中文版 | English
题名

演化多目标优化中支配抵抗解的影响及应对策略研究

其他题名
RESEARCH ON THE INFLUENCE OF DOMINANCE-RESISTANT SOLUTIONS AND COPING STRATEGIES IN EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION
姓名
姓名拼音
LIN Kangnian
学号
12132672
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
王振坤
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-10
论文提交日期
2024-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
   多目标优化问题在实际优化应用场景中是一类常见的问题,而演化算法则是目前处理这类问题的主流方法。然而,近年来随着理论研究和实际生产的发展,一些复杂特征逐渐显现在多目标优化问题中,导致算法在处理具有这些特征的问题时性能出现不同程度的下降。其中,支配抵抗解是一种重要而常见的复杂特征,其主要位于问题可行域的特殊边界,即难支配边界上。然而,在理论研究中,许多常见测试问题通常未充分考虑到这种特征,因而未能对支配抵抗解在演化多目标优化过程中产生的影响进行全面和综合的分析。与此同时,尽管目前已有一些算法专注于解决支配抵抗解的影响,但它们仍然存在着各自的不足之处。本文旨在深入分析支配抵抗解及其对演化多目标优化过程的影响,并在此基础上提出更加充分考虑问题特征的应对策略。
   在现有基准测试问题基础上,本文开发了一系列新的测试问题,这些问题综合考虑了支配抵抗解及多个实际问题特征,使得测试问题的深度和广度得到了进一步的丰富,并且更符合实际应用场景。同时,通过在开发的测试问题上进行算例分析,本文对目前一些处理支配抵抗解的代表性算法的性能进行详尽检验,以深入分析支配抵抗解以及相关特征对演化过程的影响。最后,根据算例分析的结论,本文根据问题的特征提出了一系列具有针对性的支配抵抗解应对策略。算例结果明确展示了提出算法在性能上相对于现有应对策略的优势,同时也揭示了算法各部件的有效性及其运行机理。本文的研究内容与成果对于理解和应对支配抵抗解在多目标优化问题中的影响能够提供一定的有力支持。
 
其他摘要
       Multi-objective optimization problems are a common category in practical optimization applications, and evolutionary algorithms currently stand as the mainstream approach for tackling such issues. However, in recent years, with the development of theoretical research and practical production, some intricate features have gradually surfaced in multiobjective optimization problems, leading to varying degrees of performance degradation when algorithms handle problems with these features. Dominance-resistant solutions represent one significant and prevalent intricate feature, and they mainly locate on the special boundaries on the feasible region of problem, namely hardly dominated boundaries. However, in theoretical research, many commonly used test problems often fail to adequately consider this feature, thereby lacking a comprehensive and thorough analysis of the impact of dominance-resistant solutions during the evolutionary multi-objective optimization process. Meanwhile, although there are algorithms currently dedicated to addressing the impact of dominance-resistant solutions, they still have their own shortcomings. This paper aims to delve into the analysis of dominance-resistant solutions and their effects on the evolutionary multi-objective optimization process, proposing responsive strategies that take into account the characteristics of the problems in question.
       Building upon existing benchmark problems, this study has developed a series of novel test problems that comprehensively consider dominance-resistant solutions and multiple real-world problem features. This enhancement contributes to a more profound and extensive set of test problems, better aligning with practical application scenarios. Simultaneously, through experiments conducted on the developed test problems, this paper rigorously examines the performance of representative algorithms for handling dominance-resistant solutions, providing an in-depth analysis of the impact of dominance-resistant solutions and related features on the evolutionary process. Finally, based on the conclusions drawn from experimental analysis, the paper proposes a series of targeted strategies for dealing with dominance-resistant solutions, taking into account the specific characteristics of the problems. The experimental results distinctly showcase the advantages of the proposed algorithm in performance compared to existing strategies, while also revealing the effectiveness of individual components and their operational mechanisms. The research content and findings of this paper provide substantial support for understanding and addressing the impact of dominance-resistant solutions in multi-objective optimization problems.
 
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] MIETTINEN K. Nonlinear Multiobjective Optimization: volume 12[M]. Springer Science &Business Media, 2012.
[2] LI G, WANG Z, SUN J, et al. Objective Extraction for Simplifying Many-Objective SolutionSets[J/OL]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1):337-349. DOI: 10.1109/TETCI.2023.3301401.
