[1] 李秋爽, 於方, 曹国志, 等. 新污染物治理进展及“十四五”期间和长期治理思路研究[J]. 环境保护, 2021, 49(10): 13-19.
[2] 王佳钰, 王中钰, 陈景文, 等. 环境新污染物治理与化学品环境风险防控的系统工程[J]. 科学通报, 2022, 67(3): 267-277.
[3] MEYER M F, POWERS S M, HAMPTON S E. An Evidence Synthesis of Pharmaceuticals and Personal Care Products (PPCPs) in the Environment: Imbalances among Compounds, Sewage Treatment Techniques, and Ecosystem Types[J]. Environmental Science & Technology, 2019, 53(22): 12961-12973.
[4] BLEDZKA D, GROMADZINSKA J, WASOWICZ W. Parabens. From environmental studies to human health[J]. Environment International, 2014, 67: 27-42.
[5] WEI F, MORTIMER M, CHENG H, et al. Parabens as chemicals of emerging concern in the environment and humans: A review[J]. Science of The Total Environment, 2021, 778: 146150.
[6] SONI M G, CARABIN I G, BURDOCK G A. Safety assessment of esters of p-hydroxybenzoic acid (parabens)[J]. Food and Chemical Toxicology, 2005, 43(7): 985-1015.
[7] YANG H, ZHANG F, WU H. Review on Life Cycle of Parabens: Synthesis, Degradation, Characterization and Safety Analysis[J]. Current Organic Chemistry, 2018, 22(8): 769-779.
[8] SASSEVILLE D, ALFALAH M, LACROIX J P. “Parabenoia” Debunked, or “Who’s Afraid of Parabens?”[J]. Dermatitis, 2015, 26(6): 254-259.
[9] KARPUZOGLU E, HOLLADAY S D, JR. R M G. Parabens: Potential impact of Low-Affinity Estrogen receptor Binding chemicals on Human health[J]. Journal of Toxicology and Environmental Health, Part B, 2013, 16(5): 321-335.
[10] FRANSWAY A F, FRANSWAY P J, BELSITO D V, et al. Paraben Toxicology[J]. Dermatitis, 2019, 30(1): 32-45.
[11] PETRIC Z, RUŽIĆ J, ŽUNTAR I. The controversies of parabens – an overview nowadays[J]. Acta Pharmaceutica, 2021, 71(1): 17-32.
[12] ANDERSEN A F. Final Amended Report on the Safety Assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in Cosmetic Products[J]. International Journal of Toxicology, 2008, 27(4): 1-82.
[13] PAXÉUS N. Organic pollutants in the effluents of large wastewater treatment plants in Sweden[J]. Water Research, 1996, 30(5): 1115-1122.
[14] WANG W, KANNAN K. Fate of Parabens and Their Metabolites in Two Wastewater Treatment Plants in New York State, United States[J]. Environmental Science & Technology, 2016, 50(3): 1174-1181.
[15] MA W L, ZHAO X, ZHANG Z F, et al. Concentrations and fate of parabens and their metabolites in two typical wastewater treatment plants in northeastern China[J]. Science of The Total Environment, 2018, 644: 754-761.
[16] HAMAN C, DAUCHY X, ROSIN C, et al. Occurrence, fate and behavior of parabens in aquatic environments: A review[J]. Water Research, 2015, 68: 1-11.
[17] ZHAO X, ZHENG Y, HU S, et al. Improving urban drainage systems to mitigate PPCPs pollution in surface water: A watershed perspective[J]. Journal of Hazardous Materials, 2021, 411: 125047.
[18] LIAO C, LEE S, MOON H B, et al. Parabens in Sediment and Sewage Sludge from the United States, Japan, and Korea: Spatial Distribution and Temporal Trends[J]. Environmental Science & Technology, 2013, 47(19): 10895-10902.
[19] CHEN M H, YU B, ZHANG Z F, et al. Occurrence of parabens in outdoor environments: Implications for human exposure assessment[J]. Environmental Pollution, 2021, 282: 117058.
[20] BOLUJOKO N B, OGUNLAJA O O, ALFRED M O, et al. Occurrence and human exposure assessment of parabens in water sources in Osun State, Nigeria[J]. Science of The Total Environment, 2022, 814: 152448.
[21] ZHAO X, ZHENG Y, QUAN F, et al. Road runoff as a significant nonpoint source of parabens and their metabolites in urban rivers[J]. Chemosphere, 2022, 301: 134632.
[22] MOREAU-GUIGON E, ALLIOT F, GASPÉRI J, et al. Seasonal fate and gas/particle partitioning of semi-volatile organic compounds in indoor and outdoor air[J]. Atmospheric Environment, 2016, 147: 423-433.
[23] WANG L, LIAO C, LIU F, et al. Occurrence and Human Exposure of p-Hydroxybenzoic Acid Esters (Parabens), Bisphenol A Diglycidyl Ether (BADGE), and Their Hydrolysis Products in Indoor Dust from the United States and Three East Asian Countries[J]. Environmental Science & Technology, 2012, 46(21): 11584-11593.
[24] BOLUJOKO N B, UNUABONAH E I, Alfred M O, et al. Toxicity and removal of parabens from water: A critical review[J]. Science of The Total Environment, 2021, 792: 148092.
[25] VALE F, SOUSA C A, SOUSA H, et al. Parabens as emerging contaminants: Environmental persistence, current practices and treatment processes[J]. Journal of Cleaner Production, 2022, 347: 131244.
[26] TONG X, MOHAPATRA S, ZHANG J, et al. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives[J]. Water Research, 2022, 217: 118418.
[27] GUO Y, KANNAN K. A Survey of Phthalates and Parabens in Personal Care Products from the United States and Its Implications for Human Exposure[J]. Environmental Science & Technology, 2013, 47(24): 14442-14449.
[28] CANOSA P, RODRÍGUEZ I, RUBÍ E, et al. Formation of halogenated by-products of parabens in chlorinated water[J]. Analytica Chimica Acta, 2006, 575(1): 106-113.
[29] GONZÁLEZ-MARIÑO I, QUINTANA J B, RODRÍGUEZ I, et al. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS)[J]. Water Research, 2011, 45(20): 6770-6780.
[30] SETO K C, GOLDEN J S, ALBERTI M, et al. Sustainability in an urbanizing planet[J]. Proceedings of the National Academy of Sciences, 2017, 114(34): 8935-8938.
[31] STROKAL M, BAI Z, FRANSSEN W, et al. Urbanization: an increasing source of multiple pollutants to rivers in the 21st century[J]. npj Urban Sustainability, 2021, 1(1): 1-13.
