[1] NGHIEM B T, SANDO I C, GILLESPIE R B, et al. Providing a sense of touch to prosthetic hands[J]. Plastic and Reconstructive Surgery, 2015, 135(6).
[2] CAMPERO M, BOSTOCK H. Unmyelinated afferents in human skin and their responsiveness to low temperature[J]. Neuroscience Letters, 2010, 470(3): 188-192.
[3] DAHIYA R S, METTA G, VALLE M, et al. Tactile sensing-from humans to humanoids[J]. IEEE Transactions on Robotics, 2010, 26(1): 1-20.
[4] KACZMAREK K, WEBSTER J, BACH-Y RITA P, et al. Electrotactile and vibrotactile displays for sensory substitution systems[J]. IEEE Transactions on Biomedical Engineering, 1991, 38 (1): 1-16.
[5] CAMPERO M, SERRA J, BOSTOCK H, et al. Slowly conducting afferents activated by innocuous low temperature in human skin[J]. The Journal of Physiology, 2001, 535(3): 855-865.
[6] JOHANSSON R S, VALLBO A B. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin[J]. The Journal of Physiology, 1979, 286(1): 283-300.
[7] CHORTOS A, LIU J, BAO Z. Pursuing prosthetic electronic skin[J]. Nature Materials, 2016, 15(9): 937-950.
[8] JOHANSSON R S, FLANAGAN J R. Coding and use of tactile signals from the fingertips in object manipulation tasks[J]. Nature Reviews Neuroscience, 2009, 10(5): 345-359.
[9] JOHANSSON R, LANDSTRO¨M U, LUNDSTRO¨M R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements[J]. Brain Research, 1982, 244(1): 17-25.
[10] LO¨FVENBERG J, JOHANSSON R. Regional differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand[J]. Brain Research, 1984, 301 (1): 65-72.
[11] KNIBESTöL M. Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area.[J]. The Journal of Physiology, 1975, 245(1): 63-80.
[12] LOEWENSTEIN W R, SKALAK R. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory[J]. The Journal of Physiology, 1966, 182(2): 346-378.
[13] BRISBEN A J, HSIAO S S, JOHNSON K O. Detection of vibration transmitted through an object grasped in the hand[J]. Journal of Neurophysiology, 1999, 81(4): 1548-1558.
[14] ABRAIRA V E, GINTY D D. The sensory neurons of touch[J]. Neuron, 2013, 79(4): 618-639.
[15] JENMALM P, BIRZNIEKS I, GOODWIN A W, et al. Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation[J]. European Journal of Neuroscience, 2003, 18(1): 164-176.
[16] YU X, XIE Z, YU Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality[J]. Nature, 2019, 575(7783): 473-479.
[17] SUNDARAM S, KELLNHOFER P, LI Y, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698-702.
[18] ZHU M, SUN Z, CHEN T, et al. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system[J]. Nature Communications, 2021, 12(1): 2692.
[19] OUYANG Q, WU J, SUN S, et al. Bio-inspired haptic feedback for artificial palpation in robotic surgery[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(10): 3184-3193.
[20] ZHANG Z, ZHU Z, BAZOR B, et al. FeetBeat: A flexible iontronic sensing wearable detects pedal pulses and muscular activities[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(11): 3072-3079.
[21] LIN Q, HUANG J, YANG J, et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring[J]. Advanced Healthcare Materials, 2020, 9(17): 2001023.
[22] PARK D Y, JOE D J, KIM D H, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors[J]. Advanced Materials, 2017, 29(37): 1702308.
[23] AMOLI V, KIM J S, KIM S Y, et al. Ionic tactile sensors for emerging human-interactive technologies: a review of recent progress[J]. Advanced Functional Materials, 2020, 30(20): 1904532.
[24] YANG J C, MUN J, KWON S Y, et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics[J]. Advanced Materials, 2019, 31(48): 1904765.
[25] 刘庆先. 基于复合多孔结构的离-电式柔性压力传感器[D]. 哈尔滨: 哈尔滨工业大学航天学院力学学科, 2022.
[26] QIN J, YIN L J, HAO Y N, et al. Flexible and stretchable capacitive sensors with different microstructures[J]. Advanced Materials, 2021, 33(34): 2008267.
[27] SHI J, DAI Y, CHENG Y, et al. Embedment of sensing elements for robust, highly sensitive, and cross-talk–free iontronic skins for robotics applications[J]. Science Advances, 9(9): eadf8831.
[28] CHANG H, KIM S, KANG T H, et al. Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32291-32300.
