[COMELLO S, GLENK G, REICHELSTEIN S. Transitioning to clean energy transportationservices: Life-cycle cost analysis for vehicle fleets[J]. Applied Energy, 2021, 285: 116408.
[2] WANG B, ZHANG Z, XU G, et al. Wrought and cast aluminum flows in China in the contextof electric vehicle diffusion and automotive lightweighting[J]. Resources, Conservation andRecycling, 2023, 191: 106877.
[3] FAN Z, YUAN W, WANG D, et al. Research status and future development trend of die castingaluminum alloys[J]. Foundry, 2020, 2: 159-166.
[4] 孟毅. 半固态成形工艺特点及发展现状[J]. 精密成形工程, 2016, 8: 21-27.
[5] HU X, ZHU Q, MIDSON S, et al. Blistering in semi-solid die casting of aluminium alloys andits avoidance[J]. Acta Materialia, 2017, 124: 446-455.
[6] NAFISI S, GHOMASHCHI R. Semi-solid processing of aluminum alloys[M]. Springer, 2016.
[7] WALLACE G, JACKSON A P, MIDSON S P, et al. High-quality aluminum turbocharger impellers produced by thixocasting[J]. Transactions of Nonferrous Metals Society of China, 2010,20(9): 1786-1791.
[8] LI G, LU H, HU X, et al. Current progress in rheoforming of wrought aluminum alloys: Areview[J]. Metals, 2020, 10(2): 238.
[9] MIDSON S P. Industrial applications for aluminum semi-solid castings[J]. Solid State Phenomena, 2015, 217: 487-495.
[10] SPENCER D, MEHRABIAN R, FLEMINGS M. Rheological behavior of Sn-15 pct Pb in thecrystallization range[J]. Metallurgical and Materials Transactions B, 1972, 3: 1925-1932.
[11] QI M F, KANG Y L, QIU Q Q. Industrialized application of Rheo-HPDC process for theproduction of large thin-walled aluminum alloy parts[J]. Solid State Phenomena, 2019, 285:453-458.
[12] ZHANG D, DONG H, ATKINSON H. What is the process window for semi-solid processing?[J]. Metallurgical and Materials Transactions A, 2016, 47: 1-5.
[13] KAZAKOV A A. Alloy compositions for semisolid forming[J]. Advanced Materials & Processes, 2000, 157(3): 31.
[14] ATKINSON H V. Alloys for semi-solid processing[J]. Solid State Phenomena, 2013, 192:16-27.
[15] GAN L, QU W Y, MIN L, et al. Semi-solid processing of aluminum and magnesium alloys:Status, opportunity, and challenge in China[J]. Transactions of Nonferrous Metals Society ofChina, 2021, 31(11): 3255-3280.
[16] FAN Z. Semisolid metal processing[J]. International materials reviews, 2002, 47(2): 49-85.
[17] FAN Z, FANG X, JI S. Microstructure and mechanical properties of rheo-diecast (RDC) aluminium alloys[J]. Materials Science and Engineering: A, 2005, 412(1-2): 298-306.
[18] GAO Z H, XU J, ZHANG Z F, et al. Effect of annular electromagnetic stirring on microstructure and mechanical property of 7075 aluminium alloy[C]//Materials Science Forum: Vol. 749.Trans Tech Publ, 2013: 75-81.
[19] WANNASIN J, MARTINEZ R, FLEMINGS M. Grain refinement of an aluminum alloy byintroducing gas bubbles during solidification[J]. Scripta Materialia, 2006, 55(2): 115-118.
[20] WANNASIN J, JANUDOM S, RATTANOCHAIKUL T, et al. Research and development ofgas induced semi-solid process for industrial applications[J]. Transactions of Nonferrous MetalsSociety of China, 2010, 20: s1010-s1015.
