[1] MACMILLEN D, CAMPOSANO R, HILL D, et al. An industrial view of electronic designautomation[J/OL]. IEEE Transactions on Computer-Aided Design of Integrated Circuits andSystems, 2000, 19(12): 1428-1448. DOI: 10.1109/43.898825.
[2] NAGEL L W, PEDERSON D. SPICE (Simulation Program with Integrated Circuit Emphasis):UCB/ERL M382[R/OL]. EECS Department, University of California, Berkeley, 1973. http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html.
[3] WENG S H, CHEN Q, CHENG C K. Time-domain analysis of large-scale circuits by matrixexponential method with adaptive control[J]. IEEE Transactions on Computer-Aided Designof Integrated Circuits and Systems, 2012, 31(8): 1180-1193.
[4] ZHU Z, ROUZ K, BORAH M, et al. Efficient transient simulation for transistor-level analysis[C]//Proceedings of the 2005 Asia and South Pacific Design Automation Conference. 2005:240-243.
[5] DONG W, LI P. Parallelizable stable explicit numerical integration for efficient circuit simulation[C]//Proceedings of the 46th Annual Design Automation Conference. 2009: 382-385.
[6] PILLAGE L. Electronic Circuit & System Simulation Methods (SRE)[M]. McGraw-Hill, Inc.,1998.
[7] CHEN Q. EI-NK: A Robust Exponential Integrator Method With Singularity Removal andNewton–Raphson Iterations for Transient Nonlinear Circuit Simulation[J/OL]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(6): 1693-1703.DOI: 10.1109/TCAD.2021.3098749.
[8] ZHUANG H, WENG S H, CHENG C K. Power grid simulation using matrix exponentialmethod with rational Krylov subspaces[C]//2013 IEEE 10th International Conference on ASIC.IEEE, 2013: 1-4.
[9] ZHUANG H, YU W, KANG I, et al. An algorithmic framework for efficient large-scale circuitsimulation using exponential integrators[C]//Proceedings of the 52nd Annual Design Automation Conference. 2015: 1-6.
[10] CHEN P, CHENG C K, PARK D, et al. Transient circuit simulation for differential algebraicsystems using matrix exponential[C]//2018 IEEE/ACM International Conference on ComputerAided Design (ICCAD). IEEE, 2018: 1-6.
[11] ZHUANG H, WENG S H, LIN J H, et al. MATEX: A distributed framework for transient simulation of power distribution networks[C]//2014 51st ACM/EDAC/IEEE Design AutomationConference (DAC). 2014: 1-6.
[12] MOLER C, VAN LOAN C. Nineteen Dubious Ways to Compute the Exponential of a Matrix,Twenty-Five Years Later[J/OL]. SIAM Review, 2003, 45(1): 3-49. DOI: 10.1137/S00361445024180.51参考文献
[13] SAAD Y. Analysis of Some Krylov Subspace Approximations to the Matrix Exponential Operator[J/OL]. SIAM Journal on Numerical Analysis, 1992, 29(1): 209-228. DOI:10.1137/0729014.
[14] SCHENK O, GäRTNER K, FICHTNER W, et al. PARDISO: a high-performance serial andparallel sparse linear solver in semiconductor device simulation[J/OL]. Future Generation Computer Systems, 2001, 18(1): 69-78. https://www.sciencedirect.com/science/article/pii/S0167739X00000765. DOI: https://doi.org/10.1016/S0167-739X(00)00076-5.
[15] DAVIS T A. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method[J/OL]. ACM Trans. Math. Softw., 2004, 30(2): 196–199. https://doi.org/10.1145/992200.992206.
[16] AMESTOY P R, DUFF I S, L’EXCELLENT J Y, et al. MUMPS: a general purpose distributedmemory sparse solver[C]//International Workshop on Applied Parallel Computing. Springer,2000: 121-130.
[17] LI X S. An overview of SuperLU: Algorithms, implementation, and user interface[J/OL]. ACMTrans. Math. Softw., 2005, 31(3): 302–325. https://doi.org/10.1145/1089014.1089017.
[18] DAVIS T A, PALAMADAI NATARAJAN E. Algorithm 907: KLU, A Direct Sparse Solverfor Circuit Simulation Problems[J/OL]. ACM Trans. Math. Softw., 2010, 37(3). https://doi.org/10.1145/1824801.1824814.
[19] CHEN X. Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation[C]//2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD).2022: 1-9.
