中文版 | English
题名

核酸-有机发光分子杂化探针的合成及细胞传感成像应用

其他题名
SYNTHESIS AND BIOSENSOR APPLICATIONS OF NUCLEIC ACID- ORGANIC FLUORESCENCE MOLECULE HYBRID PROBES
姓名
姓名拼音
LUO Haowen
学号
12232098
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
田雷蕾
导师单位
材料科学与工程系
论文答辩日期
2024-05-14
论文提交日期
2024-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  荧光探针作为一种可以在生物体内实时检测光学信号的材料,在生物医药领域中发挥着重要作用。其中,有机荧光 π 共轭材料具有合成简单、易于修饰和出色的光捕获能力等优点,是一类主要的荧光探针材料。但有机 π 共轭材料在生物成像和传感的应用中存在着水溶性差和缺乏靶标识别性等问题。核酸材料作为一种具有广泛生物靶向性、可编码性和刺激响应性的生物大分子,不但已可通过人工合成获得并且可对其进行丰富的化学修饰,使核酸分子成为极好的 π 共轭材料生物功能化分子。因此,本文将核酸分子和有机共轭荧光材料共价接枝合成新型杂化材料,成功提升共轭材料的亲水性和目标靶向性,这一策略为荧光有机共轭材料的化学结构改进和生物应用提供了新的思路。
  本研究成功合成了两种含有叠氮基团的聚苯撑乙烯聚合物,叠氮官能团分别修饰于聚合物主链末端及侧链上。通过铜催化“点击”反应将核酸分子与聚合物偶联合成双亲性嵌段聚合物和双亲性接枝聚合物两种分子构型的产物。进一步采取溶剂置换法及纳米沉淀的方法制备两种对应的具备 π共轭聚合物疏水核心及 DNA 亲水壳层的纳米粒子。研究结果表明,相较于接枝聚合物形成的纳米粒子,嵌段聚合物形成的纳米粒子具有更小的粒径和更高的荧光发射强度。在细胞成像实验中,两种纳米粒子可实现对目标mRNA 的准确检测,其中嵌段聚合物纳米粒子成像具有更高的信噪比和分辨率,展现出在生物成像和分析领域巨大的应用潜力。
  另外,我们将有机 π 共轭分子卟啉(TPP)和核酸分子共价接枝,合成了一种新型的 pH 响应荧光杂化探针(TPP-DNA)。这种探针在碱性及中性条件下可单分散于水相中,酸性条件引发卟啉 J 聚集状态,因此卟啉的荧光发射随着 pH 的酸化而增强。同时,我们发现 DNA 不但能有效提升卟啉分子的亲水性,其碱基序列的长度和组成可以有效地调控卟啉发生 J 聚集的pH 范围及对 pH 响应的敏感度,使 TPP-DNA 成为一类生物相容且可以有序调控的 pH 探针。我们利用 TPP-DNA 探针有效探测细胞内体的成熟过程,为溶酶体相关疾病研究方向增添一种可选择的工具,为 pH 相关的疾病检测与监控提供了一类有效的新型探针材料。
其他摘要

  Fluorescent probes are important materials in the biomedical field. They are used for real-time bioimaging and diagnosis. Fluorescent organic π-conjugated materials are one of the most widely investigated fluorescent probe materials. They have many advantages, such as simple synthesis, easy modification, and excellent light-harvesting ability. However, they suffer from low aqueous solubility and lack specific target recognition in practical bio-imaging and sensing applications. Functional nucleic acids are molecules with broad biological recognition capability, programmability, and stimuli-responsive properties. They can be synthesized in labs and adapted to a variety of chemical modification methods. Therefore, nucleic acids are ideal candidates for functionalizing π-conjugated materials. This thesis conjugated nucleic acids with π-conjugated fluorescent materials. The nucleic acid functionalization not only successfully enhanced the biocompatibility of π-conjugated materials but also improved their bio-recognition capability. This strategy provides a novel idea for developing new kinds of fluorescence probes for bio-sensing and bio-imaging applications.

