[1] 吴晓昊, 廖荣东, 李飞云, 等. 合成生物学在疾病诊疗中的应用[J]. 合成生物学, 2023, 4(2):244-262.
[2] CENTOLA M, POPPLETON E, RAY S, et al. A rhythmically pulsing leaf spring DNA-origami nanoengine that drives a passive follower[J]. Nature Nanotechnology, 2024, 19(2): 226-236.
[3] LEE J-S, LYTTON-JEAN A K R, HURST S J, et al. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties[J]. Nano Letters, 2007, 7(7): 2112-2115.
[4] MITCHELL G P, MIRKIN C A, LETSINGER R L. Programmed assembly of DNA functionalized quantum dots[J]. Journal of the American Chemical Society, 1999, 121(35): 8122-8123.
[5] HAYES O G, MCMILLAN J R, LEE B, et al. DNA-encoded protein Janus nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(29): 9269-9274.
[6] WANG Y, WANG Y, ZHENG X, et al. Synthetic strategies toward DNA-coated colloids that crystallize [J]. Journal of the American Chemical Society, 2015, 137(33): 10760-10796.
[7] WANG X X, ZHU L J, LI S T, et al. Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing[J]. Trends in Analytical Chemistry, 2021, 141: 116292.
[8] LV Z, ZHU Y, LI F. DNA functional nanomaterials for controlled delivery of nucleic acid-based drugs[J]. Frontiers In Bioengineering And Biotechnology, 2021, 9: 720291.
[9] WANG D-X, WANG J, WANG Y-X, et al. DNA nanostructure -based nucleic acid probes: construction and biological applications[J]. Chemical Science, 2021, 12(22): 7602-7622.
[10] WARD D C, REICH E, STRYER L. Fluorescence studies of nucleotides and polynucleotides[J]. Journal of Biological Chemistry, 1969, 244(5): 1228-1237.
[11] RIST J M, MARINO P J. Fluorescent nucleotide base analogs as probes of nucleic acid structure, dynamics and interactions[J]. Current Organic Chemistry, 2002, 6(9): 775-793.
[12] RYU J H, HEO J Y, BANG E-K, et al. Quencher-free linear beacon systems containing 2-ethynylfluorenone -labeled 2'-deoxyuridine units[J]. Tetrahedron, 2012, 68(1): 72-78.
[13] BAG S S, KUNDU R, MATSUMOTO K, et al. S ingly and doubly labeled base-discriminating fluorescent oligonucleotide probes containing oxo-pyrene 66 chromophore[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(11): 3227-3230.
[14] FADOCK K L, MANDERVILLE R A. DNA aptamer-target binding motif revealed using a fluorescent guanine probe: implications for food toxin detection[J]. ACS Omega, 2017, 2(8): 4955-4963.
[15] YAMAUCHI T, TAKEDA T, YANAGI M, et al. C2 -substituted 8-aza-7-deaza-2'-deoxyadenosines as environmentally sensitive fluorescent nucleosides for discriminating apurinic/apyrimidinic sites in DNA duplex[J]. Tetrahedron Letters, 2017, 58(2): 117-120.
[16] LI J-P, WANG H-X, WANG H-X, et al. Push-pull-type purine nucleoside -based fluorescent sensors for the selective detection of Pd2 + in aqueous buffer[J]. European Journal of Organic Chemistry, 2014, 2014(11): 2225 -2230.
[17] KANAMORI T, OHZEKI H, MASAKI Y, et al. Controlling the fluorescence of benzofuran-modified uracil residues in oligonucleotides by triple-helix formation[J]. ChemBioChem, 2015, 16(1): 167 -176.
[18] PARK S, OTOMO H, ZHENG L, et al. Highly emissive deoxyguanosine analogue capable of direct visualization of B-Z transition[J]. Chemical Communications, 2014, 50(13): 1573 -1575.
[19] OKAMOTO A, TANAKA K, FUKUTA T, et al. Design of base-discriminating fluorescent nucleoside and its application to T/C SNP typing[J]. Journal of the American Chemical Society, 2003, 125(31): 9296 -9297.
