中文版 | English
题名

基于电路应用的片上变压器建模和优化

其他题名
MODELING AND OPTIMIZATION OF ON- CHIP TRANSFORMER FOR CIRCUIT APPLICATION
姓名
姓名拼音
YI Hongzhen
学号
12132157
学位类型
硕士
学位专业
080902 电路与系统
学科门类/专业学位类别
08 工学
导师
程庆沙
导师单位
电子与电气工程系
论文答辩日期
2024-05-08
论文提交日期
2024-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  随着无线通信技术的发展,无线通信的应用也在不断更新,如第五代
通信、物联网、自动驾驶等。而射频电路是无线通信的重要组成部分,实
现高性能的射频集成电路对无线通信的发展尤为重要。
  在射频电路中,片上变压器是一种结构复杂的无源器件,广泛应用于
电路应用,如低噪声放大器、压控振荡器、注入式锁定分频器等。但是硅
CMOS 工艺厂商基本不提供片上变压器模型,难以满足特定电路中具有
有特定结构的片上变压器设计需求。因此,为了提高电路设计效率,本文
提出了一种基于替代模型的片上变压器建模和优化方法。
  本文研究了片上变压器建模和基于电路应用的综合优化方法,重点研
究内容如下:
1)为了达到性能要求,片上变压器的设计需要丰富的人工经验以及
基于电磁仿真的扫参过程。整个过程费时费力,并且有可能找不到最优解。
针对这种情况,本研究使用克里金模型对片上变压器全波电磁仿真模型建
立了参数化的替代模型,可嵌入电路网络中,实现高效协同优化。
2)对包含变压器替代模型的电路网络进行协同优化时,会引入电路
参数,从而增加变量的维度,提高求解的复杂度,导致难以找到最优解。
针对场路协同优化的难题,本研究对粒子群算法进行改进,提出了级联粒
子群算法。该算法结合变压器的替代模型,形成了综合优化方法,分别对
变压器参数和电路网络参数进行优化,可以使电路网络实现特定功能。
3)针对注入式锁定分频器对锁定范围的需求,提出了适合谐振电路
网络的优化目标函数。通过综合优化方法所优化出的参数可使谐振网络的
锁定范围达到 24.8-36.5 (38.17%),实现了较大的锁定范围,满足了电路设
计需求。电磁仿真的结果验证了级联粒子群算法的可行性;针对阻抗匹配
网络的需求,提出了适合匹配电路网络的优化目标函数。通过综合优化方
法所优化出的网络参数实现了阻抗匹配,匹配程度比较好,带宽较大,满
足了阻抗匹配网络的需求。经过电磁仿真的验证,表明了综合优化方法适
用于阻抗匹配网络参数的快速优化,可应用于实际电路的设计。
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] LAL D, ALI A and RICKETTS D. Analysis and comparison of high-resolution GS/ssamplers in advanced BiCMOS and CMOS[J]. IEEE Transactions on Circuits andSystems II: Express Briefs, 2018, 65(5): 532-536.
[2] WATANABE T et al. Comparison of CMOS and BiCMOS 1-Mbit DRAM performance[J]. IEEE Journal of Solid-State Circuits, 1989, 24(3): 771-778.
[3] KAZIOR TE. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems[J]. Philos Trans A Math Phys Eng Sci, 2014, 24: 372.
[4] BIERBUESSE D and NEGRA R. Insertion-Loss optimization of transformer-based matching networks for mm-Wave Applications[C]. 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), Tallinn, Estonia, 2018, 1-5,
[5] HOSSAIN M. S, FUJISHIMA M, YOSHIDA T, AMAKAWA S and RASHID M. M. Design of CMOS on-chip transformer coupled matching network for millimeter-wave amplifiers with optimal chip Area[C]. 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 2019, 1-6.
[6] JIA H, PRAWOTO C. C, CHI B, WANG Z and YUE C. P. A 32.9% PAE, 15.3 dBm, 21.6–41.6 GHz power amplifier in 65nm CMOS using coupled resonators[C]. 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, Japan, 2016, 345- 348.
[7] TSAI J. H. Design of a 5.2-GHz CMOS power amplifier Using TF-based 2-stage dual-radial power splitting/combining Architecture[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66: 3690-3699.
[8] LI K, LIU B, CHI P. L, WANG Y AND YANG T. A 2.2–3.6 GHz CMOS reconfigurable fourth-order bandpass filter with compact size and high Selectivity Using Transformer-Type Resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71: 218-229.
