[1] TAO F, QI Q, WANG L, et al. Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: correlation and comparison[J]. Engineering, 2019, 05(04): 653-661.
[2] ZHANG J, PAN L, HAN Q L, et al. Deep learning based attack detection for cyber-physical system cybersecurity: a survey[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 09(03): 377-391.
[3] 孟岩. 面向智能家居的物联网安全关键技术研究[D]. 上海:上海交通大学, 2021.
[4] EDU J S, SUCH J M, SUAREZ-TANGIL G. Smart home personal assistants: a security and privacy review[J]. ACM Computing Surveys (CSUR), 2020, 53(06): 01-36.
[5] DEY N, ASHOUR A S, SHI F, et al. Medical cyber-physical systems: a survey[J]. Journal of Medical Systems, 2018, 42: 01-13.
[6] LEE I, SOKOLSKY O, CHEN S, et al. Challenges and research directions in medical cyber– physical systems[J]. Proceedings of the IEEE, 2011, 100(01): 75-90.
[7] KOCABAS O, SOYATA T, AKTAS M K. Emerging security mechanisms for medical cyber physical systems[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13(03): 401-416.
[8] WHITMAN M E, MATTORD H J. Principles of information security 4th edition[M]. Cengage Learning, 2011.
[9] CHERDANTSEVA Y, HILTON J. A reference model of information assurance & security[C]. 2013 International Conference on Availability, Reliability and Security. 2013: 546-555.
[10] CASE D U. Analysis of the cyber attack on the Ukrainian power grid[J]. Electricity Information Sharing and Analysis Center (E-ISAC), 2016, 388(03): 01-29.
[11] WANG P, WU X, HE X. Modeling and analyzing cyberattack effects on connected automated vehicular platoons[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102625-102660.
[12] KHAN S K, SHIWAKOTI N, STASINOPOULOS P, et al. Cyber-attacks in the next-generation cars, mitigation techniques, anticipated readiness and future directions[J]. Accident Analysis & Prevention, 2020, 148: 105837-105882.
[13] LI C, RAGHUNATHAN A, JHA N K. Hijacking an insulin pump: security attacks and defenses for a diabetes therapy system[C]. 2011 IEEE 13th International Conference on E-health Networking, Applications and Aervices. 2011: 150-156.
[14] RADCLIFFE J. Hacking medical devices for fun and insulin: breaking the human SCADA system[C]. Black Hat Conference Presentation Slides. 2011: 2019-2032.
[15] GRAVINA R, ALINIA P, GHASEMZADEH H, et al. Multi-sensor fusion in body sensor networks:state-of-the-art and research challenges[J]. Information Fusion, 2017, 35: 68-80.
[16] CUI Y, QIAN Q, GUO C, et al. Towards DDoS detection mechanisms in software-defined networking[J]. Journal of Network and Computer Applications, 2021, 190: 103156-103193.
[17] KAUTISH S, REYANA A, VIDYARTHI A. SDMTA: attack detection and mitigation mechanism for DDoS vulnerabilities in hybrid cloud environment[J]. IEEE Transactions on Industrial Informatics, 2022, 18(09): 6455-6463.
[18] ZAINUDIN A, AHAKONYE L A C, AKTER R, et al. An efficient Hybrid-DNN for DDoS detection and classification in Software-Defined IIoT networks[J]. IEEE Internet of Things Journal, 2023, 10(10): 8491-8504.
[19] FOULADI R F, ERMIŞ O, ANARIM E. A DDoS attack detection and countermeasure scheme based on DWT and auto-encoder neural network for SDN[J]. Computer Networks, 2022, 214: 109140.
[20] XIA S M, GUO S Z, BAI W, et al. A new smart router-throttling method to mitigate DDoS attacks[J]. IEEE Access, 2019, 07: 107952-107963.
[21] DING D, HAN Q L, XIANG Y, et al. A survey on security control and attack detection for industrial cyber-physical systems[J]. Neurocomputing, 2018, 275: 1674-1683.
[22] MIRKOVIC J, REIHER P. A taxonomy of DDoS attack and DDoS defense mechanisms[J]. ACM SIGCOMM Computer Communication Review, 2004, 34(02): 39-53.
[23] PARK K, LEE H. On the effectiveness of route-based packet filtering for distributed DoS attack prevention in power-law internets[J]. ACM SIGCOMM Computer Communication Review, 2001, 31(04): 15-26.