[32] 南方日报. 生态环境保护督察视角下的茅洲河治理[EB/OL]. (2021-01-04)
[2023-11-01]. https://gdee.gd.gov.cn/ztzl_13387/gjjzds/content/post_3165828.html.
[33] QIU W, SUN J, FANG M, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community[J]. Science of The Total Environment, 2019, 653: 334-341.
[34] LI B B, HU L X, YANG Y Y, et al. Contamination profiles and health risks of PFASs in groundwater of the Maozhou River basin[J]. Environmental Pollution, 2020, 260: 113996.
[35] WU P, TANG Y, DANG M, et al. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area[J]. Science of The Total Environment, 2020, 717: 135187.
[36] ZHAO X, QIU W, ZHENG Y, et al. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China[J]. Ecotoxicology and Environmental Safety, 2019, 180: 43-52.
[37] KEES V L. Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market Part II[R/OL]. European Communities: Institute for Health and Consumer Protection, 2003. https://echa.europa.eu/documents/10162/987906/tgdpart2_2ed_en.pdf/138b7b71-a069-428e-9036-62f4300b752f.
[38] ZHAO J L, ZHANG Q Q, CHEN F, et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: Implications for controlling of urban domestic sewage discharge[J]. Water Research, 2013, 47(1): 395-405.
[39] MACKAY D. Multimedia environmental models: the fugacity approach[M]. Third edition. Boca Raton, FL: CRC Press, 2020.
[40] VAN DER VOET E, KLEIJN R, VAN OERS L, et al. Substance flows through the economy and environment of a region[J]. Environmental Science and Pollution Research, 1995, 2(2): 90-96.
[41] HANSEN E. Experience with the Use of Substance Flow Analysis in Denmark[J]. Journal of Industrial Ecology, 2002, 6(3-4): 201-219.
[42] HUANG C L, VAUSE J, MA H W, et al. Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook[J]. Resources, Conservation and Recycling, 2012, 68: 104-116.
[43] LI L. Modeling the Fate of Chemicals in Products[M]. Singapore: Springer Singapore, 2020.
[44] LI L, WANIA F. Tracking chemicals in products around the world: introduction of a dynamic substance flow analysis model and application to PCBs[J]. Environment International, 2016, 94: 674-686.
[45] HUANG C L, MA H W, YU C P. Substance flow analysis and assessment of environmental exposure potential for triclosan in mainland China[J]. Science of The Total Environment, 2014, 499: 265-275.
[46] JIANG D, CHEN W Q, ZENG X, et al. Dynamic Stocks and Flows Analysis of Bisphenol A (BPA) in China: 2000–2014[J]. Environmental Science & Technology, 2018, 52(6): 3706-3715.
[47] CUI Y, CHEN J, WANG Z, et al. Coupled Dynamic Material Flow, Multimedia Environmental Model, and Ecological Risk Analysis for Chemical Management: A Di(2-ethylhexhyl) Phthalate Case in China[J]. Environmental Science & Technology, 2022, 56(15): 11006-11016.
[48] ZHANG S, CHEN J, WANG Z, et al. Dynamic Source Distribution and Emission Inventory of a Persistent, Mobile, and Toxic (PMT) Substance, Melamine, in China[J]. Environmental Science & Technology, 2023, 57(39): 14694-14706.
[49] 王佳钰, 陈景文, 唐伟豪, 等. 1985~2019年中国全氟辛烷磺酰基化合物的动态物质流分析[J]. 环境科学, 2021, 42(9): 4566-4574.
[50] ERIKSSON E, ANDERSEN H R, LEDIN A. Substance flow analysis of parabens in Denmark complemented with a survey of presence and frequency in various commodities[J]. Journal of Hazardous Materials, 2008, 156(1): 240-259.
[51] PRICE O R, MUNDAY D K, WHELAN M J, et al. Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments[J]. Environmental Pollution, 2009, 157(10): 2610-2616.
[52] PRICE O R, WILLIAMS R J, ZHANG Z, et al. Modelling concentrations of decamethylcyclopentasiloxane in two UK rivers using LF2000-WQX[J]. Environmental Pollution, 2010, 158(2): 356-360.
[53] HODGES J E N, HOLMES C M, VAMSHI R, et al. Estimating chemical emissions from home and personal care products in China[J]. Environmental Pollution, 2012, 165: 199-207.
[54] HODGES J E N, VAMSHI R, HOLMES C, et al. Combining high-resolution gross domestic product data with home and personal care product market research data to generate a subnational emission inventory for Asia[J]. Integrated Environmental Assessment and Management, 2014, 10(2): 237-246.
[55] ZHANG Q Q, YING G G, CHEN Z F, et al. Basin-scale emission and multimedia fate of triclosan in whole China[J]. Environmental Science and Pollution Research, 2015, 22(13): 10130-10143.
[56] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science and Technology, 2015, 49(11): 6772-6782.
[57] ZHANG Q Q, ZHAO J L, LIU Y S, et al. Multimedia modeling of the fate of triclosan and triclocarban in the Dongjiang River Basin, South China and comparison with field data[J]. Environmental Science: Processes & Impacts, 2013, 15(11): 2142-2152.
[58] ZHU Y, PRICE O R, KILGALLON J, et al. A Multimedia Fate Model to Support Chemical Management in China: A Case Study for Selected Trace Organics[J]. Environmental Science & Technology, 2016, 50(13): 7001-7009.
[59] WANNAZ C, FRANCO A, KILGALLON J, et al. A global framework to model spatial ecosystems exposure to home and personal care chemicals in Asia[J]. Science of The Total Environment, 2018, 622-623: 410-420.
[60] PÜTZ K W, NAMAZKAR S, PLASSMANN M, et al. Are cosmetics a significant source of PFAS in Europe? product inventories, chemical characterization and emission estimates[J]. Environmental Science: Processes & Impacts, 2022, 24(10): 1697-1707.
[61] XIE S, LU Y, WANG T, et al. Estimation of PFOS emission from domestic sources in the eastern coastal region of China[J]. Environment International, 2013, 59: 336-343.
[62] ZHAN Y, SUN J, LUO Y, et al. Estimating Emissions and Environmental Fate of Di-(2-ethylhexyl) Phthalate in Yangtze River Delta, China: Application of Inverse Modeling[J]. Environmental Science and Technology, 2016, 50(5): 2450-2458.
