[1] MIETTINEN K. Nonlinear Multiobjective Optimization: volume 12[M]. Springer Science &Business Media, 2012.
[2] LI G, WANG Z, SUN J, et al. Objective Extraction for Simplifying Many-Objective SolutionSets[J/OL]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1):337-349. DOI: 10.1109/TETCI.2023.3301401.
[3] LIAO X, LI Q, YANG X, et al. Multiobjective optimization for crash safety design of vehiclesusing stepwise regression model[J]. Structural and Multidisciplinary Optimization, 2008, 35(6): 561-569.
[4] WANG Z, ZHEN H L, DENG J, et al. Multiobjective optimization-aided decision-makingsystem for large-scale manufacturing planning[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8326-8339.
[5] LI G, ZHANG Q. Multiple penalties and multiple local surrogates for expensive constrainedoptimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 769-778.
[6] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[7] WANG Z, YAO S, LI G, et al. Multiobjective Combinatorial Optimization Using a Single DeepReinforcement Learning Model[J/OL]. IEEE Transactions on Cybernetics, 2024, 54(3): 1984-1996. DOI: 10.1109/TCYB.2023.3312476.
[8] 林武. 面向复杂多目标优化问题的进化算法研究[D]. 深圳大学, 2020.
[9] 马小姝, 李宇龙, 严浪, 等. 传统多目标优化方法和多目标遗传算法的比较综述[J]. 电气传动自动化, 2010, 32(3): 48-50.
[10] SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the first international conference on genetic algorithms and their applications,1985. Lawrence Erlbaum Associates. Inc., Publishers, 1985.
[11] LI H, ONG Y S, GONG M, et al. Evolutionary multitasking sparse reconstruction: Frameworkand case study[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(5): 733-747.
[12] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionaryalgorithm[J]. TIK-Report, 2001, 103.
[13] CORNE D W, JERRAM N R, KNOWLES J D, et al. PESA-II: Region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the 3rd Annual Conference on Geneticand Evolutionary Computation (GECCO). 2001: 283-290.
[14] LI H, ZHANG Q. Multiobjective optimization problems with complicated Pareto sets,MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2008, 13(2):284-302.
[15] ZHANG S X, ZHENG L M, LIU L, et al. Decomposition-based multi-objective evolutionary algorithm with mating neighborhood sizes and reproduction operators adaptation[J]. SoftComputing, 2017, 21(21): 6381-6392.
[16] ZHANG Q, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[17] DE FARIAS L R, ARAÚJO A F. A decomposition-based many-objective evolutionary algorithm updating weights when required[J]. Swarm and Evolutionary Computation, 2022, 68:100980.
[18] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study andthe strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4):257-271.
[19] COELLO C A C, LAMONT G B, VAN VELDHUIZEN D A, et al. Evolutionary algorithmsfor solving multi-objective problems: volume 5[M]. Springer, 2007.
[20] EMMERICH M, BEUME N, NAUJOKS B. An EMO algorithm using the hypervolume measureas selection criterion[C]//International Conference of Evolutionary Multi-Criterion Optimization (EMO). Springer, 2005: 62-76.
[21] BADER J, ZITZLER E. HypE: An algorithm for fast hypervolume-based many-objective opti mization[J]. Evolutionary Computation, 2011, 19(1): 45-76.
[22] MENCHACA-MENDEZ A, COELLO C A C. GD-MOEA: A new multi-objective evolutionaryalgorithm based on the generational distance indicator[C]//International Conference on Evolu tionary Multi-Criterion Optimization (EMO). Springer, 2015: 156-170.
[23] TIAN Y, CHENG R, ZHANG X, et al. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility[J]. IEEE Transactions on Evolution ary Computation, 2017, 22(4): 609-622.
[24] GÓMEZ R H, COELLO C A C. MOMBI: A new metaheuristic for many-objective optimizationbased on the R2 indicator[C]//2013 IEEE Congress on Evolutionary Computation (CEC). IEEE,2013: 2488-2495.
[25] HERNÁNDEZ GÓMEZ R, COELLO COELLO C A. Improved metaheuristic based on the R2indicator for many-objective optimization[C]//Proceedings of the 2015 Annual Conference onGenetic and Evolutionary Computation (GECCO). 2015: 679-686.
[26] WANG Z, ONG Y S, ISHIBUCHI H. On scalable multiobjective test problems with hardlydominated boundaries[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 217-231.