  In this research, two types of polyphenylene vinylene (PPV) polymers were successfully synthesized. These polymers had different azide-modification positions, with azide functional groups modified either at the end of the polymer's main chain or on the side chains. Functional nuclei acids were then conjugated to the two PPV polymers using a cooper-catalyzed click reaction, which resulted in the formation of two types of copolymers: amphiphilic block copolymer PPV-b-DNA and amphiphilic graft copolymer PPV-g-DNA. These copolymers were further transferred into water media and self-assembled into nanoparticles using the nanoprecipitation method. The results showed that nanoparticles formed by PPV-b-DNA had smaller particle sizes and stronger fluorescence emission compared to those formed by PPV-g-DNA. In cell imaging experiments, both nanoparticles can achieve accurate detection of target mRNA. PPV-b-DNA imaging has a large S/N ratio, high resolution and richer details, showing great application potential in the field of biological imaging and analysis. 

   In addition, we created a new fluorescent probe called TPP-DNA by combining a single-stranded nucleic acid sequence with porphyrin. TPP-DNA exists as a uniform solution in water under base or neutral conditions. However, in acidic conditions, TPP-DNA aggregates due to the J-aggregation of porphyrin, resulting in changes in fluorescence signals. We noticed that the pH recognition range and sensitivity of the TPP-DNA probe can be adjusted by modifying the DNA sequence length and composition. We successfully detected the maturation process of endosomes using TPP-DNA probes. Therefore, this pH-responsive probe can be used to investigate lysosome-associated diseases and might be a useful tool for pH-associated disease detection and monitoring.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] 吴晓昊, 廖荣东, 李飞云, 等. 合成生物学在疾病诊疗中的应用[J]. 合成生物学, 2023, 4(2):244-262.
[2] CENTOLA M, POPPLETON E, RAY S, et al. A rhythmically pulsing leaf spring DNA-origami nanoengine that drives a passive follower[J]. Nature Nanotechnology, 2024, 19(2): 226-236.
[3] LEE J-S, LYTTON-JEAN A K R, HURST S J, et al. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties[J]. Nano Letters, 2007, 7(7): 2112-2115.
[4] MITCHELL G P, MIRKIN C A, LETSINGER R L. Programmed assembly of DNA functionalized quantum dots[J]. Journal of the American Chemical Society, 1999, 121(35): 8122-8123.
[5] HAYES O G, MCMILLAN J R, LEE B, et al. DNA-encoded protein Janus nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(29): 9269-9274.
[6] WANG Y, WANG Y, ZHENG X, et al. Synthetic strategies toward DNA-coated colloids that crystallize [J]. Journal of the American Chemical Society, 2015, 137(33): 10760-10796.
[7] WANG X X, ZHU L J, LI S T, et al. Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing[J]. Trends in Analytical Chemistry, 2021, 141: 116292.
[8] LV Z, ZHU Y, LI F. DNA functional nanomaterials for controlled delivery of nucleic acid-based drugs[J]. Frontiers In Bioengineering And Biotechnology, 2021, 9: 720291.
[9] WANG D-X, WANG J, WANG Y-X, et al. DNA nanostructure -based nucleic acid probes: construction and biological applications[J]. Chemical Science, 2021, 12(22): 7602-7622.
[10] WARD D C, REICH E, STRYER L. Fluorescence studies of nucleotides and polynucleotides[J]. Journal of Biological Chemistry, 1969, 244(5): 1228-1237.
[11] RIST J M, MARINO P J. Fluorescent nucleotide base analogs as probes of nucleic acid structure, dynamics and interactions[J]. Current Organic Chemistry, 2002, 6(9): 775-793.
[12] RYU J H, HEO J Y, BANG E-K, et al. Quencher-free linear beacon systems containing 2-ethynylfluorenone -labeled 2'-deoxyuridine units[J]. Tetrahedron, 2012, 68(1): 72-78.
[13] BAG S S, KUNDU R, MATSUMOTO K, et al. S ingly and doubly labeled base-discriminating fluorescent oligonucleotide probes containing oxo-pyrene 66 chromophore[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(11): 3227-3230.
[14] FADOCK K L, MANDERVILLE R A. DNA aptamer-target binding motif revealed using a fluorescent guanine probe: implications for food toxin detection[J]. ACS Omega, 2017, 2(8): 4955-4963.
[15] YAMAUCHI T, TAKEDA T, YANAGI M, et al. C2 -substituted 8-aza-7-deaza-2'-deoxyadenosines as environmentally sensitive fluorescent nucleosides for discriminating apurinic/apyrimidinic sites in DNA duplex[J]. Tetrahedron Letters, 2017, 58(2): 117-120.
