中文版 | English
题名

焦耳热制备高熵合金催化剂及其在锌空气电池中的应用

其他题名
PREPARATION OF HIGH-ENTROPY ALLOY CATALYST BY JOULE HEATING AND ITS APPLICATION IN ZINC-AIR BATTERIES
姓名
姓名拼音
GAO Leyi
学号
12232081
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
钟熊伟
导师单位
材料科学与工程系
论文答辩日期
2024-06
论文提交日期
2024-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

IrO2和RuO2等贵金属氧化物具有较高的氧析出催化活性,但其成本昂贵,而且动力学缓慢,在实际应用中会降低电池的稳定性。近年来,高熵合金催化剂以其独特的性质备受瞩目,高熵合金中不同原子之间形成的鸡尾酒效应、结构和晶格畸变效应以及动力学延迟扩散效应等,赋予了该材料优异的催化活性,因此高熵合金有望成为新型高效的氧析出反应催化剂。另一方面,锌-空气电池具有高能量密度、低成本和高安全性能的优点,有望成为下一代新能源电池应用于可穿戴电子器件和大规模储能。然而,锌-空气电池的催化剂仍面临着效率低和稳定性差等问题,因此,开发具有高活性和高稳定性的氧析出催化剂用于锌-空气电池十分关键。

本论文采用高效快速的焦耳热方法来制备高熵合金催化剂,大幅度简化了催化剂的制备工艺,缩短了制备时间。基于焦耳热快速升温与冷却特性,本论文成功设计并制备出了一种均匀的包覆型高熵合金氧析出催化剂,并进一步研究了其在可充电锌-空气电池和柔性电池中的应用。以氧化石墨烯和金属化合物为前驱体,通过焦耳热方法快速制备了还原氧化石墨烯(rGO)包覆的Fe8Ni8CoMnCu高熵合金催化剂材料。高熵合金催化剂均匀分散在大比表面积的rGO表面,可以充分暴露活性位点,提高了催化活性。此外,高结晶度的rGO包覆层可以有效提高催化剂的晶体结构稳定性,从而提高了催化剂的催化稳定性。基于该催化剂的可充电锌-空气在电流密度为10 mA·cm-2条件下实现了高达800 mAh·gZn-1的比容量,并且可稳定循环250小时。为了进一步探究使用焦耳热方法在二维过渡金属硫化物制备包覆型高熵合金的可行性,本论文以二硫化钼作为载体,通过焦耳热方法成功地合成了Fe8Ni8CoMnCu0.5/MoS2催化剂材料。以Fe8Ni8CoMnCu0.5/MoS2作为空气阴极装配成可充电锌-空气电池,在电流密度为10 mA·cm-2的充放电下可稳定循环超过250小时,同时也展示了其在可穿戴柔性电子器件中的应用。

其他摘要

Noble metal oxides such as IrO2 and RuO2 have high oxygen evolution catalytic activity, but their high cost and slow kinetics reduce the stability of batteries in practical applications. In recent years, high-entropy alloy catalysts have attracted much attention for their unique properties. The cocktail effect, structural and lattice distortion effects, and kinetic delayed diffusion effects formed between different atoms in high-entropy alloys endow the material with excellent catalytic activity. Therefore, high-entropy alloys are expected to become a new efficient catalyst for the oxygen evolution reaction. On the other hand, zinc-air batteries have the advantages of high energy density, low cost, and high safety performance, which are expected to be applied in next-generation new energy batteries for wearable electronic devices and large-scale energy storage. However, the catalysts for zinc-air batteries still face problems such as low efficiency and poor stability. Therefore, it is crucial to develop oxygen evolution catalysts with high activity and stability for zinc-air batteries.