[27] WANG Z, ONG Y S, SUN J, et al. A generator for multiobjective test problems with difficult to-approximate Pareto front boundaries[J]. IEEE Transactions on Evolutionary Computation,2018, 23(4): 556-571.
[28] WANG Z, LI Q, YANG Q, et al. The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts[J]. Complex &Intelligent Systems, 2021: 1-10.
[29] ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[30] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]//Evolutionary Multiobjective Optimization. Springer, 2005: 105-145.
[31] HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems anda scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506.
[32] CHENG R, LI M, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3(1): 67-81.
[33] ZHANG Q, ZHOU A, ZHAO S, et al. Multiobjective optimization test instances for the CEC2009 special session and competition[J]. University of Essex, Colchester, UK and NanyangTechnological University, Singapore, special session on performance assessment of multi objective optimization algorithms, technical report, 2008, 264: 1-30.
[34] ISHIBUCHI H, SETOGUCHI Y, MASUDA H, et al. Performance of decomposition-basedmany-objective algorithms strongly depends on Pareto front shapes[J]. IEEE Transactions onEvolutionary Computation, 2016, 21(2): 169-190.
[35] ISHIBUCHI H, HE L, SHANG K. Regular Pareto front shape is not realistic[C]//2019 IEEECongress on Evolutionary Computation (CEC). IEEE, 2019: 2034-2041.
[36] IKEDA K, KITA H, KOBAYASHI S. Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal?[C]//Proceedings of the 2001 Congress on Evolutionary Computation(CEC): volume 2. IEEE, 2001: 957-962.
[37] SAXENA D K, MITTAL S, KAPOOR S, et al. A Localized High-Fidelity-Dominance-BasedMany-Objective Evolutionary Algorithm[J/OL]. IEEE Transactions on Evolutionary Compu tation, 2023, 27(4): 923-937. DOI: 10.1109/TEVC.2022.3188064.
[38] LIU Y, ZHU N, LI M. Solving many-objective optimization problems by a Pareto-based evolutionary algorithm with preprocessing and a penalty mechanism[J]. IEEE Transactions onCybernetics, 2020, 51(11): 5585-5594.
[39] FARINA M, AMATO P. A fuzzy definition of ’optimality’ for many-criteria optimization problems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2004, 34(3): 315-326.
[40] KÖPPEN M, VICENTE-GARCIA R, NICKOLAY B. Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization[C]//International Conference of EvolutionaryMulti-Criterion Optimization (EMO). Springer, 2005: 399-412.
[41] LIU Y, ZHU N, LI K, et al. An angle dominance criterion for evolutionary many-objectiveoptimization[J]. Information Sciences, 2020, 509: 376-399.
[42] WANG H, YAO X. Corner sort for Pareto-based many-objective optimization[J]. IEEE Transactions on Cybernetics, 2013, 44(1): 92-102.
[43] WANG Z, ZHANG Q, ZHOU A, et al. Adaptive replacement strategies for MOEA/D[J]. IEEETransactions on Cybernetics, 2015, 46(2): 474-486.
[44] WANG Z, ZHANG Q, ONG Y S, et al. Choose appropriate subproblems for collaborativemodeling in expensive multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2021,53(1): 483-496.
[45] ZITZLER E, KÜNZLI S, et al. Indicator-based selection in multiobjective search[C]//PPSN:volume 4. Springer, 2004: 832-842.
[46] DEB K, MOHAN M, MISHRA S. Towards a quick computation of well-spread Pareto-optimalsolutions[C]//International Conference of Evolutionary Multi-Criterion Optimization (EMO).Springer, 2003: 222-236.
[47] YUAN Y, XU H, WANG B, et al. A new dominance relation-based evolutionary algorithm formany-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(1):16-37.
[48] MARLER R T, ARORA J S. Survey of multi-objective optimization methods for engineering[J]. Structural and Multidisciplinary Optimization, 2004, 26: 369-395.
[49] GIAGKIOZIS I, PURSHOUSE R C, FLEMING P J. Generalized decomposition[C]//International Conference on Evolutionary Multi-Criterion Optimization (EMO). Springer,2013: 428-442.
[50] YEVSEYEVA I, GUERREIRO A P, EMMERICH M T, et al. A portfolio optimization approach to selection in multiobjective evolutionary algorithms[C]//Parallel Problem Solving fromNature–PPSN XIII: 13th International Conference, Ljubljana, Slovenia, September 13-17, 2014.Proceedings 13. Springer, 2014: 672-681.