[9] SHIN W, CALLENDER S, PELLERANO S, and HULL C. A compact 75 GHz LNA with 20 dB gain and 4 dB noise figure in 22 nm FinFET CMOS technology[C]. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2018, 284-287.
[10] GHADIRI A and MOEZ K. Bandwidth enhancement of on-chip transformers using negative capacitance[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59: 648-652.
[11] ELKHOLY M, SHAKIB S, DUNWORTH J, APARIN V and ENTESARI K. A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS[J]. IEEE Microwave and Wireless Components Letters, 2017, 28: 64-66.
[12] HU S, WANG F and WANG H. A 28 GHz/37 GHz/39 GHz multiband linear Doherty power amplifier for 5G massive MIMO applications[C]. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2017, 32-33.
[13] 郁翀宇.基于片上变压器耦合的 CMOS 毫米波功率放大器研究[D].东南大学.
[14] WAN J et al. A 20.65-to-40.55 GHz dual-core quad-mode VCO with modeindependent transformer-switching Technique in 65-nm CMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023,70: 4073-4077.
[15] NASR I, LAEMMLE B, KNAPP H, FISCHER G, WEIGEL R and KISSINGER D. A wide tuning range high output power 56-74 GHz VCO with on-chip transformer load in SiGe technology[C]. 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Santa Clara, CA, USA, 2012, 49-52.
[16] ZHANG J, LIU H, WU Y, ZHAO C, KANG K. Analysis and design of ultra- wideband mm-wave injection-locked frequency dividers using transformer-based high-order resonators[J]. IEEE J. Solid-State Circuits, 2018, 53: 2177-2189.
[17] KIHARA S, MATSUDA and YOSHIMURA T. Analysis and design of differentialLNAs with on-chip transformers in 65-nm CMOS technology[C]. 2016 14th IEEEInternational New Circuits and Systems Conference (NEWCAS), Vancouver, BC, Canada, 2016, 1-4.
[18] HOSSAIN S, FUJISHIMA M, YOSHIDA T, AMAKAWA S and RASHID M M. Design of CMOS on-chip millimeter-wave transformer coupled balun and power divider-combiner with optimal amplitude and phase imbalance[C]. 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 2019, 1-7.
[19] WU R, CHEN J, LIAO N and FANG X. On-chip transformers with shielding structures for high dV/dt immunity isolated gate drive[C]. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, 1-6.
[20] FRUTUOSO T M. Nanowire-based 3-D transmission-Line transformer for millimeter-wave applications[J]. IEEE Microwave and Wireless Components Letters, 2022, 32:1171-1174.
[21] LEITE B, KERHERVE E, BEGUERET J.B and BELOT D. An analytical broadband model for millimeter-wave transformers in silicon technologies[J]. IEEE Transactions on Electron Devices, 2012, 59: 582-589.
[22] MOISIADIS Y, NIKELIS K and PAPADOPOULOS P. A methodology for integrated transformer compact modeling[C]. 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 2017, 1-4.
[23] LAN M et al. An improved six-port equivalent-circuit model for millimeter-wave on- chip transformers with accurate coupling factor modeling[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69: 3989-4000.
[24] KOZIEL S, PIETRENKO A D, CHENG Q S and ZHANG Z. Low cost surrogate modeling of compact microstrip circuits in highly-dimensional parameters spaces using variable-fidelity nested co-kriging[C]. 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling andOptimization (NEMO), Hangzhou, China, 2020, 1-4.
[25] WEI Y, WEI J, WU Q and WANG H. Machine learning-assisted on-chip quadrilateral interleaved transformer automatic synthesis[C]. 2023 16th UK-Europe- China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Guangzhou, China, 2023, 1-3.
[26] BARDEH M G, FU J, NASEH N, PARAMESH J and ENTESARI K. A mm-wave wideband/reconfigurable LNA using a 3-winding transformer load in 22-nm CMOS FDSOI[C]. 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Diego, CA, USA, 2023, 121-124.
[27] JEON T, YOO K, KIM T and CHEON J. Advanced impedance matching technology to optimize RF circuit design of practical wireless systems[C]. 2017 Asia-PacificInternational Symposium on Electromagnetic Compatibility (APEMC), Seoul, Korea(South), 2017, pp. 328-330.
[28] YIN S, WANG R, ZHANG J and WANG Y. Asynchronous parallel expected improvement matrix-based constrained multi-objective optimization for analog circuit sizing[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 9, pp. 3869-3873, Sept. 2022.
[29] PARK H and et al. Scalable transformer network-based reinforcement learning method for psij optimization in HBM[C]. 2022 IEEE 31st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2022, 1-3.
