[1] MATTER M L, GKRETSI V. Editorial: Molecular regulation of tumor cells migration and metastatic growth[J]. Frontiers in Oncology, 2023, 13.
[2] Global cancer burden growing, amidst mounting need for services[J]. Saudi Med J, 2024, 45(3): 326-327.
[3] SIEGEL R L, MILLER K D, WAGLE N S, JEMAL A. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17 -48.
[4] XIA C, DONG X, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590.
[5] 孙可欣, 郑荣寿, 张思维,等. 2015 年中国分地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2019, 28(01): 1-11.
[6] DENISENKO T V, BUDKEVICH I N, ZHIVOTOVSKY B. Cell death -based treatment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2): 117.
[7] SU S Y, LIAW Y P, JHUANG J R, et al. Associations between ambient air pollution and cancer incidence in Taiwan: an ecological study of geographical variations[J]. Bmc Public Health, 2019, 19(1).
[8] HSU C H, HSU C W, HSUEH C, et al. Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma[J]. Mol Cell Proteomics, 2016, 15(7): 2396 -2410.
[9] CAI H, ZHANG H, JIANG Y. Prognostic and Clinicopathological Value of Programmed Cell Death Ligand1 Expression in Patients With Small Cell Lung Cancer: A Meta -Analysis[J]. Frontiers in Oncology, 2020, 10: 1079.
[10] ARAGHI M, MANNANI R, MALEKI A H, et al. Recent advances in non -small cell lung cancer targeted therapy; an update review[J]. Cancer Cell International, 2023, 23(1).
[11] SCHABATH M B, COTE M L. Cancer Progress and Priorities: Lung Cancer[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(10): 1563 -1579.
[12] CHEN Z, FILLMORE C M, HAMMERMAN P S, et al. Non -small-cell lung cancers: a heterogeneous set of diseases[J]. Nat Rev Cancer, 2014, 14(8): 535-546.
[13] LAU S C M, PAN Y, VELCHETI V, WONG K K. Squamous cell lung cancer: Current landscape and future therapeutic options[J]. Cancer Cell, 2022, 40(11): 1279-1293.
[14] LIU S M, ZHENG M M, PAN Y, et al. Emerging evidence and treatment paradigm of non-small cell lung cancer[J]. J Hematol Oncol, 2023, 16(1): 40.
[15] THUN M J. Early landmark studies of smoking and lung cancer[J]. Lancet Oncol, 2010, 11(12): 1200.
[16] ALBERG A J, BROCK M V, FORD J G, et al. Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence -based clinical practice guidelines[J]. Chest, 2013, 143(5 Suppl): e1S-e29S.
[17] COLLABORATORS G B D O C. Global and regional burden of cancer in 2016 arising from occupational exposure to selected carcinogens: a systematic analysis for the Global Burden of Disease Study 2016[J]. Occup Environ Med, 2020, 77(3): 151 -159.
[18] DELA CRUZ C S, TANOUE L T, MATTHAY R A. Lung cancer: epidemiology, etiology, and prevention[J]. Clin Chest Med, 2011, 32(4): 605-644.
[19] YOU M, WANG D L, LIU P Y, et al. Fine Mapping of Chromosome 6q23 -25 Region in Familial Lung Cancer Families Reveals as a Likely Candidate Gene[J]. Clinical Cancer Research, 2009, 15(8): 2666 -2674.
[20] BOSSé Y, AMOS C I. A Decade of GWAS Results in Lung Cancer[J]. Cancer Epidemiology Biomarkers & Prevention, 2018, 27(4): 363 -379.
[21] MCKAY J D, HUNG R J, HAN Y, et al. Large -scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes[J]. Nature Genetics, 2017, 49(7): 1126-+.
[22] MOTTAGHITALAB F, FAROKHI M, FATAHI Y, et al. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment[J]. Journal of Controlled Release, 2019, 295: 250 -267.