[24] SYVERSON P. A taxonomy of replay attacks [cryptographic protocols][C]. Proceedings the Computer Security Foundations Workshop VII. 1994: 187-191.
[25] CHEN Y. Study on the prevention of SYN flooding by using traffic policing[C]. NOMS 2000. 2000 IEEE/IFIP Network Operations and Management Symposium ‘The Networked Planet: Management Beyond 2000’ (Cat. No.00CB37074). 2000: 593-604.
[26] DENG F G, LI X H, ZHOU H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack[J]. Physical Review A, 2005, 72(04): 044302.
[27] MAHESHWARI R, GAO J, DAS S R. Detecting wormhole attacks in wireless networks using connectivity information[C]. IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications. 2007: 107-115.
[28] PENG T, LECKIE C, RAMAMOHANARAO K. Survey of network-based defense mechanisms countering the DoS and DDoS problems[J]. ACM Computing Surveys (CSUR), 2007, 39(01): 03-49.
[29] LONG N, THOMAS R. Trends in denial of service attack technology[J]. CERT Coordination Center, 2001, 648(651): 569-590.
[30] MO Y, SINOPOLI B. Secure control against replay attacks[C]. 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton). 2009: 911-918.
[31] WANG H, ZHANG D, SHIN K G. Detecting SYN flooding attacks[C]. Proceedings. Twentyfirst Annual Joint Conference of the IEEE Computer and Communications Societies. 2002: 1530-1539.
[32] SUN Q, ZHANG K, SHI Y. Resilient model predictive control of cyber–physical systems under DoS attacks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(07): 4920-4927.
[33] LI T, CHEN B, YU L, et al. Active security control approach against DoS attacks in cyberphysical systems[J]. IEEE Transactions on Automatic Control, 2021, 66(09): 4303-4310.
[34] ZHOU J, SHANG J, LI Y, et al. Optimal DoS attack against LQR control channels[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(04): 1348-1352.
[35] YAN J J, YANG G H. Secure state estimation of nonlinear cyber-physical systems against DoS attacks: a multiobserver approach[J]. IEEE Transactions on Cybernetics, 2023, 53(03): 14471459.
[36] ZHANG H, CHENG P, SHI L, et al. Optimal denial-of-service attack scheduling with energy constraint[J]. IEEE Transactions on Automatic Control, 2015, 60(11): 3023-3028.
[37] HUANGM,DINGK,DEYS,etal. Learning-basedDoSattackpowerallocationinmultiprocess systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 80178030.
[38] REN X, WU J, DEY S, et al. Attack allocation on remote state estimation in multi-systems: structural results and asymptotic solution[J]. Automatica, 2018, 87: 184-194.
[39] PAPADOPOULOS S, DROSOU A, TZOVARAS D. A novel graph-based descriptor for the detection of billing-related anomalies in cellular mobile networks[J]. IEEE Transactions on Mobile Computing, 2016, 15(11): 2655-2668.
[40] JIA Y, ZHONG F, ALRAWAIS A, et al. FlowGuard: an intelligent edge defense mechanism against IoT DDoS attacks[J]. IEEE Internet of Things Journal, 2020, 07(10): 9552-9562.
[41] BASSIL R, CHEHAB A, ELHAJJ I, et al. Signaling oriented denial of service on LTE networks[C]. Proceedings of the 10th ACM International Symposium on Mobility Management and Wireless Access. 2012: 153-158.
[42] GUPTA A, VERMA T, BALI S, et al. Detecting MS initiated signaling DDoS attacks in 3G/4G wirelessnetworks[C].2013FifthInternationalConferenceonCommunicationSystemsandNetworks (COMSNETS). 2013: 01-60.
[43] WU G, SUN J. Optimal data integrity attack on actuators in cyber-physical systems[C]. 2016 American Control Conference (ACC). 2016: 1160-1164.
[44] QIN J, LI M, SHI L, et al. Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks[J]. IEEE Transactions on Automatic Control, 2017, 63(06): 1648-1663.
[45] GUO Z, SHI D, JOHANSSON K H, et al. Optimal linear cyber-attack on remote state estimation [J]. IEEE Transactions on Control of Network Systems, 2017, 04(01): 04-13.