This paper adopts efficient and rapid Joule heating to prepare high-entropy alloy catalysts, which significantly simplifies the preparation process of the catalyst and shortens the preparation time. Based on the rapid heating and cooling characteristics of Joule heating, a uniformly dispersed encapsulated high-entropy alloy oxygen evolution catalyst is successfully designed and prepared, and further research is conducted on its application in rechargeable zinc-air batteries and flexible batteries. Using graphene oxide and metal compounds as precursors, the reduced graphene oxide (rGO) encapsulated Fe8Ni8CoMnCu high-entropy alloy catalyst material is prepared by rapid Joule heating. The high-entropy alloy is uniformly dispersed on the large specific surface area of rGO, which can fully expose the active sites, thereby improving the catalytic activity. Additionally, the high crystallinity of the rGO encapsulation layer can effectively improve the stability of the catalyst's crystal structure, enhancing the catalyst's catalytic stability. Based on this catalyst, the rechargeable zinc-air battery achieves a specific capacity of up to 800 mAh·gZn-1 at a current density of 10 mA·cm-2 and can stably cycle for 250 h. To further investigate the feasibility in the preparation of encapsulated high entropy alloys by two-dimensional transition metal sulfides, we also successfully synthesized Fe8Ni8CoMnCu0.5/MoS2 catalyst, with molybdenum disulfide as the support using the Joule heating. The rechargeable zinc-air battery assembled with Fe8Ni8CoMnCu0.5/MoS2 as the air cathode demonstrated stable cycling for over 250 h at a current density of 10 mA cm-2, highlighting its significance in portable flexible battery devices.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] FABER M S, JIN S. Earth -abundant inorganic electrocatalysts and their nanostructures for energy conversion applications [J]. Energy & Environmental Science, 2014, 7(11): 3519 -3542.
[2] SOEST H V, KURAMOCHI T, NASCIMENTO L, et al. Greenhouse gas emission scenarios in nine key non -G20 countries: An assessment of progress toward 2030 climate targets [J]. Environmental Science & Policy, 2021, 123(March): 67-81.
[3] LIU H, CHEN G, LI D, et al. Energy active adjustment and bidirectional transfer management strategy of the electro -hydrostatic hydraulic hybrid powertrain for battery bus [J]. Energy, 2021, 230 : 120794.
[4] MELIN H. Towards a solution to the energy crisis [J]. Nature Astronomy, 2020, 4(9): 837-838.
[5] XU M, IVEY D G, XIE Z, et al. Rechargeable Zn -air batteries: Progress in electrolyte development and cell configuration advancement [J]. Journal of Power Sources, 2015, 283: 358 -371.
[6] KYLE P, HEJAZI M, KIM S, et al. Assessing the future of global energy -for water [J]. Environmental Research Letters, 2021, 16(2): 024031.
[7] NG K H, LAI S Y, CHENG C K, et al. Photocatalytic water splitting for solving energy crisis: Myth, Fact or Busted? [J]. Chemical Engineering Journal, 2021, 417: 128847.
[8] NOCERA D G. Solar Fuels and Solar Chemicals Industry [J]. Accounts of Chemical Research, 2017, 50(3): 616 -619.
[9] QU W, HONG H, JIN H. A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel [J]. Applied Energy, 2019, 248: 162 -173.
[10] SHOAIB M, SIDDIQUI I, REHMAN S, et al. Assessment of wind energy potential using wind energy conversion system [J]. Journal of Cleaner Production, 2019, 216: 346-360.
[11] BAI L, WEN X, GUAN J. Amorphous Fe -Co-Ni oxide for oxygen evolution reaction [J]. Materials Today Energy, 2019, 12: 311 -317.
[12] LIU D, AI H, LI J, et al. Surface Reconstruction and Phase Transition on Vanadium–Cobalt–Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation [J]. Advanced Energy Materials, 2020, 10(45): 2002464.
[13] GRAU L, JUNG C, SCHINDLER D. Sounding out the repowering potential of wind energy – A scenario-based assessment from Germany [J]. Journal of Cleaner Production, 2021, 293: 126094.
[14] QU W, XING X, CAO Y, et al. A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes [J]. Applied Energy, 2020, 262: 114421.
