中文版 | English
题名

ERO1A 通过HIF1A调控EGFR的转录表达进而促进肺腺癌的进展

其他题名
ERO1A PROMOTES THE PROGRESSION OF LUNG ADENOCARCINOMA VIA HIF1A-EGFR AXIS
姓名
姓名拼音
LIU Yue
学号
12133136
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
GUOAN CHEN
导师单位
南方科技大学
论文答辩日期
2024-05-10
论文提交日期
2024-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

肺癌是世界范围内的主要公共卫生问题,也是癌症患者死亡的主要原因。而肺癌最常见的亚型是非小细胞肺癌,约占肺癌总数的85%,其中以肺腺癌最为突出,约占所有肺癌的40%。相比其他组织学类型的肺癌,肺腺癌的预防和治疗已成为一个更大的难题。因此,阐明肺腺癌发生发展和转移相关的分子机制并确定新的靶点对于肺腺癌的诊断和治疗具有重要意义。本项目针对这一问题,利用大数据分析发现内质网氧化酶1AERO1A)在肺癌组织中高表达且与病人预后不良相关,并且ERO1A在肺腺癌方面的研究鲜有报道。因此,本项目致力于明确该基因在肺腺癌发展过程中的功能和机制,为肺腺癌的治疗和预防提供新的思路和方法。通过细胞增殖、克隆形成、Transwell侵袭和迁移实验,我们发现敲低ERO1A可抑制肺癌细胞增殖、克隆形成、迁移及侵袭能力。我们用siRNAs敲降ERO1A后,进行RNA-seq测序,测序结果揭示ERO1A可能调控多个癌症相关信号通路。我们对测序结果进行分析发现ERO1A调控缺氧诱导转录因子1AHIF1A)和表皮生长因子受体(EGFR)等肺癌发生、发展及转移相关的重要通路和基因。通过WB实验我们发现敲降ERO1A后,在多个肺癌细胞系中HIF1AEGFR的表达都会显著下降,而敲降HIF1A后,EGFR的表达显著降低。此外,我们还发现HIF1A蛋白在EGFR基因的启动子区和其它部位均有结合位点。最后,我们通过肿瘤异种移植实验发现敲低ERO1A可抑制小鼠皮下移植瘤的生长。以上结果提示ERO1A在肺腺癌中可能通过HIF1A-EGFR信号通路促进肺腺癌的增殖和转移,并可能作为肺腺癌的预后标记物和治疗靶点。

其他摘要

Lung cancer is a major public health problem worldwide and the leading cause of death among cancer patients. The most common subtype of lung cancer is non-small cell lung cancer, which accounts for about 85% of all lung cancers, with lung adenocarcinoma being the most prominent, accounting for about 40% of all lung cancers. Compared to other histologic kinds of lung cancer, lung adenocarcinoma has a more difficult time being prevented and treated. The diagnosis and treatment of lung adenocarcinoma therefore depend on unraveling the molecular pathways involved in the growth and spread of the disease and locating new targets. In this project, we address this issue and use big data analysis to discover that endoplasmic reticular oxidoreductase 1A (ERO1A) is highly expressed in lung cancer tissues and correlates with poor patient prognosis, and that ERO1A is hardly ever reported in lung adenocarcinoma. Therefore, this project is dedicated to clarifying the function and mechanism of this gene in the development of lung adenocarcinoma, so as to provide new ideas and methods for the treatment and prevention of lung adenocarcinoma. We discovered that knockdown of ERO1A decreased the proliferation, clone formation, migration, and invasion capabilities of lung cancer cells using Transwell invasion and migration experiments. We performed RNA-seq sequencing after knockdown of ERO1A with siRNAs, and the sequencing results revealed that ERO1A may regulate several cancer-related signaling pathways. Our examination of the sequencing data showed that ERO1A controls crucial pathways and genes involved in the initiation, growth, and metastasis of lung cancer, including EGFR and HIF1A. Using Western Blot experiment, we discovered that in several lung cancer cell lines, knocking down ERO1A led to a large decrease in the expression of hypoxia-inducible factor 1A (HIF1A) and epidermal growth factor receptor (EGFR), while knocking down HIF1A resulted in a considerable decrease in the expression of EGFR. We also found that the EGFR gene's promoter region and other regions contain binding sites for the HIF1A protein. Finally, using tumor xenograft experiments, we discovered that knockdown of ERO1A prevented the development of subcutaneous graft tumors in mice. The above results suggest that ERO1A in lung adenocarcinoma may promote the proliferation and metastasis of lung adenocarcinoma through the HIF1A-EGFR signaling pathway and may serve as a prognostic marker and therapeutic target for lung adenocarcinoma.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] MATTER M L, GKRETSI V. Editorial: Molecular regulation of tumor cells migration and metastatic growth[J]. Frontiers in Oncology, 2023, 13.