[20] OKAMOTO A, TAINAKA K, SAITO I. Synthesis and properties of a novel fluorescent nucleobase, naphthopyridopyrimidine[J]. Tetrahedron Letters, 2003, 44(36): 6871-6874.
[21] SAITO Y, HUDSON R H E. Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 36: 48-73.
[22] PARK Y, KIM K T, KIM B H. G-Quadruplex formation using fluorescent oligonucleotides as a detection method for discriminating AGG trinucleotide repeats[J]. Chemical Communications, 2016, 52(86): 12757 -12760.
[23] LI F, TANG J, GENG J, et al. Polymeric DNA hydrogel: design, synthesis and applications[J]. Progress in Polymer Science, 2019, 98: 101163.
[24] LI F, YU W, ZHANG J, et al. Spatiotemporally programmable cascade hybridization of hairpin DNA in polymeric nanoframework for precise siRNA deliver [J]. Nature Communications, 2021, 12(1): 1138.
[25] LI M, WANG C, DI Z, et al. Engineering Multifunctional DNA hybrid nanospheres through coordination-driven self-assembly[J]. Angewandte Chemie International Edition, 2019, 58(5): 1350 -1354.
[26] JIANG Z, THAYUMANAVAN S. Noncationic material design for nucleic acid delivery[J]. Advanced Therapeutics, 2020, 3(3): 1900206.
[27] LU S, SHEN J, FAN C, et al. DNA Assembly -based stimuli-responsive systems[J]. Advanced Science, 2021, 8(13): 2100328.
[28] JIANG Y, SHI M, LIU Y, et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins[J]. Angewandte Chemie International Edition, 2017, 56(39): 11916-11920.
[29] PUGAZHENDHI A, EDISON T N J I, KARUPPUSAMY I, et al. Inorganic nanoparticles: a potential cancer therapy for human welfare[J]. International Journal of Pharmaceutics, 2018, 539(1): 104 -111.
[30] ROTARU A, DUTTA S, JENTZSCH E, et al. Selective dsDNA-templated formation of copper nanoparticles in solution[J]. Angewandte Chemie International Edition, 2010, 49(33): 5665 -5667.
[31] KIM S, PARK K S. Fluorescence resonance energy transfer using DNA -templated copper nanoparticles for ratiometric detection of microRNAs[J]. Analyst, 2021, 146(6): 1844-1847.
[32] JI H, ZHU Q. Application of intelligent responsive DNA self -assembling nanomaterials in drug delivery[J]. Journal of Controlled Release, 2023, 361: 803-818.
[33] 陈天奇, 梁钰, 樊丽, 等. DNA-金属纳米材料在分子识别和药物递送中的应用[J]. 生物化学与生物物理进展, 2023, 50(02):220-231.
[34] CHIN S M, SYNATSCHKE C V, LIU S, et al. Covalent-supramolecular hybrid polymers as muscle -inspired anisotropic actuators[J]. Nature Communications, 2018, 9(1): 2395.
[35] PELEGRI-O’DAY E M, MAYNARD H D. Controlled radical polymerization as an enabling approach for the next generation of protein-polymer conjugates [J]. Accounts of Chemical Research, 2016, 49(9): 1777 -1785.
[36] MOUTSIOPOULOU A, BROYLES D, DIKICI E, et al. Molecular aptamer beacons: molecular aptamer beacons and their applications in sensing, imaging, and diagnostics[J]. Small, 2019, 15(35): 1970187.
[37] GUBU A, ZHANG X, LU A, et al. Nucleic acid amphiphiles: synthesis, properties, and applications[J]. Molecular Therapy -Nucleic Acids, 2023, 33: 144-163.
[38] CAGEL M, TESAN F C, BERNABEU E, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113: 211 -228.
[39] WHITFIELD C J, ZHANG M, WINTERWERBER P, et al. Functional DNA -polymer conjugates[J]. Chemical Reviews, 2021, 121(18): 11030-11084.
[40] JIA F, LI H, CHEN R, et al. Self-assembly of DNA-containing copolymers[J]. Bioconjugate Chemistry, 2019, 30(7): 1880-1888.