[16] LI J-P, WANG H-X, WANG H-X, et al. Push-pull-type purine nucleoside -based fluorescent sensors for the selective detection of Pd2 + in aqueous buffer[J]. European Journal of Organic Chemistry, 2014, 2014(11): 2225 -2230.
[17] KANAMORI T, OHZEKI H, MASAKI Y, et al. Controlling the fluorescence of benzofuran-modified uracil residues in oligonucleotides by triple-helix formation[J]. ChemBioChem, 2015, 16(1): 167 -176.
[18] PARK S, OTOMO H, ZHENG L, et al. Highly emissive deoxyguanosine analogue capable of direct visualization of B-Z transition[J]. Chemical Communications, 2014, 50(13): 1573 -1575.
[19] OKAMOTO A, TANAKA K, FUKUTA T, et al. Design of base-discriminating fluorescent nucleoside and its application to T/C SNP typing[J]. Journal of the American Chemical Society, 2003, 125(31): 9296 -9297.
[20] OKAMOTO A, TAINAKA K, SAITO I. Synthesis and properties of a novel fluorescent nucleobase, naphthopyridopyrimidine[J]. Tetrahedron Letters, 2003, 44(36): 6871-6874.
[21] SAITO Y, HUDSON R H E. Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 36: 48-73.
[22] PARK Y, KIM K T, KIM B H. G-Quadruplex formation using fluorescent oligonucleotides as a detection method for discriminating AGG trinucleotide repeats[J]. Chemical Communications, 2016, 52(86): 12757 -12760.
[23] LI F, TANG J, GENG J, et al. Polymeric DNA hydrogel: design, synthesis and applications[J]. Progress in Polymer Science, 2019, 98: 101163.
[24] LI F, YU W, ZHANG J, et al. Spatiotemporally programmable cascade hybridization of hairpin DNA in polymeric nanoframework for precise siRNA deliver [J]. Nature Communications, 2021, 12(1): 1138.
[25] LI M, WANG C, DI Z, et al. Engineering Multifunctional DNA hybrid nanospheres through coordination-driven self-assembly[J]. Angewandte Chemie International Edition, 2019, 58(5): 1350 -1354.
[26] JIANG Z, THAYUMANAVAN S. Noncationic material design for nucleic acid delivery[J]. Advanced Therapeutics, 2020, 3(3): 1900206.
[27] LU S, SHEN J, FAN C, et al. DNA Assembly -based stimuli-responsive systems[J]. Advanced Science, 2021, 8(13): 2100328.
[28] JIANG Y, SHI M, LIU Y, et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins[J]. Angewandte Chemie International Edition, 2017, 56(39): 11916-11920.
[29] PUGAZHENDHI A, EDISON T N J I, KARUPPUSAMY I, et al. Inorganic nanoparticles: a potential cancer therapy for human welfare[J]. International Journal of Pharmaceutics, 2018, 539(1): 104 -111.
[30] ROTARU A, DUTTA S, JENTZSCH E, et al. Selective dsDNA-templated formation of copper nanoparticles in solution[J]. Angewandte Chemie International Edition, 2010, 49(33): 5665 -5667.
[31] KIM S, PARK K S. Fluorescence resonance energy transfer using DNA -templated copper nanoparticles for ratiometric detection of microRNAs[J]. Analyst, 2021, 146(6): 1844-1847.
[32] JI H, ZHU Q. Application of intelligent responsive DNA self -assembling nanomaterials in drug delivery[J]. Journal of Controlled Release, 2023, 361: 803-818.
[33] 陈天奇, 梁钰, 樊丽, 等. DNA-金属纳米材料在分子识别和药物递送中的应用[J]. 生物化学与生物物理进展, 2023, 50(02):220-231.
[34] CHIN S M, SYNATSCHKE C V, LIU S, et al. Covalent-supramolecular hybrid polymers as muscle -inspired anisotropic actuators[J]. Nature Communications, 2018, 9(1): 2395.
[35] PELEGRI-O’DAY E M, MAYNARD H D. Controlled radical polymerization as an enabling approach for the next generation of protein-polymer conjugates [J]. Accounts of Chemical Research, 2016, 49(9): 1777 -1785.
[36] MOUTSIOPOULOU A, BROYLES D, DIKICI E, et al. Molecular aptamer beacons: molecular aptamer beacons and their applications in sensing, imaging, and diagnostics[J]. Small, 2019, 15(35): 1970187.