[15] XIAO J, SHI F, GLOSSMANN T, et al. From laboratory innovations to materials manufacturing for lithium-based batteries [J]. Nature Energy, 2023, 8(4): 329-339.
[16] 缪平, 姚祯, 刘庆华, 等. 电池储能技术研究进展及展望 [J]. 储能科学与技术, 2020, 9(03): 670-678.
[17] CHENG F, CHEN J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts [J]. Chemical Society Reviews, 2012, 41(6): 2172-21792.
[18] LEE J-S, KIM S T, CAO R, et al. Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air [J]. Advanced Energy Materials, 2011, 1(1): 34 -50.
[19] ZHONG X, YE S, TANG J, et al. Engineering Pt and Fe Dual-Metal Single Atoms Anchored on Nitrogen-Doped Carbon with High Activity and Durability towards Oxygen Reduction Reaction for Zinc -Air Battery [J]. Applied Catalysis B: Environmental, 2021, 286: 119891.
[20] ZHONG X, YI W, QU Y, et al. Co single -atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc -air batteries [J]. Applied Catalysis B: Environmental, 2020, 260: 118188.
[21] JIN Z, LV J, JIA H, et al. Nanoporous Al-Ni-Co-Ir-Mo High-Entropy Alloy for Record-High Water Splitting Activity in Acidic Environments [J]. Small (Weinheim an der Bergstrasse, Germany), 2019, 15(47): e1904180.
[22] JIANG Y, DENG Y P, LIANG R, et al. d -Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc -air battery [J]. Nature Communications, 2020, 11(1): 5858.
[23] YANG D, ZHANG L, YAN X, et al. Recent Progress in Oxygen Electrocatalysts for Zinc -Air Batteries [J]. Small Methods, 2017, 1(12): 1700209.
[24] GUO B, ZHANG X, LIN X, et al. Combining potassium with positive oxygen -balanced polynitropyrazole: a promising way to develop green primary explosives [J]. New Journal of Chemistry, 2021, 45(43): 20426 -20431.
[25] HUANG Z-F, XI S, SONG J, et al. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst [J]. Nature Communications, 2021, 12(1): 3992.
[26] CHEN F-Y, WU Z-Y, ADLER Z, et al. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design [J]. Joule, 2021, 5(7): 1704-1731.
[27] KUO D-Y, KAWASAKI J K, NELSON J N, et al. Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO2(110) [J]. Journal of the American Chemical Society, 2017, 139(9): 3473 -3479.
[28] GRIMAUD A, DIAZ-MORALES O, HAN B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution [J]. Nature Chemistry, 2017, 9(5): 457-465.
[29] HUANG Z-F, SONG J, DU Y, et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts [J]. Nature Energy, 2019, 4(4): 329 -338.
[30] WANG X, ZHONG H, XI S, et al. Understanding of Oxygen Redox in the Oxygen Evolution Reaction [J]. Advanced Materials, 2022, 34(50): 2107956.
[31] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives [J]. Chemical Society Reviews, 2017, 46(2): 337 -365.
[32] DAMJANOVIC A, JOVANOVIC B. Anodic Oxide Films as Barriers to Charge Transfer in  O 2 Evolution at Pt in Acid Solutions [J]. Journal of The Electrochemical Society, 1976, 123(3): 374.
[33] BINNINGER T, MOHAMED R, WALTAR K, et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts [J]. Scientific Reports, 2015, 5(1): 12167.
[34] ZHANG N, CHAI Y. Lattice oxygen redox chemistry in solid -state electrocatalysts for water oxidation [J]. Energy & Environmental Science, 2021, 14(9): 4647-4671.
[35] WU Z-P, LU X F, ZANG S-Q, et al. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction [J]. Advanced Functional Materials, 2020, 30(15): 1910274.
[36] HU Y, LUO X, WU G, et al. Engineering the Atomic Layer of RuO2 on PdO Nanosheets Boosts Oxygen Evolution Catalysis [J]. Acs Applied Materials & Interfaces, 2019, 11(45): 42298 -42304.