[63] MACLEOD M, SCHERINGER M, MCKONE T E, et al. The State of Multimedia Mass-Balance Modeling in Environmental Science and Decision-Making[J]. Environmental Science & Technology, 2010, 44(22): 8360-8364.
[64] COHEN Y, RYAN P A. Multimedia modeling of environmental transport: trichloroethylene test case[J]. Environmental Science & Technology, 1985, 19(5): 412-417.
[65] HOLLANDER A, SCHOORL M, VAN DE MEENT D. SimpleBox 4.0: Improving the model while keeping it simple…[J]. Chemosphere, 2016, 148: 99-107.
[66] FRANCO A, TRAPP S. A multimedia activity model for ionizable compounds: Validation study with 2,4-dichlorophenoxyacetic acid, aniline, and trimethoprim[J]. Environmental Toxicology and Chemistry, 2010, 29(4): 789-799.
[67] ZHANG L, DAI S. Application of Markov model to environmental fate of phenanthrene in Lanzhou Reach of Yellow River[J]. Chemosphere, 2007, 67(7): 1296-1299.
[68] SUN D, LI X. Application of Markov Chain Model on Environmental Fate of Phenanthrene in Soil and Groundwater[J]. Procedia Environmental Sciences, 2010, 2: 814-823.
[69] MACKAY D. Finding fugacity feasible[J]. Environmental Science & Technology, 1979, 13(10): 1218-1223.
[70] MACKAY D, PATERSON S. Calculating fugacity[J]. Environmental Science & Technology, 1981, 15(9): 1006-1014.
[71] MACKAY D, PATERSON S. Fugacity revisited[J]. Environmental Science & Technology, 1982, 16(12): 654A-660A.
[72] (加) 唐纳德·麦凯著; 黄国兰, 陈春江, 孔庆宁等译. 环境多介质模型·逸度方法 第2版[M]. 北京: 化学工业出版社, 2007.
[73] 贺莹莹, 李雪花, 陈景文. 多介质环境模型在化学品暴露评估中的应用与展望[J]. 科学通报, 2014, 59(32): 3130-3143.
[74] GUARDO A D, GOUIN T, MACLEOD M, et al. Environmental fate and exposure models: advances and challenges in 21 st century chemical risk assessment[J]. Environmental Science: Processes & Impacts, 2018, 20(1): 58-71.
[75] WANIA F. Spatial variability in compartmental fate modelling[J]. Environmental Science and Pollution Research, 1996, 3(1): 39-46.
[76] FALAKDIN P, TERZAGHI E, GUARDO A D. Spatially resolved environmental fate models: A review[J]. Chemosphere, 2022, 290: 133394.
[77] MACLEOD M, WOODFINE D G, MACKAY D, et al. BETR North America: A regionally segmented multimedia contaminant fate model for North America[J]. Environmental Science and Pollution Research, 2001, 8(3): 156-163.
[78] MACLEOD M, RILEY W J, MCKONE T E. Assessing the Influence of Climate Variability on Atmospheric Concentrations of Polychlorinated Biphenyls Using a Global-Scale Mass Balance Model (BETR-Global)[J]. Environmental Science & Technology, 2005, 39(17): 6749-6756.
[79] SONG S, SU C, LU Y, et al. Urban and rural transport of semivolatile organic compounds at regional scale: A multimedia model approach[J]. Journal of Environmental Sciences, 2016, 39: 228-241.
[80] SU C, SONG S, LU Y, et al. Potential effects of changes in climate and emissions on distribution and fate of perfluorooctane sulfonate in the Bohai Rim, China[J]. Science of The Total Environment, 2018, 613-614: 352-360.
[81] DIAMOND M L, PRIEMER D A, LAW N L. Developing a multimedia model of chemical dynamics in an urban area[J]. Chemosphere, 2001, 44(7): 1655-1667.
[82] LI L, ARNOT J A, WANIA F. Revisiting the Contributions of Far- and Near-Field Routes to Aggregate Human Exposure to Polychlorinated Biphenyls (PCBs)[J]. Environmental Science & Technology, 2018, 52(12): 6974-6984.
[83] LI Y F, QIN M, YANG P F, et al. Treatment of particle/gas partitioning using level III fugacity models in a six-compartment system[J]. Chemosphere, 2021, 271: 129580.
[84] SUZUKI N, MURASAWA K, SAKURAI T, et al. Geo-Referenced Multimedia Environmental Fate Model (G-CIEMS): Model Formulation and Comparison to the Generic Model and Monitoring Approaches[J]. Environmental Science & Technology, 2004, 38(21): 5682-5693.
[85] 颜小曼, 焦聪, 陈磊, 等. 长江流域农药面源多介质归趋评估[J]. 农业环境科学学报, 2022, 41(11): 2395-2404.
[86] ZHANG Z, YAN X, JONES K C, et al. Pesticide risk constraints to achieving Sustainable Development Goals in China based on national modeling[J]. npj Clean Water, 2022, 5(1): 1-10.
[87] TAO M, KELLER A A. ChemFate: A fate and transport modeling framework for evaluating radically different chemicals under comparable conditions[J]. Chemosphere, 2020, 255: 126897.
[88] CSISZAR S A, Daggupaty S M, Verkoeyen S, et al. SO-MUM: A Coupled Atmospheric Transport and Multimedia Model Used to Predict Intraurban-Scale PCB and PBDE Emissions and Fate[J]. Environmental Science & Technology, 2013, 47(1): 436-445.
[89] YAN X, ZHANG Z, CHEN L, et al. Pesticide fate at watershed scale: A new framework integrating multimedia behavior with hydrological processes[J]. Journal of Environmental Management, 2022, 319: 115758.
[90] BART H. Safety Assessment of Parabens as Used in Cosmetics[R/OL]. Washington, DC: Cosmetic Ingredient Review, 2018. https://www.cir-safety.org/sites/default/files/parabens.pdf.
[91] FRANSWAY A F, Fransway P J, Belsito D V, et al. Parabens[J]. Dermatitis, 2019, 30(1): 3-31.
[92] CHERIAN P, ZHU J, Bergfeld W F, et al. Amended Safety Assessment of Parabens as Used in Cosmetics[J]. International Journal of Toxicology, 2020, 39(1_suppl): 5S-97S.
[93] European Commission, Scientific Committee On Consumer Safety. Opinion on parabens: Updated request for a scientific opinion on propyl and butylparaben COLIPA n° P82.[R]. LU: Publications Office, 2013.
[94] Environment And Climate Change Canada Health Canada. Draft Screening Assessment Parabens Group[R/OL]. Canada, 2020. https://www.canada.ca/content/dam/eccc/documents/pdf/pded/parabens/Draft-screening-assessment-parabens-group.pdf.