[37] GUBU A, ZHANG X, LU A, et al. Nucleic acid amphiphiles: synthesis, properties, and applications[J]. Molecular Therapy -Nucleic Acids, 2023, 33: 144-163.
[38] CAGEL M, TESAN F C, BERNABEU E, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113: 211 -228.
[39] WHITFIELD C J, ZHANG M, WINTERWERBER P, et al. Functional DNA -polymer conjugates[J]. Chemical Reviews, 2021, 121(18): 11030-11084.
[40] JIA F, LI H, CHEN R, et al. Self-assembly of DNA-containing copolymers[J]. Bioconjugate Chemistry, 2019, 30(7): 1880-1888.
[41] ZHAO Z, DONG Y, DUAN Z, et al. DNA-organic molecular amphiphiles: Synthesis, self-assembly, and hierarchical aggregates[J]. Aggregate, 2021, 2(4): e95.
[42] XIAO F, WEI Z, WANG M, et al. Oligonucleotide -polymer conjugates: from molecular basics to practical application[J]. Topics in Current Chemistry, 2020, 378(2): 24.
[43] CHEN L, FANG S, XIAO X, et al. Single -stranded DNA assisted cell penetrating peptide-DNA conjugation strategy for intracellular imaging of nucleases[J]. Analytical Chemistry, 2016, 88(23): 11306 -11309.
[44] TYAGI S, KRAMER F R. Molecular Beacons: Probes that Fluoresce upon Hybridization[J]. Nature Biotechnology, 1996, 14(3): 303 -308.
[45] LIN M, ZHANG J, WAN H, et al. Rationally designed multivalent aptamers targeting cell surface for biomedical applications[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9369-9389.
[46] VENKATESAN N, JUN SEO Y, HYEAN KIM B. Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis[J]. Chemical Society Reviews, 2008, 37(4): 648 -663.
[47] FANG X, LIU X, SCHUSTER S, et al. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies[J]. Journal of the American Chemical Society, 1999, 121(12): 2921 -2922.
[48] YANG G, SONG T, WANG M, et al. Recent advancements in nanosystem based molecular beacons for RNA detection and imaging[J]. ACS Applied Nano Materials, 2022, 5(3): 3065 -3086.
[49] YE J, CAO Y, LU X, et al. Self-assembly of DNA-organic hybrid amphiphiles by frame-guided assembly strategies[J]. Giant, 2022, 11 : 100113.
[50] JEONG J H, PARK T G. Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(d,l-lactic-co-glycolic Acid) and hydrophilic oligonucleotides[J]. Bioconjugate Chemistry, 2001, 12(6): 917 -923.
[51] PAN G, JIN X, MOU Q, et al. Recent progress on DNA block copolymer[J]. Chinese Chemical Letters, 2017, 28(9): 1822 -1828.
[52] OH J S, WANG Y, PINE D J, et al. High-density PEO-b-DNA brushes on polymer particles for colloidal superstructures[J]. Chemistry of Materials, 2015, 27(24): 8337-8344.
[53] RAHBANI J F, VENGUT-CLIMENT E, CHIDCHOB P, et al. DNA nanotubes with hydrophobic environments: toward new platforms for guest encapsulation and cellular delivery[J]. Advanced Healthcare Materials, 2018, 7(6): 1701049.
[54] EDWARDSON T G W, CARNEIRO K M M, MCLAUGHLIN C K, et al. Site -specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly[J]. Nature Chemistry, 2013, 5(10): 868 -875.
[55] CAO X, SUN Y, LU P, et al. Fluorescence imaging of intracellular nucleases A review [J]. Analytica Chimica Acta, 2020, 1137: 225 -337.
[56] WEI J, JI C, WANG Y, et al. Nucleic acid probes for single-molecule localization imaging of cellular biomolecules[J]. Chemical & Biomedical Imaging, 2023, 1(1): 18-29.
[57] NICOLSON F, ALI A, KIRCHER M F, et al. DNA nanostructures and DNA￾functionalized nanoparticles for cancer theranostics[J]. Advanced Science, 2020, 7(23): 2001669.
[58] MARKEY F B, PARASHAR V, BATISH M. Methods for spatial and temporal imaging of the different steps involved in RNA processing at single -molecule resolution[J]. Wiley Interdisciplinary Reviews-RNA, 2021, 12(1): e1608.
[59] BROUDE N E. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology[J]. Trends in Biotechnology, 2002, 20(6): 249 -256.