[23] VANSTEENKISTE J, CRINO L, DOOMS C, et al. 2nd ESMO Consensus Conference on Lung Cancer: early -stage non-small-cell lung cancer consensus on diagnosis, treatment and follow -up[J]. Ann Oncol, 2014, 25(8): 1462-1474.
[24] TANDBERG D J, TONG B C, ACKERSON B G, KELSEY C R. Surgery versus stereotactic body radiation therapy for stage I non -small cell lung cancer: A comprehensive review[J]. Cancer, 2018, 124(4): 667 -678.
[25] TSAO A S, SCAGLIOTTI G V, BUNN P A, JR., et al. Scientific Advances in Lung Cancer 2015[J]. J Thorac Oncol, 2016, 11(5): 613 -638.
[26] YILMAZ M, CHRISTOFORI G. Mechanisms of motility in metastasizing cells[J]. Mol Cancer Res, 2010, 8(5): 629 -642.
[27] ZIEMYS A, YOKOI K, KAI M, et al. Progression -dependent transport heterogeneity of breast cancer liver metastases as a factor in therapeutic resistance[J]. Journal of Controlled Release, 2018, 291: 99 -105.
[28] THIERY J P, SLEEMAN J P. Complex networks orchestrate epithelial mesenchymal transitions[J]. Nature Reviews Molecular Cell Biology, 2006, 7(2): 131-142.
[29] GRUNERT S, JECHLINGER M, BEUG H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis[J]. Nat Rev Mol Cell Biol, 2003, 4(8): 657-665.
[30] POLYAK K, WEINBERG R A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits[J]. Nature Reviews Cancer, 2009, 9(4): 265 -273.
[31] WHEELOCK M J, SHINTANI Y, MAEDA M, et al. Cadherin switching[J]. J Cell Sci, 2008, 121(Pt 6): 727-735.
[32] YANG Y L, CHEN M W, XIAN L. Prognostic and clinicopathological significance of downregulated E-cadherin expression in patients with non -small cell lung cancer (NSCLC): a meta -analysis[J]. PLoS One, 2014, 9(6): e99763.
[33] PAGANI M, FABBRI M, BENEDETTI C, et al. Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response[J]. J Biol Chem, 2000, 275(31): 23685 -23692.
[34] JING X, YANG F, SHAO C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 157.
[35] BERTOLI G, SIMMEN T, ANELLI T, et al. Two conserved cysteine triads in human Ero1alpha cooperate for efficient disulfide bond formation in the endoplasmic reticulum[J]. J Biol Chem, 2004, 279(29): 30047 -30052.
[36] INABA K, MASUI S, IIDA H, et al. Crystal structures of human Ero1alpha reveal the mechanisms of regulated and targeted oxidation of PDI[J]. EMBO J, 2010, 29(19): 3330-3343.
[37] SHERGALIS A G, HU S, BANKHEAD A, 3RD, NEAMATI N. Role of the ERO1-PDI interaction in oxidative protein folding and disease[J]. Pharmacol Ther, 2020, 210: 107525.
[38] FRAND A R, KAISER C A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum[J]. Molecular Cell, 1998, 1(2): 161-170.
[39] POLLARD M G, TRAVERS K J, WEISSMAN J S. Ero1p: A novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum[J]. Molecular Cell, 1998, 1(2): 171 -182.
[40] MAY D, ITIN A, GAL O, et al. Ero1 -L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer[J]. Oncogene, 2005, 24(6): 1011-1020.
[41] NGUYEN V D, SAARANEN M J, KARALA A R, et al. Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation[J]. J Mol Biol, 2011, 406(3): 503 -515.
[42] KUKITA K, TAMURA Y, TANAKA T, et al. Cancer-Associated Oxidase ERO1-α Regulates the Expression of MHC Class I Molecule via Oxidative Folding[J]. Journal of Immunology, 2015, 194(10): 4988 -4996.