[95] Health Canada. Parabens in Canadians[R/OL]. Canada, 2021. https://publications.gc.ca/collections/collection_2022/sc-hc/H129-119-7-2021-eng.pdf.
[96] IMAP Group. Parabens: Human health tier II assessment[R/OL]. Australia, 2015. https://www.industrialchemicals.gov.au/sites/default/files/Parabens_Human%20health%20tier%20II%20assessment.pdf.
[97] IMAP Group. Parabens: Environment tier II assessment[R/OL]. Australia, 2017. https://www.industrialchemicals.gov.au/sites/default/files/Parabens_%20Environment%20tier%20II%20assessment.pdf.
[98] DORTHE N, ANDERSEN, POUL B L. Survey of parabens[R/OL]. Copenhagen: The Danish Environmental Protection Agency, 2013. https://www2.mst.dk/Udgiv/publications/2013/04/978-87-93026-02-5.pdf.
[99] 国家食品药品监督管理总局关于发布化妆品安全技术规范 (2015年版) 的公告 (2015年第268号)[EB/OL]. (2015-12-23)
[2023-11-01]. https://www.nmpa.gov.cn/hzhp/hzhpfgwj/hzhpgzwj/20151223120001986.html.
[100]卫生健康委员会. 食品安全国家标准 食品添加剂使用标准: GB 2760-2014[S]. 北京: 中国标准出版社, 2015.
[101]国家药典委员会. 中华人民共和国药典 (2020年版)[M]. 北京: 中国医药科技出版社, 2020.
[102]GOUIN T, VAN EGMOND R, PRICE O R, et al. Prioritising chemicals used in personal care products in China for environmental risk assessment: Application of the RAIDAR model[J]. Environmental Pollution, 2012, 165: 208-214.
[103]新华社. 中国大陆人口突破14亿[EB/OL]. (2020-01-17)
[2023-11-01]. https://www.gov.cn/xinwen/2020-01/17/content_5470247.htm.
[104]深圳发布. 今天,人民日报整版报道深圳水污染治理攻坚战成果[EB/OL]. (2020-11-13)
[2023-11-01]. https://www.thepaper.cn/newsDetail_forward_9979720.
[105]Euromonitor. Passport Is Euromonitor’s Syndicated Global Market Research Database[EB/OL].
[2023-11-01]. https://www.euromonitor.com/our-expertise/passport.
[106]LIAO C, CHEN L, KANNAN K. Occurrence of parabens in foodstuffs from China and its implications for human dietary exposure[J]. Environment International, 2013, 57-58: 68-74.
[107]米内网. 2019我国三大终端六大市场药品销售额17955亿,同比增长4.8%[EB/OL]. (2020-03-31)
[2023-11-01]. https://3g.menet.com.cn/Article/Detial?aid=139844.
[108]药融云 (企业版).生物医药大数据一站式检索平台[EB/OL].
[2023-11-01]. https://pharma.bcpmdata.com/.
[109]药智数据 (企业版). 打造最专业全面的数据产品版图[EB/OL].
[2023-11-01]. https://vip.yaozh.com/introduce?ga_source=vip&ga_name=vip_pc.
[110]DODSON R E, NISHIOKA M, STANDLEY L J, et al. Endocrine Disruptors and Asthma-Associated Chemicals in Consumer Products[J]. Environmental Health Perspectives, 2012, 120(7): 935-943.
[111]李莉, 左甜甜, 董亚蕾, 等. 化妆品中替代性防腐成分使用情况分析[J]. 香料香精化妆品, 2023(1): 92-98.
[112]英敏特.英敏特全球新产品数据库(GNPD) [EB/OL].
[2023-11-01]. https://china.mintel.com/chanpinshujuku.
[113]龚盛昭, 陈庆生, 龚德明等编著. 日用化学品配方与制造工艺[M]. 北京: 化学工业出版社, 2020.
[114]ELDER R L. 3 Final Report on the Safety Assessment of Methylparaben, Ethylparaben, Propylparaben, and Butylparaben[J]. Journal of the American College of Toxicology, 1984, 3(5): 147-209.
[115]RASTOGI S C, SCHOUTEN A, KRUIJF N D, et al. Contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in cosmetic products[J]. Contact Dermatitis, 1995, 32(1): 28-30.
[116]GUO Y, WANG L, KANNAN K. Phthalates and Parabens in Personal Care Products From China: Concentrations and Human Exposure[J]. Archives of Environmental Contamination and Toxicology, 2014, 66(1): 113-119.
[117]CHENG L, HUANG K, CUI H, et al. Coiled molecularly imprinted polymer layer open-tubular capillary tube for detection of parabens in personal care and cosmetic products[J]. Science of The Total Environment, 2020, 706: 135961.
[118]LOKHNAUTH J K, SNOW N H. Determination of Parabens in Pharmaceutical Formulations by Solid-Phase Microextraction-Ion Mobility Spectrometry[J]. Analytical Chemistry, 2005, 77(18): 5938-5946.
[119]JAWORSKA M, SZULIŃSKA Z, WILK M. Application of a capillary electrophoresis method for simultaneous determination of preservatives in pharmaceutical formulations[J]. Journal of Separation Science, 2005, 28(2): 137-143.
[120]BARANOWSKA I, WOJCIECHOWSKA I, SOLARZ N, et al. Determination of Preservatives in Cosmetics, Cleaning Agents and Pharmaceuticals Using Fast Liquid Chromatography[J]. Journal of Chromatographic Science, 2014, 52(1): 88-94.
[121]MORETA C, TENA M T, KANNAN K. Analytical method for the determination and a survey of parabens and their derivatives in pharmaceuticals[J]. Environmental Research, 2015, 142: 452-460.
[122]MA W L, ZHAO X, LIN Z Y, et al. A survey of parabens in commercial pharmaceuticals from China and its implications for human exposure[J]. Environment International, 2016, 95: 30-35.
[123]Food and Drug Administration. Inactive Ingredient Search for Approved Drug Products[EB/OL].
[2023-11-01]. https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm.
[124]王世宇主编. 药用辅料学 十三五规划[M]. 北京:中国中医药出版社, 2019.
[125]SHESKEY P J, COOK W G, CABLE C G. Handbook of pharmaceutical excipients[M]. Eighth edition. London, Washington, DC: Pharmaceutical Press ; APhA, 2017.