[21] LANGLAIS J, LEMIEUX A. The SEED technology for semi-solid processing of aluminumalloys: A metallurgical and process overview[J]. Solid State Phenomena, 2006, 116: 472-477.
[22] 李干. 高强铝合金 7075 半固态流变制浆技术及装置的研发[D]. 哈尔滨工业大学, 2019.
[23] 葛秋霜. 基于热焓补偿法的高强铝合金半固态制浆装置及工艺研究[D]. 哈尔滨工业大学,2020.
[24] LI G, CHENG L, YUE Q, et al. Predicting temperature of semi-solid 7075 aluminum alloyslurry prepared by a novel rheocasting route via neural network[J]. Materials Letters, 2023,349: 134753.
[25] CANYOOK R, WANNASIN J, WISUTHMETHANGKUL S, et al. Characterization of themicrostructure evolution of a semi-solid metal slurry during the early stages[J]. Acta Materialia,2012, 60(8): 3501-3510.
[26] COLBERT J, BOUCHARD D. A heat transfer model for the production of semi-solid billetswith the SEED process[C]//Materials science forum: Vol. 519. Trans Tech Publ, 2006: 1525-1532.
[27] LUO M, LI D, MIDSON S P, et al. Model for predicting radial temperature distribution ofsemi-solid slug produced by swirled enthalpy equilibration device (SEED) process[J]. Journalof Materials Processing Technology, 2019, 273: 116236.
[28] JIANG H, NGUYEN T, PRUD’ HOMME M. Optimal control of induction heating for semisolid aluminum alloy forming[J]. Journal of Materials Processing Technology, 2007, 189(1-3):182-191.
[29] KAPRANOS P, GIBSON R, KIRKWOOD D, et al. Modelling induction heating of high melting point alloy slugs for high temperature mechanical processing[J]. Materials science andtechnology, 1996, 12(3): 274-278.
[30] KOKO T S, ORISAMOLU I R, SMITH M J, et al. Active control methodology for thermaldistortion management of smart composite structures[C]//Smart Structures and Materials 1998:Mathematics and Control in Smart Structures: Vol. 3323. SPIE, 1998: 8-19.
[31] WANG Y, ZHAO S, GUO Y. Numerical simulation and experimental investigation of thepreparation of aluminium alloy 2A50 semi-solid billet by electromagnetic stirring[J]. Materials, 2020, 13(23): 5470.
[32] MA Z, ZHANG H, FU H, et al. Insights into the rheological modeling of semi-solid metals:Theoretical and simulation study[J]. Journal of Materials Science & Technology, 2022, 100:182-192.
[33] REN S, WANG F, SUN J, et al. Gating system design based on numerical simulation andproduction experiment verification of aluminum alloy bracket fabricated by semi-solid rheodie casting process[J]. International Journal of Metalcasting, 2021: 1-16.
[34] 马德清, 杨小容, 郑嘉斌, 等. LSPWES 法半固态组织演化的元胞自动机模拟[J/OL]. 特种铸造及有色合金, 2014, 34: 613-617. DOI: 10.15980/j.tzzz.2014.06.017.
[35] CICA D, KRAMAR D. Intelligent process modeling and optimization of porosity formation inhigh-pressure die casting[J]. International Journal of Metalcasting, 2018, 12: 814-824.
[36] XIONG W, ZHOU R, LIU Z, et al. Research on neural network genetic algorithm optimizationin the preparation of CuSn10P1 semi-solid slurry with the fully enclosed melt-constrained cooling inclined plate[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing,2021, 15(3): JAMDSM0026-JAMDSM0026.
[37] LI H, QI L, HAN H, et al. Neural network modeling and optimization of semi-solid extrusionfor aluminum matrix composites[J]. Journal of Materials Processing Technology, 2004, 151(1-3): 126-132.
[38] UNVER H M, AYDEMIR M T, ÇELIK V. Power and frequency control in a 60 kW inductionSteel heating Furnaces through PLC[C]//National Scientific Meetings, Ankara, Turkey. 2002:9-12.