[43] TAKEI N, YONEDA A, KOSAKA M, et al. ERO1 is a novel endogenous marker of hypoxia in human cancer cell lines[J]. Bmc Cancer, 2019, 19.
[44] YANG S K, YANG C, YU F, et al. Endoplasmic reticulum resident oxidase ERO1-Lalpha promotes hepatocellular carcinoma metastasis and angiogenesis through the S1PR1/STAT3/VEGF-A pathway[J]. Cell Death & Disease, 2018, 9.
[45] WANG L, WANG X, LV X, et al. The extracellular Ero1alpha/PDI electron transport system regulates platelet function by increasing glutathione reduction potential[J]. Redox Biol, 2022, 50: 102244.
[46] ZHANG Y N, LI T, ZHANG L H, et al. Targeting the functional interplay between endoplasmic reticulum oxidoreductin -1α and protein disulfide isomerase suppresses the progression of cervical cancer[J]. Ebiomedicine, 2019, 41: 408-419.
[47] GUPTA N, PARK J E, TSE W, et al. ERO1alpha promotes hypoxic tumor progression and is associated with poor prognosis in pancreatic cancer[J]. Oncotarget, 2019, 10(57): 5970-5982.
[48] ZILLI F, MARQUES RAMOS P, AUF DER MAUR P, et al. The NFIB ERO1A axis promotes breast cancer metastatic colonization of disseminated tumour cells[J]. EMBO Mol Med, 2021, 13(4): e13162.
[49] WAN J, LING X, RAO Z, et al. Independent prognostic value of HIF -1alpha expression in radiofrequency ablation of lung cancer[J]. Oncol Lett, 2020, 19(1): 849-857.
[50] SEMENZA G L. Targeting HIF-1 for cancer therapy[J]. Nat Rev Cancer, 2003, 3(10): 721-732.
[51] JIANG B H, SEMENZA G L, BAUER C, MARTI H H. Hypoxia -inducible factor 1 levels vary exponentially over a physiologically relevant range of O-2 tension[J]. American Journal of Physiology -Cell Physiology, 1996, 271(4): C1172-C1180.
[52] KE Q D, COSTA M. Hypoxia -inducible factor-1 (HIF-1)[J]. Molecular Pharmacology, 2006, 70(5): 1469 -1480.
[53] LV X, LI J C, ZHANG C H, et al. The role of hypoxia -inducible factors in tumor angiogenesis and cell metabolism[J]. Genes & Diseases, 2017, 4(1): 19-24.
[54] CARMELIET P, DOR Y, HERBERT J M, et al. Role of HIF -1α or in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis[J]. Nature, 1998, 394(6692): 485-490.
[55] HöCKEL M, SCHLENGER K, HöCKEL S, VAUPEL P. Hypoxic cervical cancers with low apoptotic index are highly aggressive[J]. Cancer Research, 1999, 59(18): 4525 -4528.
[56] HARRIS A L. Hypoxia - A key regulatory factor in tumour growth[J]. Nature Reviews Cancer, 2002, 2(1): 38 -47.
[57] DANG C V, SEMENZA G L. Oncogenic alterations of metabolism[J]. Trends in Biochemical Sciences, 1999, 24(2): 68 -72.
[58] EPSTEIN A C R, GLEADLE J M, MCNEILL L A, et al. EGL -9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation[J]. Cell, 2001, 107(1): 43 -54.
[59] JIN Q, HUANG F H, XU X R, et al. High expression of hypoxia inducible factor 1α related with acquired resistant to EGFR tyrosine kinase inhibitors in NSCLC[J]. Scientific Reports, 2021, 11(1).
[60] CHEVALLIER M, BORGEAUD M, ADDEO A, FRIEDLAENDER A. Oncogenic driver mutations in non -small cell lung cancer: Past, present and future[J]. World Journal of Clinical Oncology, 2021, 12(4): 217 -237.