[60] MELO S A, LUECKE L B, KAHLERT C, et al. Glypican -1 identifies cancer exosomes and detects early pancreatic cancer[J]. Nature, 2015, 523(7559): 177-182.
[61] YANG F, NING Z, MA L, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts[J]. Molecular Cancer, 2017, 16(1): 148.
[62] CHEN C, ZONG S, WANG Z, et al. Visualization and intracellular dynamic tracking of exosomes and exosomal miRNAs using single molecule localization microscopy[J]. Nanoscale, 2018, 10(11): 5154 -5162.
[63] ZOU J, JIN C, WANG R, et al. Fluorinated DNA micelles: synthesis and properties[J]. Analytical Chemistry, 2018, 90(11): 6843-6850.
[64] EGLOFF S, MELNYCHUK N, CRUZ DA SILVA E, et al. Amplified fluorescence in situ hybridization by small and bright dye-loaded polymeric nanoparticles[J]. ACS Nano, 2022, 16(1): 1381 -1394.
[65] XIAO F, FANG X, LI H, et al. Light-harvesting fluorescent spherical nucleic acids Self-assembled from a DNA-grafted conjugated polymer for amplified detection of nucleic acids[J]. Angewandte Chemie International Edition, 2022, 61(12): e202115812.
[66] QUAZI M Z, CHOI J H, KIM M, et al. DNA and nanomaterials: a functional combination for DNA sensing[J]. ACS Applied Bio Materials, 2024 , 7(2): 778-786.
[67] BHALLA N, JOLLY P, FORMISANO N, et al. Introduction to biosensors[J]. Essays in Biochemistry, 2016, 60(1): 1 -8.
[68] HUANG G, SU C, WANG L, et al. The application of nucleic acid probe-based fluorescent sensing and imaging in cancer diagnosis and therapy[J]. Frontiers in Chemistry, 2021, 9: 2296-2646.
[69] QUAZI M Z, PARK N. DNA hydrogel-based nanocomplexes with cancer targeted delivery and light-triggered peptide drug release for cancer-specific therapeutics[J]. Biomacromolecules, 2023, 24(5): 2127 -2137.
[70] QUAZI M Z, PARK N. Nanohydrogels: Advanced polymeric nanomaterials in the era of nanotechnology for robust functionalization and cumulative applications[J]. International Journal of Molecular Sciences, 2022, 23(4): 1943.
[71] WANG Q, KE W, LOU H, et al. A novel fluorescent metal-organic framework based on porphyrin and AIE for ultra-high sensitivity and selectivity detection of Pb2 + ions in aqueous solution[J]. Dyes and Pigments, 2021, 196: 109802.
[72] YANG H, PENG Y, XU M, et al. Development of DNA biosensors based on DNAzymes and nucleases[J]. Critical Reviews in Analytical Chemistry, 2023, 53(1): 161-176.
[73] DU J, HE J-S, WANG R, et al. Ultrasensitive reporter DNA sensors built on nucleic acid amplification techniques: application in the detection of trace amount of protein[J]. Biosensors and Bioelectronics, 2024, 243: 115761.
[74] WILSON D R, ROUTKEVITCH D, RUI Y, et al. A triple-fluorophore -labeled nucleic acid pH nanosensor to investigate non-viral gene delivery[J]. Molecular Therapy, 2017, 25(7): 1697 -1709.
[75] CHANDRASEKARAN A R, WADY H, SUBRAMANIAN H K K. Nucleic acid nanostructures for chemical and biological sensing[J]. Small, 2016, 12(20): 2689-2700.
[76] MODI S, M G S, GOSWAMI D, et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells[J]. Nat ure Nanotechnology, 2009, 4(5): 325-330.
[77] DUAN Z, TAN L, DUAN R, et al. Photoactivated biosensing process for dictated ATP detection in single living cells[J]. Analytical Chemistry, 2021, 93(33): 11547-11556.
[78] LI X Q, LIU X N, JIA Y L, et al. Dual recognition DNA triangular prism nanoprobe: toward the relationship between K( +) and pH in Lysosomes[J]. Analytical Chemistry, 2021, 93(44): 14892-14899.
[79] XIONG D, CHENG J, AI F, et al. Insight into the sensing behavior of DNA probes based on MOF-nucleic acid interaction for bioanalysis[J]. Analytical Chemistry, 2023, 95(12): 5470-5478.