[126]程顺峰, 王希波. 尼泊金乙酯在中药制剂中的防腐应用[J]. 首都医药, 1998(9): 16-17.
[127]木水, 叶兴法, 倪赤杭. 液体制剂中防腐剂选用的体会[J]. 海峡药学, 2009, 21(3): 32-34.
[128]Cosmetics Europe - The Personal Care Association A.I.S.B.L. Specific Environmental Release Categories (SPERCs) for the formulation of cosmetic products (ERC 2) Background Document[R]. Brussels, 2022.
[129]Cosmetics Europe - The Personal Care Association A.I.S.B.L. Specific Environmental Release Categories (SPERCs) for the widespread use of cosmetic products by consumers and professional workers (ERC 8a) Background Document[R]. Brussels, 2022.
[130]SHIN M Y, CHOI J W, LEE S, et al. Pharmacokinetics of transdermal methyl-, ethyl-, and propylparaben in humans following single dermal administration[J]. Chemosphere, 2023, 310: 136689.
[131]A.I.S.E, International Association For Soaps, Detergents And Maintenance Products. Specific Environmental Release Categories (SPERCs) for the widespread use of household care and professional cleaning and hygiene products Background Document[R]. Brussels, 2020.
[132]MOOS R K, ANGERER J, DIERKES G, et al. Metabolism and elimination of methyl, iso- and n-butyl paraben in human urine after single oral dosage[J]. Archives of Toxicology, 2016, 90(11): 2699-2709.
[133]SHIN M Y, SHIN C, CHOI J W, et al. Pharmacokinetic profile of propyl paraben in humans after oral administration[J]. Environment International, 2019, 130: 104917.
[134]丁毅. 污水处理系统中防腐杀菌剂的归趋研究及模型模拟[D]. 哈尔滨工业大学, 2018.
[135]赵雪. 城市化流域水环境中对羟基苯甲酸酯源汇过程研究[D]. 哈尔滨工业大学, 2022.
[136]深圳市宝安区统计局, 深圳市宝安区2019年统计年鉴[EB/OL]. (2020-12-29)
[2023-11-01]. http://www.baoan.gov.cn/batjj/gkmlpt/content/9/9492/post_9492058.html#24031.
[137]深圳市光明区统计局, 光明区统计年鉴2021[EB/OL]. (2023-02-03)
[2023-11-01].http://www.szgm.gov.cn/gmtjj/gkmlpt/content/10/10408/post_10408648.html#24772.
[138]深圳市生态环境, 2019年度深圳市固体废物污染环境防治信息公告[EB/OL]. (2020-06-05)
[2023-11-01]. https://www.sz.gov.cn/cn/xxgk/zfxxgj/tzgg/content/post_7759460.html.
[139]深圳统计. 年末常住人口[EB/OL].
[2023-11-01]. http://tjj.sz.gov.cn/ztzl/zt/sjfb/nmczrk/index.html.
[140] 黄河勘测规划设计有限公司, 天津大学. 深圳市茅洲河流域综合治理方案[R/OL]. 2016. https://jz.docin.com/p-1927200141.html.
[141]KARRA K, KONTGIS C, STATMAN-WEIL Z, et al. Global land use / land cover with Sentinel 2 and deep learning[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. 2021: 4704-4707.
[142]POGGIO L, DE SOUSA L M, BATJES N H, et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty[J]. Soil, 2021, 7(1): 217-240.
[143]MACKAY D, PATERSON S. Evaluating the multimedia fate of organic chemicals: a level III fugacity model[J]. Environmental Science & Technology, 1991, 25(3): 427-436.
[144]DIAMOND M L, GINGRICH S E, FERTUCK K, et al. Evidence for Organic Film on an Impervious Urban Surface: Characterization and Potential Teratogenic Effects[J]. Environmental Science & Technology, 2000, 34(14): 2900-2908.
[145]ZHAO H, LI X, WANG X. Heavy Metal Contents of Road-Deposited Sediment along the Urban–Rural Gradient around Beijing and its Potential Contribution to Runoff Pollution[J]. Environmental Science & Technology, 2011, 45(17): 7120-7127.
[146]申红彬, 徐宗学, 吴保生. 城市地表径流-灰尘-污染物输移研究进展[J]. 水科学进展, 2020, 31(3): 450-462.
[147]ZHAO X, WANG Y, LI Z, et al. The Source of Parabens in Urban River Water: The Evidence From Outdoor Multimedia Environment in Six Metropolitan Cities, China[J]. Environmental Science & Technology Letters, 2024, 11(5): 485-491.
[148]MA Y G, LEI Y D, XIAO H, et al. Critical Review and Recommended Values for the Physical-Chemical Property Data of 15 Polycyclic Aromatic Hydrocarbons at 25 °C[J]. Journal of Chemical & Engineering Data, 2010, 55(2): 819-825.
[149]LI L, ZHANG Z, MEN Y, et al. Retrieval, Selection, and Evaluation of Chemical Property Data for Assessments of Chemical Emissions, Fate, Hazard, Exposure, and Risks[J]. ACS Environmental Au, 2022, 2(5): 376-395.
[150]张芊芊. 中国流域典型新型有机污染物排放量估算、多介质归趋模拟及生态风险评估[D]. 中国科学院研究生院(广州地球化学研究所), 2015.
[151] LIAO P, YU K, LU Y, et al. Extensive dark production of hydroxyl radicals from oxygenation of polluted river sediments[J]. Chemical Engineering Journal, 2019, 368: 700-709.
[152]深圳市生态环境局. 2019年度深圳市环境状况公报[EB/OL]. (2020-04-29)
[2023-11-01]. http://meeb.sz.gov.cn/xxgk/tjsj/ndhjzkgb/content/post_7259599.html.
[153]崔小新, 郭睿. 茅洲河流域水文特性[J]. 中国农村水利水电, 2006(09): 57-58+60.
[154]路文典, 刘鹄. 茅洲河全流域水环境综合治理方案及创新[J]. 水资源开发与管理, 2022, 8(1): 34-39.
[155]TAO S, CAO H, LIU W, et al. Fate Modeling of Phenanthrene with Regional Variation in Tianjin, China[J]. Environmental Science & Technology, 2003, 37(11): 2453-2459.
[156]王春辉. 城市土壤多环芳烃累积的时空变化与风险研究[D]. 南京大学, 2016.
[157]住房城乡建设部关于印发海绵城市建设技术指南——低影响开发雨水系统构建(试行) 的通知[EB/OL]. (2014-11-03)
[2023-11-01]. https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201411/20141103_219465.html.