[41] ZHAO Z, DONG Y, DUAN Z, et al. DNA-organic molecular amphiphiles: Synthesis, self-assembly, and hierarchical aggregates[J]. Aggregate, 2021, 2(4): e95.
[42] XIAO F, WEI Z, WANG M, et al. Oligonucleotide -polymer conjugates: from molecular basics to practical application[J]. Topics in Current Chemistry, 2020, 378(2): 24.
[43] CHEN L, FANG S, XIAO X, et al. Single -stranded DNA assisted cell penetrating peptide-DNA conjugation strategy for intracellular imaging of nucleases[J]. Analytical Chemistry, 2016, 88(23): 11306 -11309.
[44] TYAGI S, KRAMER F R. Molecular Beacons: Probes that Fluoresce upon Hybridization[J]. Nature Biotechnology, 1996, 14(3): 303 -308.
[45] LIN M, ZHANG J, WAN H, et al. Rationally designed multivalent aptamers targeting cell surface for biomedical applications[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9369-9389.
[46] VENKATESAN N, JUN SEO Y, HYEAN KIM B. Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis[J]. Chemical Society Reviews, 2008, 37(4): 648 -663.
[47] FANG X, LIU X, SCHUSTER S, et al. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies[J]. Journal of the American Chemical Society, 1999, 121(12): 2921 -2922.
[48] YANG G, SONG T, WANG M, et al. Recent advancements in nanosystem based molecular beacons for RNA detection and imaging[J]. ACS Applied Nano Materials, 2022, 5(3): 3065 -3086.
[49] YE J, CAO Y, LU X, et al. Self-assembly of DNA-organic hybrid amphiphiles by frame-guided assembly strategies[J]. Giant, 2022, 11 : 100113.
[50] JEONG J H, PARK T G. Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(d,l-lactic-co-glycolic Acid) and hydrophilic oligonucleotides[J]. Bioconjugate Chemistry, 2001, 12(6): 917 -923.
[51] PAN G, JIN X, MOU Q, et al. Recent progress on DNA block copolymer[J]. Chinese Chemical Letters, 2017, 28(9): 1822 -1828.
[52] OH J S, WANG Y, PINE D J, et al. High-density PEO-b-DNA brushes on polymer particles for colloidal superstructures[J]. Chemistry of Materials, 2015, 27(24): 8337-8344.
[53] RAHBANI J F, VENGUT-CLIMENT E, CHIDCHOB P, et al. DNA nanotubes with hydrophobic environments: toward new platforms for guest encapsulation and cellular delivery[J]. Advanced Healthcare Materials, 2018, 7(6): 1701049.
[54] EDWARDSON T G W, CARNEIRO K M M, MCLAUGHLIN C K, et al. Site -specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly[J]. Nature Chemistry, 2013, 5(10): 868 -875.
[55] CAO X, SUN Y, LU P, et al. Fluorescence imaging of intracellular nucleases A review [J]. Analytica Chimica Acta, 2020, 1137: 225 -337.
[56] WEI J, JI C, WANG Y, et al. Nucleic acid probes for single-molecule localization imaging of cellular biomolecules[J]. Chemical & Biomedical Imaging, 2023, 1(1): 18-29.
[57] NICOLSON F, ALI A, KIRCHER M F, et al. DNA nanostructures and DNAfunctionalized nanoparticles for cancer theranostics[J]. Advanced Science, 2020, 7(23): 2001669.
[58] MARKEY F B, PARASHAR V, BATISH M. Methods for spatial and temporal imaging of the different steps involved in RNA processing at single -molecule resolution[J]. Wiley Interdisciplinary Reviews-RNA, 2021, 12(1): e1608.
[59] BROUDE N E. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology[J]. Trends in Biotechnology, 2002, 20(6): 249 -256.
[60] MELO S A, LUECKE L B, KAHLERT C, et al. Glypican -1 identifies cancer exosomes and detects early pancreatic cancer[J]. Nature, 2015, 523(7559): 177-182.