[80] SUN Z, WU S, MA J, et al. Colorimetric sensor array for human semen identification designed by coupling zirconium metal-organic frameworks with DNA-modified gold nanoparticles[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36316-36123.
[81] WANG S, MCGUIRK C M, ROSS M B, et al. General and direct method for preparing oligonucleotide -functionalized metal-organic framework nanoparticles[J]. Journal of the American Chemical Society, 2017, 139(29): 9827-9830.
[82] ASHOKA A H, APARIN I O, REISCH A, et al. Brightness of fluorescent organic nanomaterials[J]. Chemical Society Reviews, 2023, 52(14): 4525 -4548.
[83] REPENKO T, RIX A, LUDWANOWSKI S, et al. Bio -degradable highly fluorescent conjugated polymer nanoparticles for bio -medical imaging applications[J]. Nature Communications, 2017, 8(1): 470.
[84] SONG J, LEE H, JEONG E G, et al. Organic light-emitting diodes: organic light-emitting diodes: pushing toward the limits and beyond[J]. Advanced Materials, 2020, 32(35): 2070266.
[85] CHEN H, HU Z, WANG H, et al. A chlorinated π-conjugated polymer donor for efficient organic solar cells[J]. Joule, 2018, 2(8): 1623 -1634.
[86] BALADI T, NILSSON J R, GALLUD A, et al. Stealth fluorescence labeling for live microscopy imaging of mRNA delivery[J]. Journal of the American Chemical Society, 2021, 143(14): 5413 -5424.
[87] STEVENS C A, KAUR K, KLOK H-A. Self-assembly of protein-polymer conjugates for drug delivery[J]. Advanced Drug Delivery Reviews, 2021, 174: 447-460.
[88] WANG J, LV F, LIU L, et al. Strategies to design conjugated polymer based materials for biological sensing and imaging[J]. Coordination Chemistry Reviews, 2018, 354: 135-154.
[89] XU K-F, JIA H-R, LIU X, et al. Fluorescent dendrimer-based probes for cell membrane imaging: zebrafish epidermal labeling-based toxicity evaluation[J]. Biosensors and Bioelectronics, 2022, 213: 114403.
[90] RIZZUTO F J, DORE M D, RAFIQUE M G, et al. DNA sequence and length dictate the assembly of nucleic acid block copolymers[J]. Journal of the American Chemical Society, 2022, 144(27): 12272 -12279.
[91] XIAO F, LIN L, CHAO Z, et al. Organic spherical nucleic acids for the transport of a NIR-II-emitting dye across the blood-brain barrier[J]. Angewandte Chemie International Edition, 2020, 59(24): 9702 -9710.
[92] GüNES S, NEUGEBAUER H, SARICIFTCI N S. Conjugated polymer-based organic solar cells[J]. Chemical reviews, 2007, 107(4): 1324 -1338.
[93]ZHU C, LIU L, YANG Q, et al. Water-soluble conjugated polymers for imaging, diagnosis, and therapy[J]. Chemical reviews, 2012, 112(8): 4687 -4735.
[94] MIN PARK J, LEE J H, JANG W-D. Applications of porphyrins in emerging energy conversion technologies[J]. Coordination Chemistry Reviews, 2020, 407: 213157.
[95] MáS-MONTOYA M, JANSSEN R A J. The effect of H - and J-aggregation on the photophysical and photovoltaic properties of small thiophene -pyridine DPP molecules for bulk-heterojunction solar cells[J]. Advanced Functional Materials, 2017, 27(16): 1605779.
[96] VAZ SERRA V, NETO N G B, ANDRADE S M, et al. Core -assisted formation of porphyrin J-aggregates in pH-sensitive polyelectrolyte microcapsules Followed by fluorescence lifetime imaging microscopy[J]. Langmuir, 2017, 33(31): 7680-7691.
[97] CHEN R, WANG L, DING G, et al. Constant conversion rate of endolysosomes revealed by a pH-sensitive fluorescent probe[J]. ACS Sensors, 2023, 8(5): 2068-2078.

所在学位评定分委会
材料与化工
国内图书分类号
TQ617.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766234
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
罗浩雯. 核酸-有机发光分子杂化探针的合成及细胞传感成像应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232098-罗浩雯-材料科学与工程(5666KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[罗浩雯]的文章
百度学术
百度学术中相似的文章
[罗浩雯]的文章
必应学术
必应学术中相似的文章
[罗浩雯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。