[3] LIAO X, LI Q, YANG X, et al. Multiobjective optimization for crash safety design of vehiclesusing stepwise regression model[J]. Structural and Multidisciplinary Optimization, 2008, 35(6): 561-569.
[4] WANG Z, ZHEN H L, DENG J, et al. Multiobjective optimization-aided decision-makingsystem for large-scale manufacturing planning[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8326-8339.
[5] LI G, ZHANG Q. Multiple penalties and multiple local surrogates for expensive constrainedoptimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 769-778.
[6] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[7] WANG Z, YAO S, LI G, et al. Multiobjective Combinatorial Optimization Using a Single DeepReinforcement Learning Model[J/OL]. IEEE Transactions on Cybernetics, 2024, 54(3): 1984-1996. DOI: 10.1109/TCYB.2023.3312476.
[8] 林武. 面向复杂多目标优化问题的进化算法研究[D]. 深圳大学, 2020.
[9] 马小姝, 李宇龙, 严浪, 等. 传统多目标优化方法和多目标遗传算法的比较综述[J]. 电气传动自动化, 2010, 32(3): 48-50.
[10] SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the first international conference on genetic algorithms and their applications,1985. Lawrence Erlbaum Associates. Inc., Publishers, 1985.
[11] LI H, ONG Y S, GONG M, et al. Evolutionary multitasking sparse reconstruction: Frameworkand case study[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(5): 733-747.
[12] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionaryalgorithm[J]. TIK-Report, 2001, 103.
[13] CORNE D W, JERRAM N R, KNOWLES J D, et al. PESA-II: Region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the 3rd Annual Conference on Geneticand Evolutionary Computation (GECCO). 2001: 283-290.
[14] LI H, ZHANG Q. Multiobjective optimization problems with complicated Pareto sets,MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2008, 13(2):284-302.
[15] ZHANG S X, ZHENG L M, LIU L, et al. Decomposition-based multi-objective evolutionary algorithm with mating neighborhood sizes and reproduction operators adaptation[J]. SoftComputing, 2017, 21(21): 6381-6392.
[16] ZHANG Q, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[17] DE FARIAS L R, ARAÚJO A F. A decomposition-based many-objective evolutionary algorithm updating weights when required[J]. Swarm and Evolutionary Computation, 2022, 68:100980.
[18] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study andthe strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4):257-271.
[19] COELLO C A C, LAMONT G B, VAN VELDHUIZEN D A, et al. Evolutionary algorithmsfor solving multi-objective problems: volume 5[M]. Springer, 2007.
[20] EMMERICH M, BEUME N, NAUJOKS B. An EMO algorithm using the hypervolume measureas selection criterion[C]//International Conference of Evolutionary Multi-Criterion Optimization (EMO). Springer, 2005: 62-76.
[21] BADER J, ZITZLER E. HypE: An algorithm for fast hypervolume-based many-objective opti mization[J]. Evolutionary Computation, 2011, 19(1): 45-76.
[22] MENCHACA-MENDEZ A, COELLO C A C. GD-MOEA: A new multi-objective evolutionaryalgorithm based on the generational distance indicator[C]//International Conference on Evolu tionary Multi-Criterion Optimization (EMO). Springer, 2015: 156-170.
[23] TIAN Y, CHENG R, ZHANG X, et al. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility[J]. IEEE Transactions on Evolution ary Computation, 2017, 22(4): 609-622.
[24] GÓMEZ R H, COELLO C A C. MOMBI: A new metaheuristic for many-objective optimizationbased on the R2 indicator[C]//2013 IEEE Congress on Evolutionary Computation (CEC). IEEE,2013: 2488-2495.
[25] HERNÁNDEZ GÓMEZ R, COELLO COELLO C A. Improved metaheuristic based on the R2indicator for many-objective optimization[C]//Proceedings of the 2015 Annual Conference onGenetic and Evolutionary Computation (GECCO). 2015: 679-686.
[26] WANG Z, ONG Y S, ISHIBUCHI H. On scalable multiobjective test problems with hardlydominated boundaries[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 217-231.
[27] WANG Z, ONG Y S, SUN J, et al. A generator for multiobjective test problems with difficult to-approximate Pareto front boundaries[J]. IEEE Transactions on Evolutionary Computation,2018, 23(4): 556-571.
[28] WANG Z, LI Q, YANG Q, et al. The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts[J]. Complex &Intelligent Systems, 2021: 1-10.
