[1] 国家统计局. 第七次全国人口普查公报(第五号)[J]. 2021.
[2] 中华人民共和国国家统计局. 2010年第六次全国人口普查主要数据公报(第1号)[J]. 2011.
[3] KELLY-HAYES M. Influence of age and health behaviors on stroke risk: lessons from longitudinal studies[J]. Journal of the American Geriatrics Society, 2010, 58: S325-S328.
[4] 苏镇培, 黄如训. 脑卒中[M]. 北京:人民卫生出版社, 2001:27-45.
[5] 缪鸿石. 中枢神经系统(CNS)损伤后功能恢复的理论(二)[J]. 中国康复理论与实践, 1996(01):1-5.
[6] CHEN B, ZI B, QIN L, et al. State-of-the-art research in robotic hip exoskeletons: A general review[J]. Journal of orthopaedic translation, 2020, 20: 4-13.
[7] YOUNG A J, FERRIS D P. State of the art and future directions for lower limb robotic exoskeletons[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 25(2): 171-182.
[8] STRICKLAND E. Good-bye, wheelchair[J]. IEEE Spectrum, 2012, 49(1): 30-32.
[9] ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11): 911-921.
[10] TSUKAHARA A, HASEGAWA Y, SANKAI Y. Standing-up motion support for paraplegic patient with Robot Suit HAL[C]//2009 IEEE International Conference on Rehabilitation Robotics. IEEE, 2009: 211-217.
[11] 北京大艾机器人科技有限公司. 产品介绍iLegs[EB/OL]. https://www.ai-robotics.cn/, 2021.
[12] 深圳市迈步机器人科技有限公司. 下肢外骨骼康复训练机器人 BEAR-H1 [EB/OL]. http://milebot.com.cn/, 2021.
[13] 上海傅利叶智能科技有限公司. ExoMotus下肢外骨骼机器人[EB/OL]. https://www.fftai.cn/product/X2.php, 2022.
[14] DING Y, PANIZZOLO F A, SIVIY C, et al. Effect of timing of hip extension assistance during loaded walking with a soft exosuit[J]. Journal of neuroengineering and rehabilitation, 2016, 13: 1-10.
[15] DING Y, KIM M, KUINDERSMA S, et al. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. Science robotics, 2018, 3(15): eaar5438.
[16] QIAN Y, HAN S, WANG Y, et al. Toward improving actuation transparency and safety of a hip exoskeleton with a novel nonlinear series elastic actuator[J]. IEEE/ASME Transactions on Mechatronics, 2022, 28(1): 417-428.
[17] 深圳市迈步机器人科技有限公司. 助行机器人MAX系列[EB/OL]. http://www.milebot.com.cn/max-1/, 2023.
[18] LIM B, LEE J, JANG J, et al. Delayed output feedback control for gait assistance with a robotic hip exoskeleton[J]. IEEE Transactions on Robotics, 2019, 35(4): 1055-1062.
[19] SEO K, LEE J, PARK Y J. Autonomous hip exoskeleton saves metabolic cost of walking uphill[C]//2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 2017: 246-251.
[20] 深圳肯綮科技有限公司. Ant-C1 Pro下肢外骨骼机器人[EB/OL]. http://www.kenqingkeji.com/product_details/12.html, 2021.
[21] XUE T, WANG Z, ZHANG T, et al. Adaptive oscillator-based robust control for flexible hip assistive exoskeleton[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3318-3323.
[22] TUCKER M R, OLIVIER J, PAGEL A, et al. Control strategies for active lower extremity prosthetics and orthotics: a review[J]. Journal of neuroengineering and rehabilitation, 2015, 12: 1-30.
[23] ZHANG K, LUO J, XIAO W, et al. A subvision system for enhancing the environmental adaptability of the powered transfemoral prosthesis[J]. IEEE transactions on cybernetics, 2020, 51(6): 3285-3297.
[24] CHEN C, ZHANG K, LENG Y, et al. Unsupervised sim-to-real adaptation for environmental recognition in assistive walking[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 1350-1360.
[25] QIAN Y, WANG Y, CHEN C, et al. Predictive locomotion mode recognition and accurate gait phase estimation for hip exoskeleton on various terrains[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6439-6446.
[26] XIONG J, CHEN C, ZHANG Y, et al. A probability fusion approach for foot placement prediction in complex terrains[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 4591-4600.
[27] CHEN X, LIU Z, ZHU J, et al. Comparison of machine learning regression algorithms for foot placement prediction[C]//2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2021: 169-174.