[2] Global cancer burden growing, amidst mounting need for services[J]. Saudi Med J, 2024, 45(3): 326-327.
[3] SIEGEL R L, MILLER K D, WAGLE N S, JEMAL A. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17 -48.
[4] XIA C, DONG X, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590.
[5] 孙可欣, 郑荣寿, 张思维,等. 2015 年中国分地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2019, 28(01): 1-11.
[6] DENISENKO T V, BUDKEVICH I N, ZHIVOTOVSKY B. Cell death -based treatment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2): 117.
[7] SU S Y, LIAW Y P, JHUANG J R, et al. Associations between ambient air pollution and cancer incidence in Taiwan: an ecological study of geographical variations[J]. Bmc Public Health, 2019, 19(1).
[8] HSU C H, HSU C W, HSUEH C, et al. Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma[J]. Mol Cell Proteomics, 2016, 15(7): 2396 -2410.
[9] CAI H, ZHANG H, JIANG Y. Prognostic and Clinicopathological Value of Programmed Cell Death Ligand1 Expression in Patients With Small Cell Lung Cancer: A Meta -Analysis[J]. Frontiers in Oncology, 2020, 10: 1079.
[10] ARAGHI M, MANNANI R, MALEKI A H, et al. Recent advances in non -small cell lung cancer targeted therapy; an update review[J]. Cancer Cell International, 2023, 23(1).
[11] SCHABATH M B, COTE M L. Cancer Progress and Priorities: Lung Cancer[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(10): 1563 -1579.
[12] CHEN Z, FILLMORE C M, HAMMERMAN P S, et al. Non -small-cell lung cancers: a heterogeneous set of diseases[J]. Nat Rev Cancer, 2014, 14(8): 535-546.
[13] LAU S C M, PAN Y, VELCHETI V, WONG K K. Squamous cell lung cancer: Current landscape and future therapeutic options[J]. Cancer Cell, 2022, 40(11): 1279-1293.
[14] LIU S M, ZHENG M M, PAN Y, et al. Emerging evidence and treatment paradigm of non-small cell lung cancer[J]. J Hematol Oncol, 2023, 16(1): 40.
[15] THUN M J. Early landmark studies of smoking and lung cancer[J]. Lancet Oncol, 2010, 11(12): 1200.
[16] ALBERG A J, BROCK M V, FORD J G, et al. Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence -based clinical practice guidelines[J]. Chest, 2013, 143(5 Suppl): e1S-e29S.
[17] COLLABORATORS G B D O C. Global and regional burden of cancer in 2016 arising from occupational exposure to selected carcinogens: a systematic analysis for the Global Burden of Disease Study 2016[J]. Occup Environ Med, 2020, 77(3): 151 -159.
[18] DELA CRUZ C S, TANOUE L T, MATTHAY R A. Lung cancer: epidemiology, etiology, and prevention[J]. Clin Chest Med, 2011, 32(4): 605-644.
[19] YOU M, WANG D L, LIU P Y, et al. Fine Mapping of Chromosome 6q23 -25 Region in Familial Lung Cancer Families Reveals as a Likely Candidate Gene[J]. Clinical Cancer Research, 2009, 15(8): 2666 -2674.
[20] BOSSé Y, AMOS C I. A Decade of GWAS Results in Lung Cancer[J]. Cancer Epidemiology Biomarkers & Prevention, 2018, 27(4): 363 -379.