[29] ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[30] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]//Evolutionary Multiobjective Optimization. Springer, 2005: 105-145.
[31] HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems anda scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506.
[32] CHENG R, LI M, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3(1): 67-81.
[33] ZHANG Q, ZHOU A, ZHAO S, et al. Multiobjective optimization test instances for the CEC2009 special session and competition[J]. University of Essex, Colchester, UK and NanyangTechnological University, Singapore, special session on performance assessment of multi objective optimization algorithms, technical report, 2008, 264: 1-30.
[34] ISHIBUCHI H, SETOGUCHI Y, MASUDA H, et al. Performance of decomposition-basedmany-objective algorithms strongly depends on Pareto front shapes[J]. IEEE Transactions onEvolutionary Computation, 2016, 21(2): 169-190.
[35] ISHIBUCHI H, HE L, SHANG K. Regular Pareto front shape is not realistic[C]//2019 IEEECongress on Evolutionary Computation (CEC). IEEE, 2019: 2034-2041.
[36] IKEDA K, KITA H, KOBAYASHI S. Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal?[C]//Proceedings of the 2001 Congress on Evolutionary Computation(CEC): volume 2. IEEE, 2001: 957-962.
[37] SAXENA D K, MITTAL S, KAPOOR S, et al. A Localized High-Fidelity-Dominance-BasedMany-Objective Evolutionary Algorithm[J/OL]. IEEE Transactions on Evolutionary Compu tation, 2023, 27(4): 923-937. DOI: 10.1109/TEVC.2022.3188064.
[38] LIU Y, ZHU N, LI M. Solving many-objective optimization problems by a Pareto-based evolutionary algorithm with preprocessing and a penalty mechanism[J]. IEEE Transactions onCybernetics, 2020, 51(11): 5585-5594.
[39] FARINA M, AMATO P. A fuzzy definition of ’optimality’ for many-criteria optimization problems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2004, 34(3): 315-326.
[40] KÖPPEN M, VICENTE-GARCIA R, NICKOLAY B. Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization[C]//International Conference of EvolutionaryMulti-Criterion Optimization (EMO). Springer, 2005: 399-412.
[41] LIU Y, ZHU N, LI K, et al. An angle dominance criterion for evolutionary many-objectiveoptimization[J]. Information Sciences, 2020, 509: 376-399.
[42] WANG H, YAO X. Corner sort for Pareto-based many-objective optimization[J]. IEEE Transactions on Cybernetics, 2013, 44(1): 92-102.
[43] WANG Z, ZHANG Q, ZHOU A, et al. Adaptive replacement strategies for MOEA/D[J]. IEEETransactions on Cybernetics, 2015, 46(2): 474-486.
[44] WANG Z, ZHANG Q, ONG Y S, et al. Choose appropriate subproblems for collaborativemodeling in expensive multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2021,53(1): 483-496.
[45] ZITZLER E, KÜNZLI S, et al. Indicator-based selection in multiobjective search[C]//PPSN:volume 4. Springer, 2004: 832-842.
[46] DEB K, MOHAN M, MISHRA S. Towards a quick computation of well-spread Pareto-optimalsolutions[C]//International Conference of Evolutionary Multi-Criterion Optimization (EMO).Springer, 2003: 222-236.
[47] YUAN Y, XU H, WANG B, et al. A new dominance relation-based evolutionary algorithm formany-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(1):16-37.
[48] MARLER R T, ARORA J S. Survey of multi-objective optimization methods for engineering[J]. Structural and Multidisciplinary Optimization, 2004, 26: 369-395.
[49] GIAGKIOZIS I, PURSHOUSE R C, FLEMING P J. Generalized decomposition[C]//International Conference on Evolutionary Multi-Criterion Optimization (EMO). Springer,2013: 428-442.
[50] YEVSEYEVA I, GUERREIRO A P, EMMERICH M T, et al. A portfolio optimization approach to selection in multiobjective evolutionary algorithms[C]//Parallel Problem Solving fromNature–PPSN XIII: 13th International Conference, Ljubljana, Slovenia, September 13-17, 2014.Proceedings 13. Springer, 2014: 672-681.
[51] GUERREIRO A P, FONSECA C M. Hypervolume sharpe-ratio indicator: Formalization andfirst theoretical results[C]//Parallel Problem Solving from Nature–PPSN XIV: 14th InternationalConference, Edinburgh, UK, September 17-21, 2016, Proceedings 14. Springer, 2016: 814-823.