[20] CHEN X. Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation[C/OL]//ICCAD ’22: Proceedings of the 41st IEEE/ACM International Conference onComputer-Aided Design. New York, NY, USA: Association for Computing Machinery, 2022.https://doi.org/10.1145/3508352.3549337.
[21] HO C W, RUEHLI A, BRENNAN P. The modified nodal approach to network analysis[J/OL].IEEE Transactions on Circuits and Systems, 1975, 22(6): 504-509. DOI: 10.1109/TCS.1975.1084079.
[22] AMESTOY P R, DAVIS T A, DUFF I S. An Approximate Minimum Degree Ordering Algorithm[J/OL]. SIAM Journal on Matrix Analysis and Applications, 1996, 17(4): 886-905.https://doi.org/10.1137/S0895479894278952.
[23] NIESEN J, WRIGHT W M. Algorithm 919: A Krylov Subspace Algorithm for Evaluating theϕ-Functions Appearing in Exponential Integrators[J/OL]. ACM Trans. Math. Softw., 2012, 38(3). https://doi.org/10.1145/2168773.2168781.
[24] AL-MOHY A H, HIGHAM N J. Computing the Action of the Matrix Exponential, with anApplication to Exponential Integrators[J/OL]. SIAM Journal on Scientific Computing, 2011,33(2): 488-511. DOI: 10.1137/100788860.
[25] GÖCKLER T, GRIMM V. CONVERGENCE ANALYSIS OF AN EXTENDED KRYLOVSUBSPACE METHOD FOR THE APPROXIMATION OF OPERATOR FUNCTIONS INEXPONENTIAL INTEGRATORS[J/OL]. SIAM Journal on Numerical Analysis, 2013, 51(4): 2189-2213
[2024-02-28]. http://www.jstor.org/stable/42004070.52参考文献
[26] HIGHAM N J. The Scaling and Squaring Method for the Matrix Exponential Revisited[J/OL].SIAM Journal on Matrix Analysis and Applications, 2005, 26(4): 1179-1193. DOI: 10.1137/04061101X.
[27] ZHUANG H, YU W, WENG S H, et al. Simulation algorithms with exponential integrationfor time-domain analysis of large-scale power delivery networks[J]. IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems, 2016, 35(10): 1681-1694.
[28] CHEN Q, WENG S H, CHENG C K. A practical regularization technique for modified nodalanalysis in large-scale time-domain circuit simulation[J]. IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems, 2012, 31(7): 1031-1040.
[29] ROMMES J, MARTINS N. Exploiting structure in large-scale electrical circuit and powersystem problems[J/OL]. Linear Algebra and its Applications, 2009, 431(3): 318-333. https://www.sciencedirect.com/science/article/pii/S0024379509000184. DOI: https://doi.org/10.1016/j.laa.2008.12.027.
[30] ODABASIOGLU A, CELIK M, PILEGGI L. PRIMA: passive reduced-order interconnectmacromodeling algorithm[J/OL]. IEEE Transactions on Computer-Aided Design of IntegratedCircuits and Systems, 1998, 17(8): 645-654. DOI: 10.1109/43.712097.
[31] CHEN X. Parallel performance[EB/OL]. 2023. https://github.com/chenxm1986/cktso/issues/12.
[32] DUFF I S, KOSTER J. On Algorithms For Permuting Large Entries to the Diagonal of a SparseMatrix[J/OL]. SIAM Journal on Matrix Analysis and Applications, 2001, 22(4): 973-996.https://doi.org/10.1137/S0895479899358443.
[33] KARYPIS G, KUMAR V. METIS—A Software Package for Partitioning Unstructured Graphs,Partitioning Meshes and Computing Fill-Reducing Ordering of Sparse Matrices[Z]. 1997.
[34] CHANDRA R, DAGUM L, KOHR D, et al. Parallel programming in OpenMP[M]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001.
[35] GROPP W, LUSK E, SKJELLUM A. Using MPI: Portable Parallel Programming with theMessage-Passing Interface[M]. The MIT Press, 2014.
[36] NASSIF S R. Power grid analysis benchmarks[C/OL]//2008 Asia and South Pacific DesignAutomation Conference. 2008: 376-381. DOI: 10.1109/ASPDAC.2008.4483978.
[37] Ahkab: an open-source SPICE-like interactive circuit simulator[EB/OL]. https://ahkab.readthedocs.io/en/latest/
修改评论