[28] LEE S W, ASBECK A. A deep learning-based approach for foot placement prediction[J]. IEEE Robotics and Automation Letters, 2023.
[29] GAO F, LIU G, LIANG F, et al. IMU-based locomotion mode identification for transtibial prostheses, orthoses, and exoskeletons[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(6): 1334-1343.
[30] AL-DABBAGH A H A, RONSSE R. A review of terrain detection systems for applications in locomotion assistance[J]. Robotics and Autonomous Systems, 2020, 133: 103628.
[31] LASCHOWSKI B, MCNALLY W, WONG A, et al. Environment classification for robotic leg prostheses and exoskeletons using deep convolutional neural networks[J]. Frontiers in Neurorobotics, 2022, 15: 730965.
[32] BRUIJN S M, VAN DIEËN J H. Control of human gait stability through foot placement[J]. Journal of The Royal Society Interface, 2018, 15(143): 20170816.
[33] BAUBY C E, KUO A D. Active control of lateral balance in human walking[J]. Journal of biomechanics, 2000, 33(11): 1433-1440.
[34] CAMARGO J, RAMANATHAN A, FLANAGAN W, et al. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions[J]. Journal of Biomechanics, 2021, 119: 110320.
[35] LENCIONI T, CARPINELLA I, RABUFFETTI M, et al. Human kinematic, kinetic and EMG data during different walking and stair ascending and descending tasks[J]. Scientific data, 2019, 6(1): 309.
[36] KITAGAWA N, OGIHARA N. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot[J]. Gait & posture, 2016, 45: 110-114.
[37] REFAI M I M, VAN BEIJNUM B J F, BUURKE J H, et al. Gait and dynamic balance sensing using wearable foot sensors[J]. IEEE transactions on neural systems and rehabilitation engineering, 2018, 27(2): 218-227.
[38] NG K D, MEHDIZADEH S, IABONI A, et al. Measuring gait variables using computer vision to assess mobility and fall risk in older adults with dementia[J]. IEEE journal of translational engineering in health and medicine, 2020, 8: 1-9.
[39] GUO Y, DELIGIANNI F, GU X, et al. 3-D canonical pose estimation and abnormal gait recognition with a single RGB-D camera[J]. IEEE Robotics and Automation letters, 2019, 4(4): 3617-3624.
[40] YAN Q, HUANG J, WU D, et al. Intelligent gait analysis and evaluation system based on cane robot[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 2916-2926.
[41] WU F Y, ASADA H H. Implicit and intuitive grasp posture control for wearable robotic fingers: a data-driven method using partial least squares[J]. IEEE Transactions on Robotics, 2016, 32(1): 176-186.
[42] TOWNSEND M A. Biped gait stabilization via foot placement[J]. Journal of biomechanics, 1985, 18(1): 21-38.
[43] HURT C P, ROSENBLATT N, CRENSHAW J R, et al. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults[J]. Gait & posture, 2010, 31(4): 461-464.
[44] WANG Y, SRINIVASAN M. Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking[J]. Biology letters, 2014, 10(9): 20140405.
[45] CHEN X, ZHANG K, LIU H, et al. A probability distribution model-based approach for foot placement prediction in the early swing phase with a wearable imu sensor[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2595-2604.
[46] ZHANG K, LIU H, FAN Z, et al. Foot placement prediction for assistive walking by fusing sequential 3D gaze and environmental context[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2509-2516.
[47] LIM B, KIM K, LEE J, et al. An event-driven control to achieve adaptive walking assist with gait primitives[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 5870-5875.
[48] ZHANG J, FIERS P, WITTE K A, et al. Human-in-the-loop optimization of exoskeleton assistance during walking[J]. Science, 2017, 356(6344): 1280-1284.
[49] HOLGATE M A, SUGAR T G, BOHLER A W. A novel control algorithm for wearable robotics using phase plane invariants[C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009: 3845-3850.
[50] MEDRANO R L, THOMAS G C, KEAIS C G, et al. Real-time gait phase and task estimation for controlling a powered ankle exoskeleton on extremely uneven terrain[J]. IEEE Transactions on Robotics, 2023.
[51] YOUNG A J, FOSS J, GANNON H, et al. Influence of power delivery timing on the energetics and biomechanics of humans wearing a hip exoskeleton[J]. Frontiers in bioengineering and biotechnology, 2017, 5: 4.
[52] GASPARRI G M, LUQUE J, LERNER Z F. Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(4): 751-759.