[61] YANG F, NING Z, MA L, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts[J]. Molecular Cancer, 2017, 16(1): 148.
[62] CHEN C, ZONG S, WANG Z, et al. Visualization and intracellular dynamic tracking of exosomes and exosomal miRNAs using single molecule localization microscopy[J]. Nanoscale, 2018, 10(11): 5154 -5162.
[63] ZOU J, JIN C, WANG R, et al. Fluorinated DNA micelles: synthesis and properties[J]. Analytical Chemistry, 2018, 90(11): 6843-6850.
[64] EGLOFF S, MELNYCHUK N, CRUZ DA SILVA E, et al. Amplified fluorescence in situ hybridization by small and bright dye-loaded polymeric nanoparticles[J]. ACS Nano, 2022, 16(1): 1381 -1394.
[65] XIAO F, FANG X, LI H, et al. Light-harvesting fluorescent spherical nucleic acids Self-assembled from a DNA-grafted conjugated polymer for amplified detection of nucleic acids[J]. Angewandte Chemie International Edition, 2022, 61(12): e202115812.
[66] QUAZI M Z, CHOI J H, KIM M, et al. DNA and nanomaterials: a functional combination for DNA sensing[J]. ACS Applied Bio Materials, 2024 , 7(2): 778-786.
[67] BHALLA N, JOLLY P, FORMISANO N, et al. Introduction to biosensors[J]. Essays in Biochemistry, 2016, 60(1): 1 -8.
[68] HUANG G, SU C, WANG L, et al. The application of nucleic acid probe-based fluorescent sensing and imaging in cancer diagnosis and therapy[J]. Frontiers in Chemistry, 2021, 9: 2296-2646.
[69] QUAZI M Z, PARK N. DNA hydrogel-based nanocomplexes with cancer targeted delivery and light-triggered peptide drug release for cancer-specific therapeutics[J]. Biomacromolecules, 2023, 24(5): 2127 -2137.
[70] QUAZI M Z, PARK N. Nanohydrogels: Advanced polymeric nanomaterials in the era of nanotechnology for robust functionalization and cumulative applications[J]. International Journal of Molecular Sciences, 2022, 23(4): 1943.
[71] WANG Q, KE W, LOU H, et al. A novel fluorescent metal-organic framework based on porphyrin and AIE for ultra-high sensitivity and selectivity detection of Pb2 + ions in aqueous solution[J]. Dyes and Pigments, 2021, 196: 109802.
[72] YANG H, PENG Y, XU M, et al. Development of DNA biosensors based on DNAzymes and nucleases[J]. Critical Reviews in Analytical Chemistry, 2023, 53(1): 161-176.
[73] DU J, HE J-S, WANG R, et al. Ultrasensitive reporter DNA sensors built on nucleic acid amplification techniques: application in the detection of trace amount of protein[J]. Biosensors and Bioelectronics, 2024, 243: 115761.
[74] WILSON D R, ROUTKEVITCH D, RUI Y, et al. A triple-fluorophore -labeled nucleic acid pH nanosensor to investigate non-viral gene delivery[J]. Molecular Therapy, 2017, 25(7): 1697 -1709.
[75] CHANDRASEKARAN A R, WADY H, SUBRAMANIAN H K K. Nucleic acid nanostructures for chemical and biological sensing[J]. Small, 2016, 12(20): 2689-2700.
[76] MODI S, M G S, GOSWAMI D, et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells[J]. Nat ure Nanotechnology, 2009, 4(5): 325-330.
[77] DUAN Z, TAN L, DUAN R, et al. Photoactivated biosensing process for dictated ATP detection in single living cells[J]. Analytical Chemistry, 2021, 93(33): 11547-11556.
[78] LI X Q, LIU X N, JIA Y L, et al. Dual recognition DNA triangular prism nanoprobe: toward the relationship between K( +) and pH in Lysosomes[J]. Analytical Chemistry, 2021, 93(44): 14892-14899.
[79] XIONG D, CHENG J, AI F, et al. Insight into the sensing behavior of DNA probes based on MOF-nucleic acid interaction for bioanalysis[J]. Analytical Chemistry, 2023, 95(12): 5470-5478.