[46] YANG C, YANG W, SHI H. DoS attack in centralised sensor network against state estimation [J]. IET Control Theory & Applications, 2018, 12(09): 1244-1253.
[47] TAN L, PAN Y, WU J, et al. A new framework for DDoS attack detection and defense in SDN environment[J]. IEEE Access, 2020, 08: 161908-161919.
[48] CAI T, JIA T, ADEPU S, et al. ADAM: an adaptive DDoS attack mitigation scheme in softwaredefined cyber-physical system[J]. IEEE Transactions on Industrial Informatics, 2023, 19(06): 7802-7813.
[49] 倪明, 颜诘, 柏瑞, 等. 电力系统防恶意信息攻击的思考[J]. 电力系统自动化, 2016, 40:148-151.
[50] CHEN C M, GUAN D, HUANG Y Z, et al. Attack sequence detection in cloud using hidden markov model[C]. 2012 Seventh Asia Joint Conference on Information Security. 2012: 100103.
[51] MO Y, SINOPOLI B. Secure estimation in the presence of integrity attacks[J]. IEEE Transactions on Automatic Control, 2014, 60(04): 1145-1151.
[52] GAO R, HUANG J, WANG L. Leaderless consensus control of uncertain multi-agents systems with sensor and actuator attacks[J]. Information Sciences, 2019, 505: 144-156.
[53] CHEN Y, KAR S, MOURA J M. Resilient distributed estimation: sensor attacks[J]. IEEE Transactions on Automatic Control, 2018, 64(09): 3772-3779.
[54] MA R, SHI P, WU L. Dissipativity-based sliding-mode control of cyber-physical systems under denial-of-service attacks[J]. IEEE Transactions on Cybernetics, 2020, 51(05): 2306-2318.
[55] FENG S, CETINKAYA A, ISHII H, et al. Networked control under DoS attacks: tradeoffs between resilience and data rate[J]. IEEE Transactions on Automatic Control, 2021, 66(01): 460-467.
[56] HOVARESHTI P, GUPTA V, BARAS J S. Sensor scheduling using smart sensors[C]. 2007 46th IEEE Conference on Decision and Control. 2007: 494-499.
[57] ANDERSON B D, MOORE J B. Optimal filtering[M]. Courier Corporation, 2012.
[58] WEI D X, JIN C, LOW S H, et al. FAST TCP: motivation, architecture, algorithms, performance [J]. IEEE/ACM Transactions on Networking, 2006, 14(06): 1246-1259.
[59] SHORTEN R, WIRTH F, LEITH D. A positive systems model of TCP-like congestion control: asymptotic results[J]. IEEE/ACM Transactions on Networking, 2006, 14(03): 616-629.
[60] YAU D K, LUI J C, LIANG F, et al. Defending against distributed denial-of-service attacks with max-min fair server-centric router throttles[J]. IEEE/ACM Transactions On Networking, 2005, 13(01): 29-42.
[61] HOLLOT C V, MISRA V, TOWSLEY D, et al. Analysis and design of controllers for AQM routers supporting TCP flows[J]. IEEE Transactions on Automatic Control, 2002, 47(06): 945959.
[62] MALIALIS K, KUDENKO D. Multiagent router throttling: decentralized coordinated response against ddos attacks[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2013: 1551-1556.
[63] YANG G, WANG R, SABBAGH A, et al. Modeling optimal retransmission timeout interval for bundle protocol[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(05): 2493-2508.
[64] LIU A, ZHANG W A, YU L, et al. New results on stabilization of networked control systems with packet disordering[J]. Automatica, 2015, 52: 255-259.
[65] YAO G, BEDEWY A M, SHROFF N B. Age-optimal low-power status update over timecorrelated fading channel[J]. IEEE Transactions on Mobile Computing, 2022, 22(08): 45004514.
[66] WU Y, DING K, LI Y, et al. Optimal unbiased linear sensor fusion over multiple lossy channels with collective observability[J]. Automatica, 2021, 128: 109568-109582.
[67] HERNÁNDEZ-LERMA O, LASSERRE J B. Discrete-time markov control processes: basic optimality criteria: volume 30[M]. Springer Science & Business Media, 2012.
[68] TOPKIS D M. Supermodularity and complementarity[M]. Princeton University Press, 2011.
[69] PUTERMAN M L. Markov decision processes: discrete stochastic dynamic programming[M]. John Wiley & Sons, 2014.
修改评论