[158]张园眼, 李天宏. 基于GIS和RUSLE模型的深圳市土壤侵蚀研究[J]. 应用基础与工程科学学报, 2018, 26(6): 1189-1202.
[159]蔡毅, 邢岩, 胡丹. 敏感性分析综述[J]. 北京师范大学学报(自然科学版), 2008(1): 9-16.
[160]WANG Y, FAN L, KHAN S J, et al. Fugacity modelling of the fate of micropollutants in aqueous systems — Uncertainty and sensitivity issues[J]. Science of The Total Environment, 2020, 699: 134249.
[161]ROGERS C C M, BEVEN K J, Morris E M, et al. Sensitivity analysis, calibration and predictive uncertainty of the Institute of Hydrology Distributed Model[J]. Journal of Hydrology, 1985, 81(1): 179-191.
[162]SOBOL' I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1): 271-280.
[163]CAO H, TAO S, XU F, et al. Multimedia Fate Model for Hexachlorocyclohexane in Tianjin, China[J]. Environmental Science & Technology, 2004, 38(7): 2126-2132.
[164]PÉREZ R A, ALBERO B, MIGUEL E, et al. Determination of parabens and endocrine-disrupting alkylphenols in soil by gas chromatography–mass spectrometry following matrix solid-phase dispersion or in-column microwave-assisted extraction: a comparative study[J]. Analytical and Bioanalytical Chemistry, 2012, 402(7): 2347-2357.
[165]VIGLINO L, PRÉVOST M, SAUVÉ S. High throughput analysis of solid-bound endocrine disruptors by LDTD-APCI-MS/ MS[J]. Journal of Environmental Monitoring, 2011, 13(3): 583-590.
[166]KANTERAKI A E, ISARI E A, SVARNAS P, et al. Biosolids: The Trojan horse or the beautiful Helen for soil fertilization?[J]. Science of The Total Environment, 2022, 839: 156270.
[167]国家发展改革委, 住房城乡建设部, 生态环境部. 关于印发《污泥无害化处理和资源化利用实施方案》的通知[EB/OL]. (2022-09-22)
[2023-11-01]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202209/t20220927_1337103.html.
[168]深圳市2006-2020污泥处置布局规划 [EB/OL].
[2023-11-01]. https://jz.docin.com/p-1386246723.html.
[169]陈卓如, 刘子正, 黄鹄. 深圳市污泥处理与处置对策及布局系统研究[J]. 给水排水, 2011, 47(9): 50-53.
[170]党清平, 朱敏. 深圳市污泥处理与处置模式的探讨[C]//全国排水委员会2012年年会论文集. 中国土木工程学会水工业分会排水委员会, 2012: 714-719.
[171]蔡伟梅. 城市污水厂污泥特性及综合利用分析——以深圳、佛山、广州三市为例[J]. 资源节约与环保, 2013(6): 30-31.
[172]中国城镇供水排水协会. 典型城市市政生活污泥处置现状及经验总结[EB/OL].
[2023-11-01]. https://old.cuwa.org.cn/yuqingfenxi/10478.html.
[173]深圳市水务局. 深圳市水务发展“十三五”规划 [EB/OL]. (2020-06-05)
[2023-11-01]. http://swj.sz.gov.cn/xxgk/zfxxgkml/ghjh/swgh/content/post_7753777.html.
[174]中华人民共和国生态环境部. 深圳市“无废城市”建设试点工作总结报告[EB/OL].(2021-05-18)
[2023-11-01]. https://www.mee.gov.cn/home/ztbd/2020/wfcsjssdgz/sdjz/ldms/202105/t20210518_833252.shtml.
[175]SINGH A. A review of wastewater irrigation: Environmental implications[J]. Resources, Conservation and Recycling, 2021, 168: 105454.
[176]OFORI S, PUŠKÁČOVÁ A, RŮŽIČKOVÁ I, et al. Treated wastewater reuse for irrigation: Pros and cons[J]. Science of The Total Environment, 2021, 760: 144026.
[177]刘润堂, 许建中. 我国污水灌溉现状、问题及其对策[J]. 中国水利, 2002(10): 123-125.
[178]景琪, 许炜怡, 曾锐, 等. 污水处理厂再生水回用于农田灌溉的影响与效果[J]. 环境工程, 2023, 41(S1): 584-591.
[179]生态环境部办公厅. 关于征求国家环境保护标准《农田灌溉水质标准 (征求意见稿)》(修订GB 5084) 意见的函[EB/OL]. (2020-07-31)
[2023-11-01]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202007/t20200731_792114.html.
[180]范建勇. 珠三角地区城市主要周边污灌区水土污染调查完成[EB/OL]. (2010-12-13)
[2023-11-01]. https://www.cgs.gov.cn/xwl/cgkx/201603/t20160309_278676.html.
[181]丁年, 胡爱兵, 任心欣, 等. 深圳市再生水利用规划若干问题的探讨[J]. 中国给水排水, 2014, 30(12): 30-33.
[182]胡爱兵, 杨少平, 任心欣. 深圳市再生水工作回顾与展望[J]. 中国给水排水, 2021, 37(8): 18-23.
[183]深圳市水务局. 2019年水务基础统计数据[EB/OL]. (2020-08-24)
[2023-11-01]. http://swj.sz.gov.cn/xxgk/zfxxgkml/szswgk/tjsj/swjcsj/content/post_8030963.html.
[184]深圳新闻网. 全市率先!光明区实现再生水大规模用于市政浇洒 [EB/OL]. (2021-12-02)
[2023-11-01]. https://www.sznews.com/news/content/2021-12/02/content_24785501.htm.
[185]深圳市生态环境局. 小微水体整治应纳入规划?[EB/OL]. (2021-08-12)
[2023-11-01]. http://meeb.sz.gov.cn/hdjl/ywzsk/flfgl/content/post_9056221.html.
[186]HONDA M, ROBINSON M, KANNAN K. Parabens in human urine from several Asian countries, Greece, and the United States[J]. Chemosphere, 2018, 201: 13-19.
[187]KARTHIKRAJ R, BORKAR S, LEE S, et al. Parabens and Their Metabolites in Pet Food and Urine from New York State, United States[J]. Environmental Science & Technology, 2018, 52(6): 3727-3737.
[188]MOSCOSO-RUIZ I, NAVALÓN A, RIVAS A, et al. Presence of parabens in children’s faeces. Optimization and validation of a new analytical method based on the use of ultrasound-assisted extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2023, 225: 115212.