[51] GUERREIRO A P, FONSECA C M. Hypervolume sharpe-ratio indicator: Formalization andfirst theoretical results[C]//Parallel Problem Solving from Nature–PPSN XIV: 14th InternationalConference, Edinburgh, UK, September 17-21, 2016, Proceedings 14. Springer, 2016: 814-823.
[52] LI G, WANG Z, ZHANG Q, et al. Offline and Online Objective Reduction via Gaussian MixtureModel Clustering[J/OL]. IEEE Transactions on Evolutionary Computation, 2023, 27(2): 341-354. DOI: 10.1109/TEVC.2022.3168836.
[53] BISHOP C M. Pattern Recognition and Machine Learning[M]. Springer, 2006.
[54] MILLER B L, GOLDBERG D E, et al. Genetic algorithms, tournament selection, and the effectsof noise[J]. Complex Systems, 1995, 9(3): 193-212.
[55] BLICKLE T. Tournament selection[J]. Evolutionary Computation, 2000, 1: 181-186.
[56] FANG Y, LI J. A review of tournament selection in genetic programming[C]//Advances in Computation and Intelligence: 5th International Symposium, ISICA 2010, Wuhan, China, October22-24, 2010. Proceedings 5. Springer, 2010: 181-192.
[57] BLICKLE T, THIELE L. A Mathematical Analysis of Tournament Selection.[C]//Proceedingsof the 6th International Conference on Genetic Algorithms (ICGA): volume 95. Citeseer, 1995:9-15.
[58] DEB K, BEYER H G. Self-adaptive genetic algorithms with simulated binary crossover[J].Evolutionary Computation, 2001, 9(2): 197-221.
[59] DEB K, GOYAL M, et al. A combined genetic adaptive search (GeneAS) for engineering design[J]. Computer Science and Informatics, 1996, 26: 30-45.
[60] TANNOUS M, MIRAGLIA M, INGLESE F, et al. Haptic-based touch detection for collaborative robots in welding applications[J/OL]. Robotics and Computer-Integrated Manufacturing,2020, 64: 101952. https://www.sciencedirect.com/science/article/pii/S0736584519302200.DOI: https://doi.org/10.1016/j.rcim.2020.101952.
[61] JIANG S, YANG S. A strength Pareto evolutionary algorithm based on reference direction formultiobjective and many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(3): 329-346.
[62] LI W, ZHANG T, WANG R, et al. Multimodal multi-objective optimization: Comparative studyof the state-of-the-art[J]. Swarm and Evolutionary Computation, 2023: 101253.
[63] LI H, WANG Z, LAN C, et al. A Novel Dynamic Multiobjective Optimization Algorithm WithNon-Inductive Transfer Learning Based on Multi-Strategy Adaptive Selection[J/OL]. IEEETransactions on Neural Networks and Learning Systems, 2023: 1-15. DOI: 10.1109/TNNLS.2023.3295461.
[64] LU Z, CHENG R, JIN Y, et al. Neural Architecture Search as Multiobjective OptimizationBenchmarks: Problem Formulation and Performance Assessment[J/OL]. IEEE Transactionson Evolutionary Computation, 2022: 1-1. DOI: 10.1109/TEVC.2022.3233364.
[65] LIU X F, XU X X, ZHAN Z H, et al. Interaction-Based Prediction for Dynamic MultiobjectiveOptimization[J/OL]. IEEE Transactions on Evolutionary Computation, 2023, 27(6): 1881-1895. DOI: 10.1109/TEVC.2023.3234113.
[66] LIU S, LIN Q, LI J, et al. A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization[J/OL]. IEEE Transactions on Evolutionary Computation, 2023, 27(6):1941-1961. DOI: 10.1109/TEVC.2023.3250350.
[67] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEETransactions on Evolutionary Computation, 2013, 18(4): 577-601.
[68] XIANG Y, ZHOU Y, LI M, et al. A vector angle-based evolutionary algorithm for unconstrainedmany-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(1):131-152.
[69] PANG L M, ISHIBUCHI H, SHANG K. NSGA-II with simple modification works well on awide variety of many-objective problems[J]. IEEE Access, 2020, 8: 190240-190250.
[70] RAMIREZ-ATENCIA C, MOSTAGHIM S, CAMACHO D. A knee point based evolutionarymulti-objective optimization for mission planning problems[C]//Proceedings of the Genetic andEvolutionary Computation Conference (GECCO). 2017: 1216-1223.