[39] GANI M M, ISLAM M S, ULLAH M A. Optimal PID tuning for controlling the temperatureof electric furnace by genetic algorithm[J]. SN Applied Sciences, 2019, 1: 1-8.
[40] 杨晓倩. 基于数据驱动的中频感应加热温度控制系统[D]. 青岛科技大学, 2021.
[41] ORAVEC J, BAKOŠOVÁ M, TRAFCZYNSKI M, et al. Robust model predictive control andPID control of shell-and-tube heat exchangers[J]. Energy, 2018, 159: 1-10.
[42] GIL J D, ROCA L, GUZMÁN J L, et al. Nonlinear Predictive Control for Temperature Regulation of Solar Furnaces[J]. IFAC-PapersOnLine, 2023, 56(2): 2733-2738.
[43] SEO M, BAN J, CHO M, et al. Low-order model identification and adaptive observer-basedpredictive control for strip temperature of heating section in annealing furnace[J]. IEEE Access,2021, 9: 53720-53734.
[44] GOODWIN G C, MIDDLETON R H, SERON M M, et al. Application of nonlinear modelpredictive control to an industrial induction heating furnace[J]. Annual Reviews in Control,2013, 37(2): 271-277.
[45] CHO M, BAN J, SEO M, et al. Neural network MPC for heating section of annealing furnace[J]. Expert Systems with Applications, 2023, 223: 119869.
[46] JEON B K, KIM E J. LSTM-based model predictive control for optimal temperature set-pointplanning[J]. Sustainability, 2021, 13(2): 894.
[47] NAVALHO M. Synovial doppler ultrasonography and dynamic magnetic resonance imaging ofthe hand and wrist in the assessment of early inflammatory arthritis versus rheumatoid arthritis:contribution for a new prediction model[Z]. 2012.
[48] ZHENG T, ARDOLINO M, BACCHETTI A, et al. The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review[J]. International Journal ofProduction Research, 2021, 59(6): 1922-1954
[49] ZHAI Y, LIANG Q, ZHANG W. Data-Driven intelligent monitoring of die-casting machineinjection system[J]. Processes, 2023, 11(10): 2947.
[50] ZHANG L, WANG R. An intelligent system for low-pressure die-cast process parameters optimization[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65:517-524.
[51] BRAMANN H, ROCKMANN H, ZHANG Y X, et al. Thixomolding of magnesium-efficientprocess industrialization by combining a digital twin and systematic casting trials[J]. Solid StatePhenomena, 2023, 347: 183-189.
[52] HE M, ZHANG Z, MAO W, et al. Numerical and experimental study on melt treatment forlarge-volume 7075 alloy by a modified annular electromagnetic stirring[J]. Materials, 2019, 12(5): 820.
[53] LUO M, LI D Q, QU W Y, et al. Using ProCAST to Study the Effects of SEED ProcessParameters on the Radial Temperature Distribution in Semi-Solid Slugs[C]//Materials ScienceForum: Vol. 993. Trans Tech Publ, 2020: 1004-1010.
[54] 陈启鹏. 面向数字孪生的自动化产线制造过程状态监测关键技术研究[D]. 贵阳: 贵州大学, 2021.
[55] HAILIN L, JINHONG W, YONG L. Intelligent control system design for high vacuum diecasting process[C]//2021 International Conference on Intelligent Transportation, Big Data &Smart City (ICITBS). IEEE, 2021: 300-303.
[56] CHIUMENTI M, CERVERA M, DE SARACIBAR C A, et al. Numerical simulation of aluminium foundry processes[J]. Modeling of Casting, Welding and Advanced Solidification Processes, 2003: 377-384.
[57] 孔祥谦. 有限单元法在传热学中的应用[M]. 科学出版社, 1986.
[58] 孔祥谦. 热应力有限单元法分析[M]. 上海交通大学出版社, 1999.