[37] SUN Y, ZHANG X, LUO M, et al. Ultrathin PtPd -Based Nanorings with Abundant Step Atoms Enhance Oxygen Catalysis [J]. Advanced Materials, 2018, 30(38): 1802136.
[38] TANG Q H, HUANG Y, HUANG Y Y, et al. Hardening of an Al0.3CoCrFeNi high entropy alloy via high -pressure torsion and thermal annealing [J]. Materials Letters, 2015, 151: 126 -129.
[39] GONG M, LI Y, WANG H, et al. An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation [J]. Journal of the American Chemical Society, 2013, 135(23): 8452 -8455.
[40] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448 -511.
[41] WANG Z, QIU W, YANG Y, et al. Atomic -size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements [J]. Intermetallics, 2015, 64: 63 -69.
[42] DABROWA J, ZAJUSZ M, KUCZA W, et al. Demystifying the sluggish diffusion effect in high entropy alloys [J]. Journal of Alloys and Compounds, 2019, 783: 193-207.
[43] CAO B X, WANG C, YANG T, et al. Cocktail effects in understanding the stability and properties of face -centered-cubic high-entropy alloys at ambient and cryogenic temperatures [J]. Scripta Materialia, 2020, 187: 250 -255.
[44]LI K, CHEN W. Recent progress in high -entropy alloys for catalysts: synthesis, applications, and prospects [J]. Materials Today Energy, 2021, 20 : 100638.
[45] TANG J, XU J L, YE Z G, et al. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. Journal of Materials Science & Technology, 2021, 79: 171 -177.
[46] CUI G, HAN B, YANG Y, et al. Microstructure and tribological property of CoCrFeMoNi High entropy alloy treated by ion sulfurization [J]. Journal of Materials Research and Technology, 2020, 9(2): 2598 -2609.
[47] NANDAN R, REKHA M Y, DEVI H R, et al. High -entropy alloys for water oxidation: a new class of electrocatalysts to look out for [J]. Chemical Communications, 2021, 57(5): 611 -614.
[48] LU Y, HUANG K, CAO X, et al. Atomically Dispersed Intrinsic Hollow Sites of M-M1-M (M1 = Pt, Ir; M = Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr Nanocrystals Enabling Rapid Water Redox [J]. Advanced Functional Materials, 2022, 32(19): 2110645.
[49] ZHU H, ZHU Z, HAO J, et al. High -entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution [J]. Chemical Engineering Journal, 2022, 431: 133251.
[50] JIN Z, LYU J, ZHAO Y-L, et al. Rugged High-Entropy Alloy Nanowires with in Situ Formed Surface Spinel Oxide As Highly Stable Electrocatalyst in Zn -Air Batteries [J]. Acs Materials Letters, 2020, 2(12): 1698 -1706.
[51] HUANG K, ZHANG B, WU J, et al. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub -5 nm pure face -centred cubic high-entropy alloy electrocatalyst [J]. Journal of Materials Chemistry A, 2020, 8(24): 11938-11947.
[52] YANG P, YANG X, LIU W, et al. Graphene -based electrocatalysts for advanced energy conversion [J]. Green Energy & Environment, 2023, 8(5): 1265 -78.
[53] DENG D, YU L, CHEN X, et al. Iron Encapsulated within Pod -like Carbon Nanotubes for Oxygen Reduction Reaction [J]. Angewandte Chemie International Edition, 2013, 52(1): 371 -375.
[54] TU Y, REN P, DENG D, et al. Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation [J]. Nano Energy, 2018, 52: 494-500.
[55] XING L L, LIU R, GONG Z C, et al. Ultrafast Joule heating synthesis of hierarchically porous graphene -based Co-N-C single-atom monoliths [J]. NANO RESEARCH, 2022, 15(5): 3913 -3919.
[56] ZHAO Z, SUN J, LI Z, et al. Rapid synthesis of efficient Mo -based electrocatalyst for the hydrogen evolution reaction in alkaline seawater with 11.28% solar-to-hydrogen efficiency [J]. Journal of Materials Chemistry A, 2023, 11(19): 10346-10359.