[29] ZHANG Y, XU S, FU H, et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage[J]. Soft Matter, 2013, 9: 8062-8070.
[30] XU S, ZHANG Y, JIA L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin[J]. Science, 2014, 344(6179): 70-74.
[31] LI R, SI Y, ZHU Z, et al. Supercapacitive iontronic nanofabric sensing[J]. Advanced Materials, 2017, 29(36): 1700253.
[32] LEE H, SHARMA R, PARK S, et al. Gradual electrical-double-layer modulation in ion-polymer networks for flexible pressure sensors with wide dynamic range[J]. Advanced Functional Materials, 2024, 34(7): 2302633.
[33] ZHU Z, LI R, PAN T. Imperceptible epidermal–iontronic interface for wearable sensing[J]. Advanced Materials, 2018, 30(6): 1705122.
[34] KIM K K, KIM M, PYUN K, et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition[J]. Nature Electronics, 2023, 6(1): 64-75.
[35] LU Y, WANG X, MAO S, et al. Smart batteries enabled by implanted flexible sensors[J]. Energy & Environmental Science, 2023, 16: 2448-2463.
[36] HUANG Y, ZHOU J, KE P, et al. A skin-integrated multimodal haptic interface for immersive tactile feedback[J]. Nature Electronics, 2023, 6(12): 1020-1031.
[37] HAN C, ZHANG H, CHEN Q, et al. A directional piezoelectric sensor based on anisotropic PVDF/MXene hybrid foam enabled by unidirectional freezing[J]. Chemical Engineering Journal, 2022, 450: 138280.
[38] ZHANG G, LIAO Q, MA M, et al. Uniformly assembled vanadium doped ZnO microflowers/ bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors[J]. Nano Energy, 2018, 52: 501-509.
[39] ZHOU P, ZHENG Z, WANG B, et al. Self-powered flexible piezoelectric sensors based on selfassembled 10 nm BaTiO₃ nanocubes on glass fiber fabric[J]. Nano Energy, 2022, 99: 107400.
[40] MAHAPATRA S D, MOHAPATRA P C, ARIA A I, et al. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials[J]. Advanced Science, 2021, 8(17): 2100864.
[41] YANG Z, ZHOU S, ZU J, et al. High-performance piezoelectric energy harvesters and their applications[J]. Joule, 2018, 2(4): 642-697.
[42] MENG K, XIAO X, WEI W, et al. Wearable pressure sensors for pulse wave monitoring[J]. Advanced Materials, 2022, 34(21): 2109357.
[43] HUANG J, LI D, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal, 2019, 373: 1357-1366.
[44] CHEN T, ZHANG X, HU X, et al. Sensitive piezoresistive sensors using ink-modified plant fiber sponges[J]. Chemical Engineering Journal, 2020, 401: 126029.
[45] AMOLI V, KIM J S, JEE E, et al. A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin[J]. Nature Communications, 2019, 10(1): 4019.
[46] CHEN Q, YANG J, CHEN B, et al. Wearable pressure sensors with capacitive response over a wide dynamic range[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44642-44651.
[47] SHI R, LOU Z, CHEN S, et al. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application[J]. Sci. China Mater, 2018, 61(12): 1587-1595.
[48] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexiblepressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9 (10): 859-864.
[49] CHENG W, WANG J, MA Z, et al. Flexible pressure sensor with high sensitivity and low hysteresis based on a hierarchically microstructured electrode[J]. IEEE Electron Device Letters, 2018, 39(2): 288-291.
[50] LEE H K, CHANG S I, YOON E. A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment[J]. Journal of Microelectromechanical Systems, 2006, 15(6): 1681-1686.
[51] LEE H K, CHANG S I, YOON E. Dual-mode capacitive proximity sensor for robot application: implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes[J]. IEEE Sensors Journal, 2009, 9(12): 1748-1755.
[52] MAZZEO A D, KALB W B, CHAN L, et al. Paper-based, capacitive touch pads[J]. Advanced Materials, 2012, 24(21): 2850-2856.
[53] CHENG G, LIN Z H, DU Z L, et al. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator[J]. ACS Nano, 2014, 8(2): 1932-1939.
[54] YANG J, CHEN J, LIU Y, et al. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing[J]. ACS Nano, 2014, 8(3): 2649-2657.
[55] AL-KABBANY A M. Characteristics of a Kapton triboelectric nanogenerator-based touch button's voltage output[J]. Nano Energy, 2023, 114: 108620.