[52] LI G, WANG Z, ZHANG Q, et al. Offline and Online Objective Reduction via Gaussian MixtureModel Clustering[J/OL]. IEEE Transactions on Evolutionary Computation, 2023, 27(2): 341-354. DOI: 10.1109/TEVC.2022.3168836.
[53] BISHOP C M. Pattern Recognition and Machine Learning[M]. Springer, 2006.
[54] MILLER B L, GOLDBERG D E, et al. Genetic algorithms, tournament selection, and the effectsof noise[J]. Complex Systems, 1995, 9(3): 193-212.
[55] BLICKLE T. Tournament selection[J]. Evolutionary Computation, 2000, 1: 181-186.
[56] FANG Y, LI J. A review of tournament selection in genetic programming[C]//Advances in Computation and Intelligence: 5th International Symposium, ISICA 2010, Wuhan, China, October22-24, 2010. Proceedings 5. Springer, 2010: 181-192.
[57] BLICKLE T, THIELE L. A Mathematical Analysis of Tournament Selection.[C]//Proceedingsof the 6th International Conference on Genetic Algorithms (ICGA): volume 95. Citeseer, 1995:9-15.
[58] DEB K, BEYER H G. Self-adaptive genetic algorithms with simulated binary crossover[J].Evolutionary Computation, 2001, 9(2): 197-221.
[59] DEB K, GOYAL M, et al. A combined genetic adaptive search (GeneAS) for engineering design[J]. Computer Science and Informatics, 1996, 26: 30-45.
[60] TANNOUS M, MIRAGLIA M, INGLESE F, et al. Haptic-based touch detection for collaborative robots in welding applications[J/OL]. Robotics and Computer-Integrated Manufacturing,2020, 64: 101952. https://www.sciencedirect.com/science/article/pii/S0736584519302200.DOI: https://doi.org/10.1016/j.rcim.2020.101952.
[61] JIANG S, YANG S. A strength Pareto evolutionary algorithm based on reference direction formultiobjective and many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(3): 329-346.
[62] LI W, ZHANG T, WANG R, et al. Multimodal multi-objective optimization: Comparative studyof the state-of-the-art[J]. Swarm and Evolutionary Computation, 2023: 101253.
[63] LI H, WANG Z, LAN C, et al. A Novel Dynamic Multiobjective Optimization Algorithm WithNon-Inductive Transfer Learning Based on Multi-Strategy Adaptive Selection[J/OL]. IEEETransactions on Neural Networks and Learning Systems, 2023: 1-15. DOI: 10.1109/TNNLS.2023.3295461.
[64] LU Z, CHENG R, JIN Y, et al. Neural Architecture Search as Multiobjective OptimizationBenchmarks: Problem Formulation and Performance Assessment[J/OL]. IEEE Transactionson Evolutionary Computation, 2022: 1-1. DOI: 10.1109/TEVC.2022.3233364.
[65] LIU X F, XU X X, ZHAN Z H, et al. Interaction-Based Prediction for Dynamic MultiobjectiveOptimization[J/OL]. IEEE Transactions on Evolutionary Computation, 2023, 27(6): 1881-1895. DOI: 10.1109/TEVC.2023.3234113.
[66] LIU S, LIN Q, LI J, et al. A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization[J/OL]. IEEE Transactions on Evolutionary Computation, 2023, 27(6):1941-1961. DOI: 10.1109/TEVC.2023.3250350.
[67] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEETransactions on Evolutionary Computation, 2013, 18(4): 577-601.
[68] XIANG Y, ZHOU Y, LI M, et al. A vector angle-based evolutionary algorithm for unconstrainedmany-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(1):131-152.
[69] PANG L M, ISHIBUCHI H, SHANG K. NSGA-II with simple modification works well on awide variety of many-objective problems[J]. IEEE Access, 2020, 8: 190240-190250.
[70] RAMIREZ-ATENCIA C, MOSTAGHIM S, CAMACHO D. A knee point based evolutionarymulti-objective optimization for mission planning problems[C]//Proceedings of the Genetic andEvolutionary Computation Conference (GECCO). 2017: 1216-1223.
[71] ISHIBUCHI H, MATSUMOTO T, MASUYAMA N, et al. Effects of dominance resistant solutions on the performance of evolutionary multi-objective and many-objective algorithms[C]//Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO). 2020:507-515.