[71] ISHIBUCHI H, MATSUMOTO T, MASUYAMA N, et al. Effects of dominance resistant solutions on the performance of evolutionary multi-objective and many-objective algorithms[C]//Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO). 2020:507-515.
[72] WANG Z, LI Q, LI G, et al. Multi-objective decomposition evolutionary algorithm with objective modification-based dominance and external archive[J]. Applied Soft Computing, 2023,149: 111006.
[73] LIU Y, ISHIBUCHI H, MASUYAMA N, et al. Adapting Reference Vectors and ScalarizingFunctions by Growing Neural Gas to Handle Irregular Pareto Fronts[J/OL]. IEEE Transactionson Evolutionary Computation, 2020, 24(3): 439-453. https://doi.org/10.1109/TEVC.2019.2926151.
[74] LI L, YEN G G, SAHOO A, et al. On the estimation of Pareto front and dimensional similarityin many-objective evolutionary algorithm[J]. Information Sciences, 2021, 563: 375-400.
[75] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: A MATLAB platform for evolutionarymulti-objective optimization [educational forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.
[76] DERRAC J, GARCÍA S, MOLINA D, et al. A practical tutorial on the use of nonparametricstatistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[77] SHELDON M R, FILLYAW M J, THOMPSON W D. The use and interpretation of the Friedmantest in the analysis of ordinal-scale data in repeated measures designs[J]. Physiotherapy ResearchInternational, 1996, 1(4): 221-228.
[78] LAUMANNS M, THIELE L, DEB K, et al. Combining convergence and diversity in evolution ary multiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.
[79] ISHIBUCHI H, IMADA R, SETOGUCHI Y, et al. How to specify a reference point in hypervolume calculation for fair performance comparison[J]. Evolutionary Computation, 2018, 26(3): 411-440.
[80] DEB K, MOHAN M, MISHRA S. A fast multi-objective evolutionary algorithm for findingwell-spread Pareto-optimal solutions[J]. KanGAL report, 2003, 2003002: 1-18.
[81] CHEN W, ISHIBUCHI H, SHANG K. Fast greedy subset selection from large candidate solution sets in evolutionary multiobjective optimization[J]. IEEE Transactions on EvolutionaryComputation, 2021, 26(4): 750-764.
[82] STORN R, PRICE K. Differential Evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11: 341-359.
[83] ZHU S, XU L, GOODMAN E D, et al. A new many-objective evolutionary algorithm based ongeneralized Pareto dominance[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 7776-7790.
[84] ZHU C, XU L, GOODMAN E D. Generalization of Pareto-optimality for many-objective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(2): 299-315.
[85] PANG L M, ISHIBUCHI H, HE L, et al. Hypervolume-Based Cooperative Coevolution withTwo Reference Points for Multi-Objective Optimization[J/OL]. IEEE Transactions on Evolutionary Computation, 2023: 1-1. DOI: 10.1109/TEVC.2023.3287399.
[86] LI M, YANG S, LIU X. A test problem for visual investigation of high-dimensional multiobjective search[C]//2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014:2140-2147.
[87] LI M, GROSAN C, YANG S, et al. Multi-line distance minimization: A visualized many objective test problem suite[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(1):61-78.
[88] DEB K, LOPES C L D V, MARTINS F V C, et al. Identifying Pareto Fronts Reliably Usinga Multistage Reference-Vector-Based Framework[J/OL]. IEEE Transactions on EvolutionaryComputation, 2024, 28(1): 252-266. DOI: 10.1109/TEVC.2023.3246922.
[89] SUN R, ZOU J, LIU Y, et al. A Multistage Algorithm for Solving Multiobjective OptimizationProblems With Multiconstraints[J/OL]. IEEE Transactions on Evolutionary Computation, 2023,27(5): 1207-1219. DOI: 10.1109/TEVC.2022.3224600.
[90] MA H, WEI H, TIAN Y, et al. A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints[J]. Information Sciences, 2021, 560: 68-91.
[91] DING Z, CHEN L, SUN D, et al. A multi-stage knowledge-guided evolutionary algorithm forlarge-scale sparse multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2022, 73: 101119.
[92] RAJU M S S, DUTTA S, MALLIPEDDI R, et al. A dual-population and multi-stage basedconstrained multi-objective evolutionary[J]. Information Sciences, 2022, 615: 557-577.
修改评论