[56] QIAN J, HE J, QIAN S, et al. A nonmetallic stretchable nylon-modified high performance triboelectric nanogenerator for energy harvesting[J]. Advanced Functional Materials, 2020, 30 (4): 1907414.
[57] ARGYROPOULOU O D, PROTOGEROU A D, SFIKAKIS P P. Accelerated atheromatosis and arteriosclerosis in primary systemic vasculitides: current evidence and future perspectives [J]. Current Opinion in Rheumatology, 2018, 30(1): 36-43.
[58] WINDECKER S, BAX J J, MYAT A, et al. Future treatment strategies in ST-segment elevation myocardial infarction[J]. The Lancet, 2013, 382(9892): 644-657.
[59] OLIVER M F, OPIE L H. Management of acute myocardial infarction[J]. The Lancet, 2014, 383(9915): 409-410.
[60] ETTEHAD D, EMDIN C A, KIRAN A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis[J]. The Lancet, 2016, 387(10022): 957-967.
[61] DENG C, TANG W, LIU L, et al. Self-powered insole plantar pressure mapping system[J]. Advanced Functional Materials, 2018, 28(29): 1801606.
[62] OXLEY T J, OPIE N L, JOHN S E, et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity[J]. Nature Biotechnology, 2016, 34(3): 320-327.
[63] DUKKIPATI S R, NEUZIL P, SKODA J, et al. Visual balloon-guided point-by-point ablation [J]. Circulation: Arrhythmia and Electrophysiology, 2010, 3(3): 266-273.
[64] HAN M, CHEN L, ARAS K, et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery[J]. Nature Biomedical Engineering, 2020, 4(10): 997-1009.
[65] KIM J, LEE M, SHIM H J, et al. Stretchable silicon nanoribbon electronics for skin prosthesis [J]. Nature communications, 2014, 5(1): 5747.
[66] CHANG Y, WANG L, LI R, et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins[J]. Advanced Materials, 2021, 33(7): 2003464.
[67] JI B, ZHOU Q, HU B, et al. Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range[J]. Advanced Materials, 2021, 33 (27): 2100859.
[68] HA K H, ZHANG W, JANG H, et al. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite[J]. Advanced Materials, 2021, 33(48): 2103320.
[69] WAN Y, QIU Z, HONG Y, et al. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018, 4(4): 1700586.
[70] LEE S, FRANKLIN S, HASSANI F A, et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference[J]. Science, 2020, 370(6519): 966-970.
[71] PRUVOST M, SMIT W J, MONTEUX C, et al. Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors[J]. npj Flexible Electronics, 2019, 3(1): 7.
[72] WAN S, BI H, ZHOU Y, et al. Graphene oxide as high-performance dielectric materials for capacitive pressure sensors[J]. Carbon, 2017, 114: 209-216.
[73] YANG J, TANG D, AO J, et al. Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing[J]. Advanced Functional Materials, 2020, 30(36): 2002611.
[74] CHHETRY A, SHARMA S, YOON H, et al. Enhanced sensitivity of capacitive pressure and strain sensor based on CaCu3Ti4O12 wrapped hybrid sponge for wearable applications[J]. Advanced Functional Materials, 2020, 30(31): 1910020.
[75] NIE B, XING S, BRANDT J D, et al. Droplet-based interfacial capacitive sensing[J]. Lab on a Chip, 2012, 12(6): 1110-1118.
[76] OLDHAM K B. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface[J]. Journal of Electroanalytical Chemistry, 2008, 613(2): 131-138.
[77] ZHAO C, WANG Y, TANG G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications[J]. Advanced Functional Materials, 2022, 32(17): 2110417.
[78] NIE B, LI R, BRANDT J D, et al. Iontronic microdroplet array for flexible ultrasensitive tactile sensing[J]. Lab on a Chip, 2014, 14(6): 1107-1116.
[79] YANG X, WANG Y, QING X. A flexible capacitive pressure sensor based on ionic liquid[J]. Sensors, 2018, 18(7).
[80] QIU Z, WAN Y, ZHOU W, et al. Ionic skin with biomimetic dielectric layer templated from Calathea Zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[81] WANG Q, LI Y, XU Q, et al. Finger–coding intelligent human–machine interaction system based on all–fabric ionic capacitive pressure sensors[J]. Nano Energy, 2023, 116: 108783.
[82] JIN M L, PARK S, LEE Y, et al. An ultrasensitive, visco-poroelastic artificial mechanotransducer skin inspired by Piezo2 protein in mammalian Merkel cells[J]. Advanced Materials, 2017, 29(13): 1605973.