[57] CHEN Y, XU S, LI Y, et al. FeS2 Nanoparticles Embedded in Reduced Graphene Oxide toward Robust, High -Performance Electrocatalysts [J]. Advanced Energy Materials, 2017, 7(19): 1700482.
[58] LI C, WANG Z, LIU M, et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction [J]. Nature Communications, 2022, 13(1): 3338.
[59] CUI M, YANG C, LI B, et al. High -Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction [J]. Advanced Energy Materials, 2021, 11(3): 2002887.
[60] REKHA M Y, MALLIK N, SRIVASTAVA C. First Report on High Entropy Alloy Nanoparticle Decorated Graphene [J]. Scientific Reports, 2018, 8(1): 8737.
[61] LIU M, ZHANG Z, OKEJIRI F, et al. Entropy -Maximized Synthesis of Multimetallic Nanoparticle Catalysts via a Ultrasonication -Assisted Wet Chemistry Method under Ambient Conditions [J]. Advanced Materials Interfaces, 2019, 6(7): 1900015.
[62] QIU H-J, FANG G, WEN Y, et al. Nanoporous high -entropy alloys for highly stable and efficient catalysts [J]. Journal of Materials Chemistry A, 2019, 7(11): 6499-6506.
[63] TSAI C-F, WU P-W, LIN P, et al. Sputter Deposition of Multi-Element Nanoparticles as Electrocatalysts for Methanol Oxidation [J]. Japanese Journal of Applied Physics, 2008, 47(7R): 5755.
[64] YAO Y, HUANG Z, XIE P, et al. Carbothermal shock synthesis of high -entropy-alloy nanoparticles [J]. Science, 2018, 359(6383): 1489 -1494.
[65] HU W, PENG Y, WEI Y, et al. Application of Electrochemical ImpedanceSpectroscopy to Degradation and Aging Research of Lithium -Ion Batteries [J]. The Journal of Physical Chemistry C, 2023, 127(9): 4465 -95.
[66] HUANG J, WANG P, LI P, et al. Regulating electrolytic Fe0.5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution [J]. Journal of Materials Science & Technology, 2021, 93: 110 -118.
[67] SHARMA L, KATIYAR N K, PARUI A, et al. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER) [J]. Nano Research, 2022, 15(6): 4799-4806.
[68] CUI X, ZHANG B, ZENG C, et al. Electrocatalytic activity of high -entropy alloys toward oxygen evolution reaction [J]. MRS Communications, 2018, 8(3): 1230-1235.
[69] CHEN H, GUAN C, FENG H. Pt-Based High-Entropy Alloy Nanoparticles as Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution [J]. ACS Applied Nano Materials, 2022, 5(7): 9810 -9817.
[70] ZHANG Y, DAI W, ZHANG P, et al. In -situ electrochemical tuning of (CoNiMnZnFe)3O3.2 high-entropy oxide for efficient oxygen evolution reactions [J]. Journal of Alloys and Compounds, 2021, 868: 159064.
[71] GU Y, BAO A, WANG X, et al. Engineering the oxygen vacancies of rocksalt -type high-entropy oxides for enhanced electrocatalysis [J]. Nanoscale, 2022, 14(2): 515-524.
[72] HE K, CAO Z, LIU R, et al. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction [J]. Nano Research, 2016, 9(6): 1856 -1865.
[73] WANG C, CHEN W, YUAN D, et al. Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions [J]. Nano Energy, 2020, 69: 104453.
[74] ZHOU G, LI M, LI Y, et al. Regulating the Electronic Structure of CoP Nanosheets by O Incorporation for High -Efficiency Electrochemical Overall Water Splitting [J]. Advanced Functional Materials, 2020, 30(7): 1905252.
[75] WANG X, LIU M, YU H, et al. Oxygen -deficient 3D-ordered multistage porous interfacial catalysts with enhanced water oxidation performance [J]. Journal of Materials Chemistry A, 2020, 8(43): 22886 -22892.