[189]AZNAR R, ALBERO B, PÉREZ R A, et al. Analysis of emerging organic contaminants in poultry manure by gas chromatography–tandem mass spectrometry[J]. Journal of Separation Science, 2018, 41(4): 940-947.
[190]GONKOWSKI S, MARTÍN J, APARICIO I, et al. Evaluation of Parabens and Bisphenol A Concentration Levels in Wild Bat Guano Samples[J]. International Journal of Environmental Research and Public Health, 2023, 20(3): 1928.
[191]深圳市生态环境局. 深莞联合开展非法畜禽养殖执法检查行动-深圳政府在线_深圳市人民政府门户网站[EB/OL]. (2022-04-22)
[2023-11-01]. https://www.sz.gov.cn/cn/xxgk/zfxxgj/bmdt/content/post_9723015.html.
[192]United States Environmental Protection Agency. Benzoic acid, 4-hydroxy-, methyl ester (Commodity Inert Ingredient)[EB/OL].
[2023-11-01]. https://ordspub.epa.gov/ords/pesticides/f?p=INERTFINDER:3:::::P3_ID:7245.
[193]United States Environmental Protection Agency. Propyl p-hydroxybenzoate (Commodity Inert Ingredient)[EB/OL].
[2023-11-01]. https://ordspub.epa.gov/ords/pesticides/f?p=INERTFINDER:3:::::P3_ID:7225.
[194]中国农药信息网. 农业部关于征求《农药助剂禁限用名单》(征求意见稿)意见的通知[EB/OL]. (2015-07-14)
[2023-11-01]. http://www.agroinfo.com.cn/other_detail_1730.html.
[195]常静. 城市地表灰尘—降雨径流系统污染物迁移过程与环境效应[D]. 华东师范大学, 2007.
[196]ZHOU L, LIU G, SHEN M, et al. Characteristics of indoor dust in an industrial city: Comparison with outdoor dust and atmospheric particulates[J]. Chemosphere, 2021, 272: 129952.
[197]KVASNICKA J, HUBAL E A C, RODGERS T F M, et al. Textile Washing Conveys SVOCs from Indoors to Outdoors: Application and Evaluation of a Residential Multimedia Model[J]. Environmental Science & Technology, 2021, 55(18): 12517-12527.
[198]WEI W, LITTLE J C, RAMALHO O, et al. Predicting chemical emissions from household cleaning and personal care products: A review[J]. Building and Environment, 2022, 207: 108483.
[199]WANG Y, LI G, ZHU Q, et al. Occurrence of parabens, triclosan and triclocarban in paired human urine and indoor dust from two typical cities in China and its implications for human exposure[J]. Science of The Total Environment, 2021, 786: 147485.
[200]HARTMANN E M, HICKEY R, HSU T, et al. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome[J]. Environmental Science & Technology, 2016, 50(18): 9807-9815.
[201]CHEN J, HARTMANN E M, KLINE J, et al. Assessment of human exposure to triclocarban, triclosan and five parabens in U.S. indoor dust using dispersive solid phase extraction followed by liquid chromatography tandem mass spectrometry[J]. Journal of Hazardous Materials, 2018, 360: 623-630.
[202]TRAN T M, MINH T B, KUMOSANI T A, et al. Occurrence of phthalate diesters (phthalates), p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE) and their derivatives in indoor dust from Vietnam: Implications for exposure[J]. Chemosphere, 2016, 144: 1553-1559.
[203]TRAN T M, TRAN-LAM T T, MAI H H T, et al. Parabens in personal care products and indoor dust from Hanoi, Vietnam: Temporal trends, emission sources, and non-dietary exposure through dust ingestion[J]. Science of The Total Environment, 2021, 761: 143274.
[204]RAMÍREZ N, MARCÉ R M, BORRULL F. Determination of parabens in house dust by pressurised hot water extraction followed by stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(37): 6226-6231.
[205]CANOSA P, RODRÍGUEZ I, RUBÍ E, ET AL. Determination of Parabens and Triclosan in Indoor Dust Using Matrix Solid-Phase Dispersion and Gas Chromatography with Tandem Mass Spectrometry[J]. Analytical Chemistry, 2007, 79(4): 1675-1681.
[206]CANOSA P, PÉREZ-PALACIOS D, GARRIDO-LÓPEZ A, et al. Pressurized liquid extraction with in-cell clean-up followed by gas chromatography–tandem mass spectrometry for the selective determination of parabens and triclosan in indoor dust[J]. Journal of Chromatography A, 2007, 1161(1-2): 105-112.
[207]LI M, HUANG S, YU X, et al. Discharge of pharmaceuticals from a municipal solid waste transfer station: Overlooked influence on the contamination of pharmaceuticals in surface waters[J]. Science of The Total Environment, 2022, 839: 156317.
[208]HAYNES W M. CRC Handbook of Chemistry and Physics[M]. 97th ed. Boca Raton: CRC Press, 2016.
[209]GIORDANO F, BETTINI R, DONINI C, et al. Physical properties of parabens and their mixtures: Solubility in water, thermal behavior, and crystal structures[J]. Journal of Pharmaceutical Sciences, 1999, 88(11): 1210-1216.
[210]ECHA Chemicals Database. Methyl 4-hydroxybenzoate Melting point / freezing point[EB/OL].
[2023-11-01]. https://echa.europa.eu/registration-dossier/-/registered-dossier/14310/4/3.
[211]ECHA Chemicals Database. Methyl 4-hydroxybenzoate Vapour pressure[EB/OL].
[2023-11-01]. https://echa.europa.eu/registration-dossier/-/registered-dossier/14310/4/7.
[212]PERLOVICH G L, RODIONOV S V, BAUER-BRANDL A. Thermodynamics of solubility, sublimation and solvation processes of parabens[J]. European Journal of Pharmaceutical Sciences, 2005, 24(1): 25-33.
[213]ChemSpider. Methylparaben Properties Predicted - EPISuite[EB/OL].
[2023-11-01]. https://www.chemspider.com/Chemical-Structure.7176.html?rid=006aca7f-1018-4b0e-abd6-415aaf216168.
[214]ECHA Chemicals Database. Methyl 4-hydroxybenzoate Partition coefficient[EB/OL].
[2023-11-01]. https://echa.europa.eu/registration-dossier/-/registered-dossier/14310/4/8.
[215]HANSCH C, LEO A, HOEKMAN D H. Exploring QSAR.: Hydrophobic, electronic, and steric constants[M]. American Chemical Society, 1995.