[83] CHO S H, LEE S W, YU S, et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 10128-10135.
[84] SU Q, HUANG X, LAN K, et al. Highly sensitive ionic pressure sensor based on concave meniscus for electronic skin[J]. Journal of Micromechanics and Microengineering, 2020, 30 (1): 015009.
[85] CHHETRY A, KIM J, YOON H, et al. Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 3438-3449.
[86] BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature Communications, 2020, 11(1): 209.
[87] MARSHALL K, PATAPOUTIAN A. Getting a grip on touch receptors[J]. Science, 2020, 368 (6497): 1311-1312.
[88] ZIMMERMAN A, BAI L, GINTY D D. The gentle touch receptors of mammalian skin[J]. Science, 2014, 346(6212): 950-954.
[89] HANDLER A, GINTY D D. The mechanosensory neurons of touch and their mechanisms of activation[J]. Nature Reviews Neuroscience, 2021, 22(9): 521-537.
[90] NEUBARTH N L, EMANUEL A J, LIU Y, et al. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception[J]. Science, 2020, 368(6497): eabb2751.
[91] MARICICH S M, WELLNITZ S A, NELSON A M, et al. Merkel cells are essential for lighttouch responses[J]. Science, 2009, 324(5934): 1580-1582.
[92] WOO S H, RANADE S, WEYER A D, et al. Piezo2 is required for Merkel-cell mechanotransduction[J]. Nature, 2014, 509(7502): 622-626.
[93] SCHRENK-SIEMENS K, WENDE H, PRATO V, et al. PIEZO2 is required for mechanotransduction in human stem cell–derived touch receptors[J]. Nature neuroscience, 2015, 18(1): 10-16.
[94] CHUNG H U, KIM B H, LEE J Y, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care[J]. Science, 2019, 363(6430): eaau0780.
[95] BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J]. Nature Electronics, 2018, 1(5): 314-321.
[96] LIU Z, WANG G, YE C, et al. An ultrasensitive contact lens sensor based on self-assembly graphene for continuous intraocular pressure monitoring[J]. Advanced Functional Materials, 2021, 31(29): 2010991.
[97] OUYANG Q, WU J, SUN S, et al. Bio-inspired haptic feedback for artificial palpation in robotic surgery[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(10): 3184-3193.
[98] LI F, WANG R, SONG C, et al. A skin-inspired artificial mechanoreceptor for tactile enhancement and integration[J]. ACS Nano, 2021, 15(10): 16422-16431.
[99] CHUN S, KIM J S, YOO Y, et al. An artificial neural tactile sensing system[J]. Nature Electronics, 2021, 4(6): 429-438.
[100] GU G, ZHANG N, XU H, et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback[J]. Nature Biomedical Engineering, 2023, 7(4): 589-598.
[101] KIM J S, LEE S C, HWANG J, et al. Enhanced sensitivity of iontronic graphene tactile sensors facilitated by spreading of ionic liquid pinned on graphene grid[J]. Advanced Functional Materials, 2020, 30(14): 1908993.
[102] LIU Q, LIU Z, LI C, et al. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition[J]. Advanced Science, 2020, 7(10): 2000348.
[103] LI R, SI Y, ZHU Z, et al. Supercapacitive iontronic nanofabric sensing[J]. Advanced Materials, 2017, 29(36): 1700253.
[104] SHEN Z, ZHU X, MAJIDI C, et al. Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses[J]. Advanced Materials, 2021, 33(38): 2102069.
[105] SHARMA S, CHHETRY A, ZHANG S, et al. Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range [J]. ACS Nano, 2021, 15(3): 4380-4393.
[106] LUO Y, CHEN X, TIAN H, et al. Gecko-inspired slant hierarchical microstructure-based ultrasensitive iontronic pressure sensor for intelligent interaction[J]. Research, 2022.
[107] JI B, ZHOU Q, HU B, et al. Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range[J]. Advanced Materials, 2021, 33 (27): 2100859.
[108] CAO Y, MORRISSEY T G, ACOME E, et al. A transparent, self-healing, highly stretchable ionic conductor[J]. Advanced Materials, 2017, 29(10): 1605099.
[109] CAO Y, TAN Y J, LI S, et al. Self-healing electronic skins for aquatic environments[J]. Nature Electronics, 2019, 2(2): 75-82.