[21] MCKAY J D, HUNG R J, HAN Y, et al. Large -scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes[J]. Nature Genetics, 2017, 49(7): 1126-+.
[22] MOTTAGHITALAB F, FAROKHI M, FATAHI Y, et al. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment[J]. Journal of Controlled Release, 2019, 295: 250 -267.
[23] VANSTEENKISTE J, CRINO L, DOOMS C, et al. 2nd ESMO Consensus Conference on Lung Cancer: early -stage non-small-cell lung cancer consensus on diagnosis, treatment and follow -up[J]. Ann Oncol, 2014, 25(8): 1462-1474.
[24] TANDBERG D J, TONG B C, ACKERSON B G, KELSEY C R. Surgery versus stereotactic body radiation therapy for stage I non -small cell lung cancer: A comprehensive review[J]. Cancer, 2018, 124(4): 667 -678.
[25] TSAO A S, SCAGLIOTTI G V, BUNN P A, JR., et al. Scientific Advances in Lung Cancer 2015[J]. J Thorac Oncol, 2016, 11(5): 613 -638.
[26] YILMAZ M, CHRISTOFORI G. Mechanisms of motility in metastasizing cells[J]. Mol Cancer Res, 2010, 8(5): 629 -642.
[27] ZIEMYS A, YOKOI K, KAI M, et al. Progression -dependent transport heterogeneity of breast cancer liver metastases as a factor in therapeutic resistance[J]. Journal of Controlled Release, 2018, 291: 99 -105.
[28] THIERY J P, SLEEMAN J P. Complex networks orchestrate epithelial mesenchymal transitions[J]. Nature Reviews Molecular Cell Biology, 2006, 7(2): 131-142.
[29] GRUNERT S, JECHLINGER M, BEUG H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis[J]. Nat Rev Mol Cell Biol, 2003, 4(8): 657-665.
[30] POLYAK K, WEINBERG R A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits[J]. Nature Reviews Cancer, 2009, 9(4): 265 -273.
[31] WHEELOCK M J, SHINTANI Y, MAEDA M, et al. Cadherin switching[J]. J Cell Sci, 2008, 121(Pt 6): 727-735.
[32] YANG Y L, CHEN M W, XIAN L. Prognostic and clinicopathological significance of downregulated E-cadherin expression in patients with non -small cell lung cancer (NSCLC): a meta -analysis[J]. PLoS One, 2014, 9(6): e99763.
[33] PAGANI M, FABBRI M, BENEDETTI C, et al. Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response[J]. J Biol Chem, 2000, 275(31): 23685 -23692.
[34] JING X, YANG F, SHAO C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 157.
[35] BERTOLI G, SIMMEN T, ANELLI T, et al. Two conserved cysteine triads in human Ero1alpha cooperate for efficient disulfide bond formation in the endoplasmic reticulum[J]. J Biol Chem, 2004, 279(29): 30047 -30052.
[36] INABA K, MASUI S, IIDA H, et al. Crystal structures of human Ero1alpha reveal the mechanisms of regulated and targeted oxidation of PDI[J]. EMBO J, 2010, 29(19): 3330-3343.
[37] SHERGALIS A G, HU S, BANKHEAD A, 3RD, NEAMATI N. Role of the ERO1-PDI interaction in oxidative protein folding and disease[J]. Pharmacol Ther, 2020, 210: 107525.
[38] FRAND A R, KAISER C A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum[J]. Molecular Cell, 1998, 1(2): 161-170.
[39] POLLARD M G, TRAVERS K J, WEISSMAN J S. Ero1p: A novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum[J]. Molecular Cell, 1998, 1(2): 171 -182.
[40] MAY D, ITIN A, GAL O, et al. Ero1 -L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer[J]. Oncogene, 2005, 24(6): 1011-1020.
[41] NGUYEN V D, SAARANEN M J, KARALA A R, et al. Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation[J]. J Mol Biol, 2011, 406(3): 503 -515.
[42] KUKITA K, TAMURA Y, TANAKA T, et al. Cancer-Associated Oxidase ERO1-α Regulates the Expression of MHC Class I Molecule via Oxidative Folding[J]. Journal of Immunology, 2015, 194(10): 4988 -4996.