[76] CHEN J, FAN C, HU X, et al. Hierarchically Porous Co/CoxMy (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries [J]. Small, 2019, 15(28): 1901518.
[77] QIU H-J, FANG G, GAO J, et al. Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction [J]. ACS Materials Letters, 2019, 1(5): 526 -533.
[78] FANG G, GAO J, LV J, et al. Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries [J]. Applied Catalysis B: Environmental, 2020, 268: 118431.
[79] CHEN B, HE X, YIN F, et al. MO-Co@N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn –Air Battery [J]. Advanced Functional Materials, 2017, 27(37): 170 0795.
[80] XU X, XIE J, LIU B, et al. PBA-derived FeCo alloy with core -shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries [J]. Applied Catalysis B: Environmental, 2022, 316: 121687.
[81] LUO Y, ZHANG D, HE Y, et al. Intergrated morphology engineering and alloying strategy for FeNi@NC Catalysts: Tackling the polysulfide shuttle in Li-S batteries [J]. Chemical Engineering Journal, 2023, 474: 145751.
[82] FAN K, LI Z, SONG Y, et al. Confinement Synthesis Based on Layered Double Hydroxides: A New Strategy to Construct Single -Atom-Containing Integrated Electrodes [J]. Advanced Functional Materials, 2021, 31(10): 2008064.
[83] WANG X, WANG J, WANG P, et al. Engineering 3d –2p–4f Gradient Orbital Coupling to Enhance Electrocatalytic Oxygen Reduction [J]. Advanced Materials, 2022, 34(42): 2206540.
[84] XU R, LUO F, LI M, et al. Ultrafine cobalt nitride nanoparticles supported on carbon nanotubes as efficient electrocatalyst for rechargeable zinc –air batteries [J]. Chemical Communications, 2019, 55(89): 13394 -13397.
[85] ZHOU Q, ZHANG Z, CAI J, et al. Template -guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn -air batteries [J]. Nano Energy, 2020, 71: 104592.
[86] WANG T, CHEN H, YANG Z, et al. High -Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis [J]. Journal of the American Chemical Society, 2020, 142(10): 4550 -4554.
[87] FU M, MA X, ZHAO K, et al. High-entropy materials for energy -related applications [J]. iScience, 2021, 24(3): 102177.
[88] MEI Y, FENG Y, ZHANG C, et al. High -Entropy Alloy with Mo-Coordination as Efficient Electrocatalyst for Oxygen Evolution Reaction [J]. ACS Catalysis, 2022, 12(17): 10808-10817.
[89] LU J, LIU H, TOK E S, et al. Interactions between lasers and two -dimensional transition metal dichalcogenides [J]. Chemical Society Reviews, 2016, 45(9): 2494-2515.
[90] FLEISCHMANN S, MITCHELL J B, WANG R, et al. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials [J]. Chemical Reviews, 2020, 120(14): 6738 -6782.
[91] ALINEJADIAN N, KOLLO L, ODNEVALL I. Progress in additive manufacturing of MoS2-based structures for energy storage applications – A review [J]. Materials Science in Semiconductor Processing, 2022, 139: 106331.
[92] 孙娅, 吴长军, 刘亚, 等. 合金元素对 CoCrFeNi 基高熵合金相组成和力学性能影响的研究现状 [J]. 材料导报, 2019, 33(7): 5.
[93] ZHU H, SUN S, HAO J, et al. A high -entropy atomic environment converts inactive to active sites for electrocatalysis [J]. Energy & Environmental Science, 2023, 16(2): 619-628.

所在学位评定分委会
材料与化工
国内图书分类号
TQ152
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766247
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
高乐怡. 焦耳热制备高熵合金催化剂及其在锌空气电池中的应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232081-高乐怡-材料科学与工程(6615KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[高乐怡]的文章
百度学术
百度学术中相似的文章
[高乐怡]的文章
必应学术
必应学术中相似的文章
[高乐怡]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。