[110] NAYERI M, ARONSON M T, BERNIN D, et al. Surface effects on the structure and mobility of the ionic liquid C6C1ImTFSI in silica gels[J]. Soft Matter, 2014, 10(30): 5618-5627.
[111] DHUMAL N R, NOACK K, KIEFER J, et al. Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. The Journal of Physical Chemistry A, 2014, 118(13): 2547-2557.
[112] RAMESH S, LIEW C W. Dielectric and FTIR studies on blending of [xPMMA–(1−x)PVC] with LiTFSI[J]. Measurement, 2013, 46(5): 1650-1656.
[113] CHEN C, YING W B, LI J, et al. A self-healing and ionic liquid affiliative polyurethane toward a Piezo 2 protein inspired ionic skin[J]. Advanced Functional Materials, 2022, 32(4): 2106341.
[114] NIE B, LI R, CAO J, et al. Flexible transparent iontronic film for interfacial capacitive pressure sensing[J]. Advanced Materials, 2015, 27(39): 6055-6062.
[115] YIN M J, YIN Z, ZHANG Y, et al. Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors[J]. Nano Energy, 2019, 58: 96-104.
[116] PANG X D, TAN H Z, DURLACH N I. Manual discrimination of force using active finger motion[J]. Perception & psychophysics, 1991, 49(6): 531-540.
[117] WANG J, SUZUKI R, SHAO M, et al. Capacitive pressure sensor with wide-range, bendable, and high sensitivity based on the bionic Komochi Konbu structure and Cu/Ni nanofiber network [J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11928-11935.
[118] TAY R Y, LI H, LIN J, et al. Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications[J]. Advanced Functional Materials, 30(10): 1909604.
[119] KWON D, LEE T I, SHIM J, et al. Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16922-16931.
[120] XIONG Y, SHEN Y, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy, 2020, 70: 104436.
[121] CHHETRY A, SHARMA S, YOON H, et al. Enhanced sensitivity of capacitive pressure and strain sensor based on CaCu3Ti4O12 wrapped hybrid sponge for wearable applications[J]. Advanced Functional Materials, 2020, 30(31): 1910020.
[122] CHOI J, KWON D, KIM K, et al. Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1698-1706.
[123] LUO Y, SHAO J, CHEN S, et al. Flexible capacitive pressure sensor enhanced by tilted micropillar arrays[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17796-17803.
[124] ZHOU H, WANG M, JIN X, et al. Capacitive pressure sensors containing reliefs on solutionprocessable hydrogel electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1441-1451.
[125] QIU J, GUO X, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40716-40725.
[126] JIN T, PAN Y, JEON G J, et al. Ultrathin nanofibrous membranes containing insulating microbeads for highly sensitive flexible pressure sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13348-13359.
[127] PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8(5): 4689-4697.
[128] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9):1336-1342.
[129] SUNDARAM S, KELLNHOFER P, LI Y, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698-702.
[130] LI G, LIU S, WANG L, et al. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition[J]. Science Robotics, 2020, 5(49): eabc8134.
[131] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9 (10): 859-864.
[132] LIPOMI D J, VOSGUERITCHIAN M, TEE B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 2011, 6(12):788-792.
[133] SU Q, ZOU Q, LI Y, et al. A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins[J]. Science Advances, 7(48): eabi4563.
[134] TAO K, CHEN Z, YU J, et al. Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human–machine interfaces[J]. Advanced Science, 2022, 9(10): 2104168.
[135] ZHU P, DU H, HOU X, et al. Skin-electrode iontronic interface for mechanosensing[J]. Nature Communications, 2021, 12(1): 4731.
[136] KUDIN K N, SCUSERIA G E, YAKOBSON B I. C2F, BN, AND C nanoshell elasticity from ab initio computations[J]. Physical Review B, 2001, 64: 0-0.
[137] SUN J, RATTANASAWATESUN T, TANG P, et al. Insights into the mechanism for vertical graphene growth by plasma-enhanced chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2022, 14(5): 7152-7160.
[138] WU, YANG. Effects of localized electric field on the growth of carbon nanowalls[J]. Nano Letters, 2002, 2(4): 355-359.
[139] ZHAO J, SHAYGAN M, ECKERT J, et al. A growth mechanism for free-standing vertical graphene[J]. Nano Letters, 2014, 14(6): 3064-3071.
[140] ZHAO J, GUO H, LIU H, et al. Carbon nanotube network topology-enhanced iontronic capacitive pressure sensor with high linearity and ultrahigh sensitivity[J]. ACS Applied Materials & Interfaces, 2023, 15(40): 47327-47337.