[72] WANG Z, LI Q, LI G, et al. Multi-objective decomposition evolutionary algorithm with objective modification-based dominance and external archive[J]. Applied Soft Computing, 2023,149: 111006.
[73] LIU Y, ISHIBUCHI H, MASUYAMA N, et al. Adapting Reference Vectors and ScalarizingFunctions by Growing Neural Gas to Handle Irregular Pareto Fronts[J/OL]. IEEE Transactionson Evolutionary Computation, 2020, 24(3): 439-453. https://doi.org/10.1109/TEVC.2019.2926151.
[74] LI L, YEN G G, SAHOO A, et al. On the estimation of Pareto front and dimensional similarityin many-objective evolutionary algorithm[J]. Information Sciences, 2021, 563: 375-400.
[75] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: A MATLAB platform for evolutionarymulti-objective optimization [educational forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.
[76] DERRAC J, GARCÍA S, MOLINA D, et al. A practical tutorial on the use of nonparametricstatistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[77] SHELDON M R, FILLYAW M J, THOMPSON W D. The use and interpretation of the Friedmantest in the analysis of ordinal-scale data in repeated measures designs[J]. Physiotherapy ResearchInternational, 1996, 1(4): 221-228.
[78] LAUMANNS M, THIELE L, DEB K, et al. Combining convergence and diversity in evolution ary multiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.
[79] ISHIBUCHI H, IMADA R, SETOGUCHI Y, et al. How to specify a reference point in hypervolume calculation for fair performance comparison[J]. Evolutionary Computation, 2018, 26(3): 411-440.
[80] DEB K, MOHAN M, MISHRA S. A fast multi-objective evolutionary algorithm for findingwell-spread Pareto-optimal solutions[J]. KanGAL report, 2003, 2003002: 1-18.
[81] CHEN W, ISHIBUCHI H, SHANG K. Fast greedy subset selection from large candidate solution sets in evolutionary multiobjective optimization[J]. IEEE Transactions on EvolutionaryComputation, 2021, 26(4): 750-764.
[82] STORN R, PRICE K. Differential Evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11: 341-359.
[83] ZHU S, XU L, GOODMAN E D, et al. A new many-objective evolutionary algorithm based ongeneralized Pareto dominance[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 7776-7790.
[84] ZHU C, XU L, GOODMAN E D. Generalization of Pareto-optimality for many-objective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(2): 299-315.
[85] PANG L M, ISHIBUCHI H, HE L, et al. Hypervolume-Based Cooperative Coevolution withTwo Reference Points for Multi-Objective Optimization[J/OL]. IEEE Transactions on Evolutionary Computation, 2023: 1-1. DOI: 10.1109/TEVC.2023.3287399.
[86] LI M, YANG S, LIU X. A test problem for visual investigation of high-dimensional multiobjective search[C]//2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014:2140-2147.
[87] LI M, GROSAN C, YANG S, et al. Multi-line distance minimization: A visualized many objective test problem suite[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(1):61-78.
[88] DEB K, LOPES C L D V, MARTINS F V C, et al. Identifying Pareto Fronts Reliably Usinga Multistage Reference-Vector-Based Framework[J/OL]. IEEE Transactions on EvolutionaryComputation, 2024, 28(1): 252-266. DOI: 10.1109/TEVC.2023.3246922.
[89] SUN R, ZOU J, LIU Y, et al. A Multistage Algorithm for Solving Multiobjective OptimizationProblems With Multiconstraints[J/OL]. IEEE Transactions on Evolutionary Computation, 2023,27(5): 1207-1219. DOI: 10.1109/TEVC.2022.3224600.
[90] MA H, WEI H, TIAN Y, et al. A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints[J]. Information Sciences, 2021, 560: 68-91.
[91] DING Z, CHEN L, SUN D, et al. A multi-stage knowledge-guided evolutionary algorithm forlarge-scale sparse multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2022, 73: 101119.
[92] RAJU M S S, DUTTA S, MALLIPEDDI R, et al. A dual-population and multi-stage basedconstrained multi-objective evolutionary[J]. Information Sciences, 2022, 615: 557-577.

所在学位评定分委会
力学
国内图书分类号
TP3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766236
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
林康年. 演化多目标优化中支配抵抗解的影响及应对策略研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132672-林康年-系统设计与智能(3976KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[林康年]的文章
百度学术
百度学术中相似的文章
[林康年]的文章
必应学术
必应学术中相似的文章
[林康年]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。