[61] DAVIES R L, GROSSE V A, KUCHERLAPATI R, BOTHWELL M. Genetic-Analysis of Epidermal Growth-Factor Action - Assignment of Human Epidermal Growth-Factor Receptor Gene to Chromosome -7[J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1980, 77(7): 4188 -4192.
[62] MENDELSOHN J, BASELGA J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer[J]. Journal of Clinical Oncology, 2003, 21(14): 2787 -2799.
[63] MASS R D. The HER receptor family: A rich target for therapeutic development[J]. International Journal of Radiation Oncology Biology Physics, 2004, 58(3): 932-940.
[64] LIU Q, YU S N, ZHAO W H, et al. EGFR-TKIs resistance via EGFR independent signaling pathways[J]. Molecular Cancer, 2018, 17.
[65] SETTLEMAN J, KURIE J M. Drugging the bad "AKT-TOR" to overcome TKI-resistant lung cancer[J]. Cancer Cell, 2007, 12(1): 6 -8.
[66] RAY M, SALGIA R, VOKES E E. The Role of EGFR Inhibition in the Treatment of Non-Small Cell Lung Cancer[J]. Oncologist, 2009, 14(11): 1116-1130.
[67] KAWAMURA T, IMAMURA C K, KENMOTSU H, et al. Evaluation of gefitinib systemic exposure in -mutated non-small cell lung cancer patients with gefitinib -induced severe hepatotoxicity[J]. Cancer Chemotherapy and Pharmacology, 2020, 85(3): 605-614.
[68] HRUSTANOVIC G, LEE B J, BIVONA T G. Mechanisms of resistance to EGFR targeted therapies[J]. Cancer Biology & Therapy, 2013, 14(4): 304 -314.
[69] RAMI-PORTA R, BOLEJACK V, GIROUX D J, et al. The IASLC Lung Cancer Staging Project: The New Database to Inform the Eighth Edition of the TNM Classification of Lung Cancer[J]. Journal of Thoracic Oncology, 2014, 9(11): 1618-1624.
[70] CHANSKY K, DETTERBECK F C, NICHOLSON A G, et al. The IASLC Lung Cancer Staging Project: External Validation of the Revision of the TNM Stage Groupings in the Eighth Edition of the TNM Classification of Lung Cancer[J]. Journal of Thoracic Oncology, 2017, 12(7): 1109 -1121.
[71] WAHBAH M, BOROUMAND N, CASTRO C, et al. Changing trends in the distribution of the histologic types of lung cancer: a review of 4,439 cases[J]. Annals of Diagnostic Pathology, 2007, 11(2): 89 -96.
[72] JIANG N, ZOU C, ZHU Y, et al. HIF-1α-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β -catenin and Notch signaling[J]. Theranostics, 2020, 10(6): 2553-2570.
[73] MAMO M, YE C, DIGIACOMO J W, et al. Hypoxia Alters the Response to Anti-EGFR Therapy by Regulating EGFR Expression and Downstream Signaling in a DNA Methylation -Specific and HIF-Dependent Manner[J]. Cancer Research, 2020, 80(22): 4998 -5010.
[74] TANAKA T, KUTOMI G, KAJIWARA T, et al. Cancer-associated oxidoreductase ERO1-α drives the production of VEGF via oxidative protein folding and regulating the mRNA level[J]. British Journal of Cancer, 2016, 114(11): 1227-1234.
[75] LIU L H, LI S N, QU Y, et al. Ablation of ERO1A induces lethal endoplasmic reticulum stress responses and immunogenic cell death to activate anti-tumor immunity[J]. Cell Reports Medicine, 2023, 4(10).
[76] ZITO E, GUARRERA L, JANSSEN-HEININGER Y M W. Fingerprint of the oxido-reductase ERO1: A protein disulfide bond producer and supporter of cancer[J]. Biochimica Et Biophysica Acta -Reviews on Cancer, 2024, 1879(1).
修改评论