[80] SUN Z, WU S, MA J, et al. Colorimetric sensor array for human semen identification designed by coupling zirconium metal-organic frameworks with DNA-modified gold nanoparticles[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36316-36123.
[81] WANG S, MCGUIRK C M, ROSS M B, et al. General and direct method for preparing oligonucleotide -functionalized metal-organic framework nanoparticles[J]. Journal of the American Chemical Society, 2017, 139(29): 9827-9830.
[82] ASHOKA A H, APARIN I O, REISCH A, et al. Brightness of fluorescent organic nanomaterials[J]. Chemical Society Reviews, 2023, 52(14): 4525 -4548.
[83] REPENKO T, RIX A, LUDWANOWSKI S, et al. Bio -degradable highly fluorescent conjugated polymer nanoparticles for bio -medical imaging applications[J]. Nature Communications, 2017, 8(1): 470.
[84] SONG J, LEE H, JEONG E G, et al. Organic light-emitting diodes: organic light-emitting diodes: pushing toward the limits and beyond[J]. Advanced Materials, 2020, 32(35): 2070266.
[85] CHEN H, HU Z, WANG H, et al. A chlorinated π-conjugated polymer donor for efficient organic solar cells[J]. Joule, 2018, 2(8): 1623 -1634.
[86] BALADI T, NILSSON J R, GALLUD A, et al. Stealth fluorescence labeling for live microscopy imaging of mRNA delivery[J]. Journal of the American Chemical Society, 2021, 143(14): 5413 -5424.
[87] STEVENS C A, KAUR K, KLOK H-A. Self-assembly of protein-polymer conjugates for drug delivery[J]. Advanced Drug Delivery Reviews, 2021, 174: 447-460.
[88] WANG J, LV F, LIU L, et al. Strategies to design conjugated polymer based materials for biological sensing and imaging[J]. Coordination Chemistry Reviews, 2018, 354: 135-154.
[89] XU K-F, JIA H-R, LIU X, et al. Fluorescent dendrimer-based probes for cell membrane imaging: zebrafish epidermal labeling-based toxicity evaluation[J]. Biosensors and Bioelectronics, 2022, 213: 114403.
[90] RIZZUTO F J, DORE M D, RAFIQUE M G, et al. DNA sequence and length dictate the assembly of nucleic acid block copolymers[J]. Journal of the American Chemical Society, 2022, 144(27): 12272 -12279.
[91] XIAO F, LIN L, CHAO Z, et al. Organic spherical nucleic acids for the transport of a NIR-II-emitting dye across the blood-brain barrier[J]. Angewandte Chemie International Edition, 2020, 59(24): 9702 -9710.
[92] GüNES S, NEUGEBAUER H, SARICIFTCI N S. Conjugated polymer-based organic solar cells[J]. Chemical reviews, 2007, 107(4): 1324 -1338.
[93]ZHU C, LIU L, YANG Q, et al. Water-soluble conjugated polymers for imaging, diagnosis, and therapy[J]. Chemical reviews, 2012, 112(8): 4687 -4735.
[94] MIN PARK J, LEE J H, JANG W-D. Applications of porphyrins in emerging energy conversion technologies[J]. Coordination Chemistry Reviews, 2020, 407: 213157.
[95] MáS-MONTOYA M, JANSSEN R A J. The effect of H - and J-aggregation on the photophysical and photovoltaic properties of small thiophene -pyridine DPP molecules for bulk-heterojunction solar cells[J]. Advanced Functional Materials, 2017, 27(16): 1605779.
[96] VAZ SERRA V, NETO N G B, ANDRADE S M, et al. Core -assisted formation of porphyrin J-aggregates in pH-sensitive polyelectrolyte microcapsules Followed by fluorescence lifetime imaging microscopy[J]. Langmuir, 2017, 33(31): 7680-7691.
[97] CHEN R, WANG L, DING G, et al. Constant conversion rate of endolysosomes revealed by a pH-sensitive fluorescent probe[J]. ACS Sensors, 2023, 8(5): 2068-2078.
修改评论