[216]ANGELOV T, VLASENKO A, TASHKOV W. HPLC Determination of pKa of Parabens and Investigation on their Lipophilicity Parameters[J]. Journal of Liquid Chromatography & Related Technologies, 2007, 31(2): 188-197.
[217]TERASAKI M, MAKINO M, TATARAZAKO N. Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays[J]. Journal of Applied Toxicology, 2009, 29(3): 242-247.
[218]ChemSpider. Methylparaben Properties Predicted - ACD/Labs[EB/OL].
[2023-11-01]. https://www.chemspider.com/Chemical-Structure.7176.html?rid=006aca7f-1018-4b0e-abd6-415aaf216168.
[219]ZHANG Z F, WANG L, ZHANG X, et al. Fate processes of Parabens, Triclocarban and Triclosan during wastewater treatment: assessment via field measurements and model simulations[J]. Environmental Science and Pollution Research, 2021, 28(36): 50602-50610.
[220]LYMAN W J, REEHL W F, ROSENBLATT D H. Handbook of chemical property estimation methods: Environmental behavior of organic compounds[J]. 1990.
[221]Eas-E-Suite. Benzoic acid, 4-hydroxy-, methyl ester[EB/OL]
[2023-11-01]. https://arnotresearch.com/eas-e-suite/.
[222]MACKAY D, SHIU W Y, MA K C, et al. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals[M]. CRC Press, 2006.
[223]GONZÁLEZ-MARIÑO I, QUINTANA J B, RODRÍGUEZ I, et al. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS)[J]. Water Research, 2011, 45(20): 6770-6780.
[224]YAMAMOTO H, WATANABE M, KATSUKI S, et al. Preliminary ecological risk assessment of butylparaben and benzylparaben -2. Fate and partitioning in aquatic environments[J]. Environmental Sciences: An International Journal of Environmental Physiology and Toxicology, 2007, 14 Suppl: 97-105.
[225]CAMINO-SÁNCHEZ F J, ZAFRA-GÓMEZ A, DORIVAL-GARCÍA N, et al. Determination of selected parabens, benzophenones, triclosan and triclocarban in agricultural soils after and before treatment with compost from sewage sludge: A lixiviation study[J]. Talanta, 2016, 150: 415-424.
[226]ARACHCHIGE C S S V, KRISHNAN K, AITKEN R J, et al. Persistence of the parabens in soil and their potential toxicity to earthworms[J]. Environmental Toxicology and Pharmacology, 2021, 83: 103574.
[227]ECHA Chemicals Database. Methyl 4-hydroxybenzoate Dissociation constant[EB/OL].
[2023-11-01]. https://echa.europa.eu/registration-dossier/-/registered-dossier/14310/4/22.
[228]DYMICKY M, HUHTANEN C N. Inhibition of Clostridium botulinum by p-hydroxybenzoic acid n-alkyl esters[J]. Antimicrobial Agents and Chemotherapy, 1979, 15(6): 798-801.
[229]SHOGHI E, FUGUET E, RÀFOLS C, et al. Kinetic and thermodynamic solubility values of some bioactive compounds[J]. Chemistry & Biodiversity, 2009, 6(11): 1789-1795.
[230]XU T, CHEN J, CHEN X, et al. Prediction Models on pKa and Base-Catalyzed Hydrolysis Kinetics of Parabens: Experimental and Quantum Chemical Studies[J]. Environmental Science & Technology, 2021, 55(9): 6022-6031.
[231]ECHA Chemicals Database. Ethyl 4-hydroxybenzoate Melting point / freezing point[EB/OL].
[2023-11-01]. https://echa.europa.eu/registration-dossier/-/registered-dossier/13843/4/3.
[232]ChemSpider. Ethylparaben Predicted - EPISuite[EB/OL].
[2023-11-01]. http://www.chemspider.com/Chemical-Structure.13846749.html?rid=1e4804df-5ff0-4caf-9719-f0bd207bfd46#epiTab.
[233]ECHA Chemicals Database. Ethyl 4-hydroxybenzoate Partition coefficient[EB/OL].
[2023-11-01]. https://echa.europa.eu/registration-dossier/-/registered-dossier/13843/4/8.
[234]HAYWARD D S, KENLEY R A, JENKE D R. Interactions between polymer containers and parenteral solutions: the correlation of equilibrium constants for polymer-water partitioning with octanol-water partition coefficients[J]. International Journal of Pharmaceutics, 1990, 59(3): 245-253.
[235]ChemSpider. Ethylparaben Predicted - ACD/Labs[EB/OL].
[2023-11-01]. http://www.chemspider.com/Chemical-Structure.13846749.html?rid=1e4804df-5ff0-4caf-9719-f0bd207bfd46#acdLabsTab.
[236]Eas-E-Suite. Benzoic acid, 4-hydroxy-, ethyl ester[EB/OL].
[2023-11-01]. https://arnotresearch.com/eas-e-suite/.
[237]HURTADO C, MONTANO-CHÁVEZ Y N, DOMÍNGUEZ C, et al. Degradation of Emerging Organic Contaminants in an Agricultural Soil: Decoupling Biotic and Abiotic Processes[J]. Water, Air, & Soil Pollution, 2017, 228(7): 243.
[238]OUYANG J, CHEN J, ZHOU L, et al. Solubility Measurement, Modeling, and Dissolution Thermodynamics of Propylparaben in 12 Pure Solvents[J]. Journal of Chemical & Engineering Data, 2020, 65(9): 4725-4734.
[239]ECHA Chemicals Database. Propyl 4-hydroxybenzoate Vapour pressure[EB/OL].
[2023-11-01]. https://echa.europa.eu/registration-dossier/-/registered-dossier/13890/4/7.
[240]ChemSpider. Propylparaben Predicted - EPISuite[EB/OL].
[2023-11-01]. http://www.chemspider.com/Chemical-Structure.6907.html?rid=e370ba0f-577f-4ca3-b462-f6bcc5039baf.
[241]ECHA Chemicals Database. Propyl 4-hydroxybenzoate Partition coefficient[EB/OL].
[2023-11-01]. https://echa.europa.eu/registration-dossier/-/registered-dossier/13890/4/8.
[242]ChemSpider. Propylparaben Predicted - ACD/Labs[EB/OL].
[2023-11-01]. http://www.chemspider.com/Chemical-Structure.6907.html?rid=bda37ee5-0da4-484d-8dc2-6373f795c63c#acdLabsTab.
[243]Eas-E-Suite. Benzoic acid, 4-hydroxy-, propyl ester[EB/OL].
[2023-11-01]. https://arnotresearch.com/eas-e-suite/.
修改评论