[141] SEO D H, PINEDA S, YICK S, et al. Plasma-enabled sustainable elemental lifecycles: honeycomb-derived graphenes for next-generation biosensors and supercapacitors[J]. Green Chemistry, 2015, 17(4): 2164-2171.
[142] NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Spectroscopy of covalently functionalized graphene[J]. Nano Letters, 2010, 10(10): 4061-4066.
[143] HUANG Z, KONG D, ZHANG Y, et al. Vertical graphenes grown on a flexible graphite paper as an all-carbon current collector towards stable Li deposition[J]. Research, 2020.
[144] HAN Z J, PINEDA S, MURDOCK A T, et al. RuO2-coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5 (33): 17293-17301.
[145] ZHENG W, ZHAO X, FU W. Review of vertical graphene and its applications[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9561-9579.
[146] DENG C, GAO P, LAN L, et al. Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene[J]. Advanced Functional Materials, 2019, 29(51): 1907151.
[147] BAI N, WANG L, XUE Y, et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range[J]. ACS Nano, 2022, 16(3): 4338-4347.
[148] YANG J, LI Z, ZHANG X, et al. Merkel cell-like artificial mechanoreceptor with high sensitivity and high resolution over a wide linear range[J]. Cell Reports Physical Science, 2022, 3 (10): 101101.
[149] ZHAO Y, YANG N, CHU X, et al. Wide-humidity range applicable, anti-freezing, and healable zwitterionic hydrogels for ion-leakage-free iontronic sensors[J]. Advanced Materials, 2023, 35 (22): 2211617.
[150] LU P, WANG L, ZHU P, et al. Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes[J]. Science Bulletin, 2021, 66(11): 1091-1100.
[151] YOU I, MACKANIC D G, MATSUHISA N, et al. Artificial multimodal receptors based on ion relaxation dynamics[J]. Science, 2020, 370(6519): 961-965.
[152] DELMAS P, HAO J, RODAT-DESPOIX L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons[J]. Nature Reviews Neuroscience, 2011, 12(3): 139-153.
[153] ZHANG Y, LU Q, HE J, et al. Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk[J]. Nature Communications, 2023, 14(1): 1252.
[154] QIAO H, SUN S, WU P. Non-equilibrium-growing aesthetic ionic skin for fingertip-like strainundisturbed tactile sensation and texture recognition[J]. Advanced Materials, 2023, 35(21): 2300593.
[155] LUO Y, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors[J]. ACS Nano, 2023, 17(6): 5211-5295.
[156] BAI N, WANG L, XUE Y, et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range[J]. ACS Nano, 2022, 16(3): 4338-4347.
[157] YANG R, DUTTA A, LI B, et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids[J]. Nature Communications, 2023, 14(1): 2907.
[158] YUAN Y M, LIU B, ADIBEIG M R, et al. Microstructured polyelectrolyte elastomer-based ionotronic sensors with high sensitivities and excellent stability for artificial skins[J]. Advanced Materials, 2023, 36(11): 2310429.
[159] YUE Q, XIAO S, LI Z, et al. Ultra-sensitive pressure sensors based on large alveolar deep tooth electrode structures with greatly stretchable oriented fiber membrane[J]. Chemical Engineering Journal, 2022, 443: 136370.
[160] BAI N, XUE Y, CHEN S, et al. A robotic sensory system with high spatiotemporal resolution for texture recognition[J]. Nature Communications, 2023, 14(1): 7121.
[161] LI L, ZHU G, WANG J, et al. A flexible and ultrasensitive interfacial iontronic multisensory sensor with an array of unique “cup-shaped”microcolumns for detecting pressure and temperature[J]. Nano Energy, 2023, 105: 108012.
[162] BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature Communications, 2020, 11(1): 209.
[163] PERSSON B N J. Contact mechanics for randomly rough surfaces[J]. Surface Science Reports, 2006, 61(4): 201-227.
[164] XU L, GAO S, GUO Q, et al. A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels[J]. Advanced Materials, 2020, 32(52): 2004579.
[165] WANG Q, LI Y, XU Q, et al. Finger–coding intelligent human–machine interaction system based on all–fabric ionic capacitive pressure sensors[J]. Nano Energy, 2023, 116: 108783.
[166] MENG K, XIAO X, LIU Z, et al. Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring[J]. Advanced Materials, 2022, 34(36): 2202478.
[167] HE J, XIAO P, LU W, et al. A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor[J]. Nano Energy, 2019, 59: 422-433.
修改评论