Nonlinear Robotic System based on ADMM and Convex Feasible Set Algorithm[C]//2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022: 7461-7466.
[47] GUPTA A, DIVEKAR R. Autonomous parallel parking methodology for Ackerman configured vehicles[J]. ACEEE International Journal on Communication, 2010, 1(2): 1-6.
[48] INOUE T, DAO M Q, LIU K Z. Development of an auto-parking system with physical limitations[C]//SICE 2004 Annual Conference: volume 2. IEEE, 2004: 1015-1020.
[49] LIU S, AN X, SHANG E, et al. A path planning method for assistant parallel car-parking[C]//2012 Fifth International Symposium on Computational Intelligence and Design: volume 2. IEEE, 2012: 65-68.
[50] SUNGWOO C, BOUSSARD C, D’ANDRÉA NOVEL B. Easy path planning and robust control for automatic parallel parking[J]. IFAC Proceedings Volumes, 2011, 44(1): 656-661.
[51] CHOI J W, CURRY R E, ELKAIM G H. Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles.[J]. IAENG International Journal of Applied Mathematics, 2010, 40(2).
[52] VOROBIEVA H, GLASER S, MINOIU-ENACHE N, et al. Automatic parallel parking in tiny spots: Path planning and control[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(1): 396-410.
[53] VOROBIEVA H, MINOIU-ENACHE N, GLASER S, et al. Geometric continuous-curvature path planning for automatic parallel parking[C]//2013 10th IEEE international Conference on Networking, Sensing and Control (ICNSC). IEEE, 2013: 418-423.
[54] MOON J, BAE I, CHA J G, et al. A trajectory planning method based on forward path generation and backward tracking algorithm for automatic parking systems[C]//17th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE, 2014: 719-724.
[55] LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4: 387-403.
[56] LI D, GE S S, HE W, et al. Multilayer formation control of multi-agent systems[J]. Automatica, 2019, 109: 108558.
[57] BALCH T, ARKIN R C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
[58] HACENE N, MENDIL B. Behavior-based autonomous navigation and formation control of mobile robots in unknown cluttered dynamic environments with dynamic target tracking[J]. International Journal of Automation and Computing, 2021: 1-21.
[59] LI X, XIAO J, TAN J. Modeling and controller design for multiple mobile robots formation control[C]//2004 IEEE International Conference on Robotics and Biomimetics. IEEE, 2004: 838-843.
[60] DAI S L, HE S, CHEN X, et al. Adaptive leader–follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance[J]. IEEE Transactions on Industrial Informatics, 2019, 16(6): 3662-3671.
[61] LIN J, MIAO Z, ZHONG H, et al. Adaptive image-based leader–follower formation control of mobile robots with visibility constraints[J]. IEEE Transactions on Industrial Electronics, 2020, 68(7): 6010-6019.
[62] XU Z, YAN T, YANG S X, et al. Distributed Leader Follower Formation Control of Mobile Robots based on Bioinspired Neural Dynamics and Adaptive Sliding Innovation Filter[J]. IEEE Transactions on Industrial Informatics, 2023.
[63] DESAI J P, OSTROWSKI J, KUMAR V. Controlling formations of multiple mobile robots[C]//Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146): volume 4. IEEE, 1998: 2864-2869.
[64] HU J, BHOWMICK P, LANZON A. Distributed adaptive time-varying group formation tracking for multiagent systems with multiple leaders on directed graphs[J]. IEEE Transactions on Control of Network Systems, 2019, 7(1): 140-150.
[65] REN W, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661.
[66] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98.
[67] PAN Z, WANG D, DENG H, et al. A virtual spring method for the multi-robot path planning and formation control[J]. International Journal of Control, Automation and Systems, 2019, 17:1272-1282.
[68] LIU X, GE S S, GOH C H. Formation potential field for trajectory tracking control of multiagents in constrained space[J]. International Journal of Control, 2017, 90(10): 2137-2151.
[69] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine learning, 2011, 3(1): 1-122.
[70] CHEN L, SUN D, TOH K C. A note on the convergence of ADMM for linearly constrained convex optimization problems[J]. Computational Optimization and Applications, 2017, 66(2): 327-343.
[71] WANG Y, YIN W, ZENG J. Global convergence of ADMM in nonconvex nonsmooth optimization[J]. Journal of Scientific Computing, 2019, 78(1): 29-63.
[72] CHENG Z, MA J, ZHANG X, et al. ADMM-based parallel optimization for multi-agent collision-free model predictive control[A]. 2021.
[73] ANDREI N. Quadratic Programming[M/OL]. Cham: Springer International Publishing, 2022: 439-474. https://doi.org/10.1007/978-3-031-08720-2_13.
[74] PHAN-HUY HAO E. Quadratically constrained quadratic programming: Some applications and a method for solution[J]. Zeitschrift für Operations Research, 1982, 26: 105-119.
[75] WÄCHTER A, BIEGLER L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106: 25-57.
[76] LI J, RAN M, WANG H, et al. MPC-based unified trajectory planning and tracking control approach for automated guided vehicles[C]//2019 IEEE 15th International Conference on Control and Automation (ICCA). IEEE, 2019: 374-380.
[77] VANDERBEI R J, SHANNO D F. An interior-point algorithm for nonconvex nonlinear programming[J]. Computational Optimization and Applications, 1999, 13: 231-252.
[78] CHENG J, CHEN R, LIANG Z, et al. Trajectory Planning for Formation Variation of UGVs in Cluttered Environment[C]//2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2023: 2310-2315.
[79] RAO A V. A survey of numerical methods for optimal control[J]. Advances in the Astronautical Sciences, 2009, 135(1): 497-528.
[80] STELLATO B, BANJAC G, GOULART P, et al. OSQP: an operator splitting solver for quadratic programs[J/OL]. Mathematical Programming Computation, 2020, 12(4): 637-672. https://doi.org/10.1007/s12532-020-00179-2.
修改评论