[59] 主讲, 陶文铨, 辅讲, 等. 数值传热学[Z].
[60] 周尧和. 凝固技术[M]. 机械工业出版社, 1998.
[61] 李东辉, 高云宝, 辛启斌, 等. 铸件凝固潜热的处理方法与应用研究[J]. 铸造, 2004, 53(12):1005-1007.
[62] WELLS M, LI D, COCKCROFT S. Influence of surface morphology, water flow rate, and sample thermal history on the boiling-water heat transfer during direct-chill casting of commercialaluminum alloys[J]. Metallurgical and Materials Transactions B, 2001, 32: 929-939.
[63] 隋大山. 铸造凝固过程热传导反问题参数辨识技术研究[D]. 上海: 上海交通大学, 2008.
[64] GRIFFITHS W. The heat-transfer coefficient during the unidirectional solidification of an Al-Sialloy casting[J]. Metallurgical and materials transactions B, 1999, 30: 473-482.
[65] RADOVIC Z, LALOVIC M. Numerical simulation of steel ingot solidification process[J].Journal of Materials Processing Technology, 2005, 160(2): 156-159.
[66] ÖZIŞIK M N, ORLANDE H R, COLAÇO M J, et al. Finite difference methods in heat transfer[M]. CRC press, 2017.
[67] SAHAI V. Predicting interfacial contact conductance and gap formation of investment cast alloy718[J]. Journal of thermophysics and heat transfer, 1998, 12(4): 562-566.
[68] SPARROW E, HAJI-SHEIKH A, LUNDGREN T. The inverse problem in transient heat conduction[Z]. 1964.
[69] OZISIK M N. Inverse heat transfer: fundamentals and applications[M]. Routledge, 2018.
[70] LI H, LEI J, LIU Q. An inversion approach for the inverse heat conduction problems[J]. International journal of heat and mass transfer, 2012, 55(15-16): 4442-4452.
[71] DENNIS JR J E, SCHNABEL R B. Numerical methods for unconstrained optimization andnonlinear equations[M]. SIAM, 1996.
[72] MERESSE D, SIROUX M, WATREMEZ M, et al. Estimation of three-dimensional distribution of heat flux on the pin frictional surface during a pin on disc test[C]//AIP ConferenceProceedings: Vol. 1353. American Institute of Physics, 2011: 1137-1142.
[73] 丁小恒. 高超声速飞行试验热流密度测量方法与装置研究[D]. 哈尔滨: 哈尔滨工业大学,2015.
[74] MULTIPHISICS C. COMSOL Multiphisics[Z]. 2014.
[75] 朱豫才, 张湘平, 虞水俊, 等. 过程控制的多变量系统辨识[M]. 国防科技大学出版社, 2005.
[76] 侯媛彬, 汪梅, 王立琦, 等. 系统辨识及其 MATLAB 仿真: 第 2 卷[M]. 科学出版社, 2004.
[77] PAVKOVIĆ D, POLAK S, ZORC D. PID controller auto-tuning based on process step responseand damping optimum criterion[J]. ISA transactions, 2014, 53(1): 85-96.
[78] 张纯禹. 现代优化计算方法在材料最优化设计中的应用[J]. 材料科学与工程, 2003, 21(1):44-47.
[79] TAYSOM B S, SORENSEN C D, HEDENGREN J D. A comparison of model predictive controland PID temperature control in friction stir welding[J]. Journal of Manufacturing Processes,2017, 29: 232-241.
[80] MA J, QIN J, SALSBURY T, et al. Demand reduction in building energy systems based oneconomic model predictive control[J]. Chemical Engineering Science, 2012, 67(1): 92-100.
[81] COMSOL. LiveLink™ for Simulink®[Z]. 2024.
[82] 邢文训, 谢金星. 现代优化计算方法[M]. 清华大学出版社有限公司, 2005.
修改评论