[43] TAKEI N, YONEDA A, KOSAKA M, et al. ERO1 is a novel endogenous marker of hypoxia in human cancer cell lines[J]. Bmc Cancer, 2019, 19.
[44] YANG S K, YANG C, YU F, et al. Endoplasmic reticulum resident oxidase ERO1-Lalpha promotes hepatocellular carcinoma metastasis and angiogenesis through the S1PR1/STAT3/VEGF-A pathway[J]. Cell Death & Disease, 2018, 9.
[45] WANG L, WANG X, LV X, et al. The extracellular Ero1alpha/PDI electron transport system regulates platelet function by increasing glutathione reduction potential[J]. Redox Biol, 2022, 50: 102244.
[46] ZHANG Y N, LI T, ZHANG L H, et al. Targeting the functional interplay between endoplasmic reticulum oxidoreductin -1α and protein disulfide isomerase suppresses the progression of cervical cancer[J]. Ebiomedicine, 2019, 41: 408-419.
[47] GUPTA N, PARK J E, TSE W, et al. ERO1alpha promotes hypoxic tumor progression and is associated with poor prognosis in pancreatic cancer[J]. Oncotarget, 2019, 10(57): 5970-5982.
[48] ZILLI F, MARQUES RAMOS P, AUF DER MAUR P, et al. The NFIB ERO1A axis promotes breast cancer metastatic colonization of disseminated tumour cells[J]. EMBO Mol Med, 2021, 13(4): e13162.
[49] WAN J, LING X, RAO Z, et al. Independent prognostic value of HIF -1alpha expression in radiofrequency ablation of lung cancer[J]. Oncol Lett, 2020, 19(1): 849-857.
[50] SEMENZA G L. Targeting HIF-1 for cancer therapy[J]. Nat Rev Cancer, 2003, 3(10): 721-732.
[51] JIANG B H, SEMENZA G L, BAUER C, MARTI H H. Hypoxia -inducible factor 1 levels vary exponentially over a physiologically relevant range of O-2 tension[J]. American Journal of Physiology -Cell Physiology, 1996, 271(4): C1172-C1180.
[52] KE Q D, COSTA M. Hypoxia -inducible factor-1 (HIF-1)[J]. Molecular Pharmacology, 2006, 70(5): 1469 -1480.
[53] LV X, LI J C, ZHANG C H, et al. The role of hypoxia -inducible factors in tumor angiogenesis and cell metabolism[J]. Genes & Diseases, 2017, 4(1): 19-24.
[54] CARMELIET P, DOR Y, HERBERT J M, et al. Role of HIF -1α or in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis[J]. Nature, 1998, 394(6692): 485-490.
[55] HöCKEL M, SCHLENGER K, HöCKEL S, VAUPEL P. Hypoxic cervical cancers with low apoptotic index are highly aggressive[J]. Cancer Research, 1999, 59(18): 4525 -4528.
[56] HARRIS A L. Hypoxia - A key regulatory factor in tumour growth[J]. Nature Reviews Cancer, 2002, 2(1): 38 -47.
[57] DANG C V, SEMENZA G L. Oncogenic alterations of metabolism[J]. Trends in Biochemical Sciences, 1999, 24(2): 68 -72.
[58] EPSTEIN A C R, GLEADLE J M, MCNEILL L A, et al. EGL -9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation[J]. Cell, 2001, 107(1): 43 -54.
[59] JIN Q, HUANG F H, XU X R, et al. High expression of hypoxia inducible factor 1α related with acquired resistant to EGFR tyrosine kinase inhibitors in NSCLC[J]. Scientific Reports, 2021, 11(1).
[60] CHEVALLIER M, BORGEAUD M, ADDEO A, FRIEDLAENDER A. Oncogenic driver mutations in non -small cell lung cancer: Past, present and future[J]. World Journal of Clinical Oncology, 2021, 12(4): 217 -237.
[61] DAVIES R L, GROSSE V A, KUCHERLAPATI R, BOTHWELL M. Genetic-Analysis of Epidermal Growth-Factor Action - Assignment of Human Epidermal Growth-Factor Receptor Gene to Chromosome -7[J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1980, 77(7): 4188 -4192.