[53] BISHE S S P A, NGUYEN T, FANG Y, et al. Adaptive ankle exoskeleton control: Validation across diverse walking conditions[J]. IEEE Transactions on Medical Robotics and Bionics, 2021, 3(3): 801-812.
[54] TAN X, ZHANG B, LIU G, et al. A time-independent control system for natural human gait assistance with a soft exoskeleton[J]. IEEE Transactions on Robotics, 2022, 39(2): 1653-1667.
[55] WU Q, WANG X, DU F, et al. Design and control of a powered hip exoskeleton for walking assistance[J]. International Journal of Advanced Robotic Systems, 2015, 12(3): 18.
[56] MOLINARO D D, KANG I, CAMARGO J, et al. Subject-independent, biological hip moment estimation during multimodal overground ambulation using deep learning[J]. IEEE Transactions on Medical Robotics and Bionics, 2022, 4(1): 219-229.
[57] GIOVACCHINI F, VANNETTI F, FANTOZZI M, et al. A light-weight active orthosis for hip movement assistance[J]. Robotics and Autonomous Systems, 2015, 73: 123-134.
[58] 深圳作为科技有限公司. 智能助行机器人[EB/OL]. http://www.zuowei.com/article/295/41.html, 2021.
[59] SHIMADA H, KIMURA Y, SUZUKI T, et al. The use of positron emission tomography and
[18F]fluorodeoxyglucose for functional imaging of muscular activity during exercise with a stride assistance system[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 442-448.
[60] BUESING C, FISCH G, O’DONNELL M, et al. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial[J]. Journal of neuroengineering and rehabilitation, 2015, 12: 1-14.
[61] REBULA J R, OJEDA L V, ADAMCZYK P G, et al. Measurement of foot placement and its variability with inertial sensors[J]. Gait & posture, 2013, 38(4): 974-980.
[62] HAO M, CHEN K, FU C. Smoother-based 3-D foot trajectory estimation using inertial sensors[J]. IEEE Transactions on Biomedical engineering, 2019, 66(12): 3534-3542.
[63] QI W, WANG N, SU H, et al. DCNN based human activity recognition framework with depth vision guiding[J]. Neurocomputing, 2022, 486: 261-271.
[64] BAO T, ZAIDI S A R, XIE S, et al. Inter-subject domain adaptation for CNN-based wrist kinematics estimation using sEMG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1068-1078.
[65] HUANG C, XIAO Y, XU G. Predicting human intention-behavior through EEG signal analysis using multi-scale CNN[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 18(5): 1722-1729.
[66] TELEA A. An image inpainting technique based on the fast marching method[J]. Journal of graphics tools, 2004, 9(1): 23-34.
[67] NEUMANN D A. Kinesiology of the musculoskeletal system-e-book: kinesiology of the musculoskeletal system-e-book[M]. Elsevier Health Sciences, 2016.
[64] Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants.
[68] KAWAI H, OBUCHI S, WATANABE Y, et al. Association between daily living walking speed and walking speed in laboratory settings in healthy older adults[J]. International journal of environmental research and public health, 2020, 17(8): 2707.
[69] SLADE P, KOCHENDERFER M J, DELP S L, et al. Personalizing exoskeleton assistance while walking in the real world[J]. Nature, 2022, 610(7931): 277-282.
[70] CAMARGO J, RAMANATHAN A, FLANAGAN W, et al. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions[J]. Journal of Biomechanics, 2021, 119: 110320.
[71] ANTONELLIS P, MOHAMMADZADEH GONABADI A, MYERS S A, et al. Metabolically efficient walking assistance using optimized timed forces at the waist[J]. Science robotics, 2022, 7(64): eabh1925.
[72] MOLINARO D D, KANG I, YOUNG A J. Estimating human joint moments unifies exoskeleton control, reducing user effort[J]. Science Robotics, 2024, 9(88): eadi8852.
[73] QIAN Y, CHEN C, XIONG J, et al. Terrain-adaptive exoskeleton control with predictive gait mode recognition: a pilot study during level walking and stair ascent[J]. IEEE Transactions on Medical Robotics and Bionics, 2024.
[74] QIAN Y, YU H, FU C. Adaptive oscillator-based assistive torque control for gait asymmetry correction with a nsea-driven hip exoskeleton[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 2906-2915.
[75] AGUIRRE-OLLINGER G, NARAYAN A, YU H. Phase-synchronized assistive torque control for the correction of kinematic anomalies in the gait cycle[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(11): 2305-2314.
修改评论