[62] MENDELSOHN J, BASELGA J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer[J]. Journal of Clinical Oncology, 2003, 21(14): 2787 -2799.
[63] MASS R D. The HER receptor family: A rich target for therapeutic development[J]. International Journal of Radiation Oncology Biology Physics, 2004, 58(3): 932-940.
[64] LIU Q, YU S N, ZHAO W H, et al. EGFR-TKIs resistance via EGFR independent signaling pathways[J]. Molecular Cancer, 2018, 17.
[65] SETTLEMAN J, KURIE J M. Drugging the bad "AKT-TOR" to overcome TKI-resistant lung cancer[J]. Cancer Cell, 2007, 12(1): 6 -8.
[66] RAY M, SALGIA R, VOKES E E. The Role of EGFR Inhibition in the Treatment of Non-Small Cell Lung Cancer[J]. Oncologist, 2009, 14(11): 1116-1130.
[67] KAWAMURA T, IMAMURA C K, KENMOTSU H, et al. Evaluation of gefitinib systemic exposure in -mutated non-small cell lung cancer patients with gefitinib -induced severe hepatotoxicity[J]. Cancer Chemotherapy and Pharmacology, 2020, 85(3): 605-614.
[68] HRUSTANOVIC G, LEE B J, BIVONA T G. Mechanisms of resistance to EGFR targeted therapies[J]. Cancer Biology & Therapy, 2013, 14(4): 304 -314.
[69] RAMI-PORTA R, BOLEJACK V, GIROUX D J, et al. The IASLC Lung Cancer Staging Project: The New Database to Inform the Eighth Edition of the TNM Classification of Lung Cancer[J]. Journal of Thoracic Oncology, 2014, 9(11): 1618-1624.
[70] CHANSKY K, DETTERBECK F C, NICHOLSON A G, et al. The IASLC Lung Cancer Staging Project: External Validation of the Revision of the TNM Stage Groupings in the Eighth Edition of the TNM Classification of Lung Cancer[J]. Journal of Thoracic Oncology, 2017, 12(7): 1109 -1121.
[71] WAHBAH M, BOROUMAND N, CASTRO C, et al. Changing trends in the distribution of the histologic types of lung cancer: a review of 4,439 cases[J]. Annals of Diagnostic Pathology, 2007, 11(2): 89 -96.
[72] JIANG N, ZOU C, ZHU Y, et al. HIF-1α-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β -catenin and Notch signaling[J]. Theranostics, 2020, 10(6): 2553-2570.
[73] MAMO M, YE C, DIGIACOMO J W, et al. Hypoxia Alters the Response to Anti-EGFR Therapy by Regulating EGFR Expression and Downstream Signaling in a DNA Methylation -Specific and HIF-Dependent Manner[J]. Cancer Research, 2020, 80(22): 4998 -5010.
[74] TANAKA T, KUTOMI G, KAJIWARA T, et al. Cancer-associated oxidoreductase ERO1-α drives the production of VEGF via oxidative protein folding and regulating the mRNA level[J]. British Journal of Cancer, 2016, 114(11): 1227-1234.
[75] LIU L H, LI S N, QU Y, et al. Ablation of ERO1A induces lethal endoplasmic reticulum stress responses and immunogenic cell death to activate anti-tumor immunity[J]. Cell Reports Medicine, 2023, 4(10).
[76] ZITO E, GUARRERA L, JANSSEN-HEININGER Y M W. Fingerprint of the oxido-reductase ERO1: A protein disulfide bond producer and supporter of cancer[J]. Biochimica Et Biophysica Acta -Reviews on Cancer, 2024, 1879(1).

所在学位评定分委会
生物学
国内图书分类号
R73-3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766226
专题南方科技大学医学院
推荐引用方式
GB/T 7714
刘玥. ERO1A 通过HIF1A调控EGFR的转录表达进而促进肺腺癌的进展[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133136-刘玥-南方科技大学医学(3170KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘玥]的文章
百度学术
百度学术中相似的文章
[刘玥]的文章
必应学术
必应学术中相似的文章
[刘玥]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。