[30] 史丽云.基于异质集成工艺的毫米波片上无源器件建模及参数提取研究[D].华东师范大学.
[31] BAJWA R, YAPICI M. Integrated on-chip transformers: recent progress in the design, layout, modeling and fabrication[J]. Sensors. 2019, 19(16):3535.
[32] CHEN W, HSU K. Miniaturized 3-Dimensional transformer design[C]. Proceedings of the IEEE 2005 Custom Integrated Circuits Conference 2005, pp. 285–288.
[33] LUONG H.C, YIN J. Transformer design and characterization in CMOS process[C]. Transformer-Based Design Techniques for Oscillators and Frequency Dividers Springer: Cham, Switzerland, 2016, 7–19.
[34] HSU, H, LAI S, TSENG C, FU G. Layout design of on-chip transformer with uniform variation of coil widths[C]. Proceedings of the 2009 European Microwave Conference (EuMC), Rome, Italy, 2009.
[35] CHEN C, PAN P, GU J, LIU M and LI X. Design and wafer-level fabrication of stacked-type transformers for High-Density Power Converters[J]. IEEE Transactionson Power Electronics.2024
[36] KANG K, GAO Z. Characterization and modeling of multiple coupled Inductors Based on on-chip four-port measurement[J]. IEEE Transactions on Components and Packaging Technologies, 2014, 4(10):1696-1704.
[37] CHUNG E, LIM G, C, HA J. I and PERREAULT D J. Resonant converter design using two-port passive network: single frequency design[C]. 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 2018, 1-7.
[38] CHEVALIER P, LIEBL, W, RUCKER H, GAUTHIER A, MANGER D, HEINEMANN B, AVENIER G, BOCK J. SiGe BiCMOS current status and future trends in Europe[C]. Proceedings of the 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, USA, 2018, 64-71.
[39] SPASARO M, ZITO D. Millimeter-Wave integrated silicon devices: active versus passive—The eternal struggle between good and evil (Invited Paper)[C]. Proceedings of the 2019 International Semiconductor Conference (CAS), Sinaia, Romania, 2019, 11–20.
[40] 黄康,动化 王剑平. 常用电磁场仿真软件及其应用[C]. //中国农业工程学会电气信息与自专委会、中国电机工程学会农村电气化分会科技与教育专委会 2010 年学术年会. 2010.
[41] JI C and LIOU J J. Improved and physics-based model for symmetrical spiral inductors[J]. IEEE Transactions on Electron Devices, 2006, 53(6): 1300-1309.
[42] LEITE B, KERHERVE E, BEGUERET J, BELOT D. An analytical broadband nodel for nillimeter-wave transformers in silicon technologies[J]. IEEE Trans. Electron. Devices 2012, 59, 582–589.
[43] LEE Y, KIM C. Q-Enhanced 5GHz CMOS VCO using 4-port transformer [C]. IEEE Silicon Monolithic Integrated Circuits in RF Systems, 2007: 265-269.
[44] LEE D, SHIN G, LEE S, KIM K, OH T. H, and SONG H. J. Neural-network-based automated synthesis of transformer matching circuits for RF amplifier design[J]. IEEE Trans. Microw. Theory Techn. 2022, 70(11): 4726-4739.
[45] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining andMetallurgy, 1951, 52(6): 119-139.
[46] JONES D R. A Taxonomy of Global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383
[47] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4): 409-23.
[48] ZHOU Y. Study of sampling methods in Monte Carlo simulation[J]. Structure & Environment Engineering, 1997, 3: 14-18.
[49] KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceedings of theIEEE international conference on neural networks, vol. 4. 1995. 1942-1948.
[50] RAZAVI H AND RAZAVI B. A study of injection locking in oscillators andfrequency dividers[J]. IEEE J. Solid-State Circuits, 2023, 58(8): 2129-2140.
[51] RAZAVI B. A study of injection locking and pulling in oscillators[J]. IEEE J. Solid- State Circuits, 2004, 39(9): 1415-1424.
[52] JIANG Q and PAN Q. Analysis and design of tuning-less mm-wave injection-locked frequency dividers with wide locking range using 8th-order transformer-based resonator in 40 nm CMOS[J]. IEEE J. Solid-State Circuits, 2022, 57(9): 2812-2828.
[53] ZHU J, JIANG Q, MOSALAM H, ZHAN C, and PAN Q. A 19–48.3-GHz 6th-order transformer-based injection-locked frequency divider with 87.1% locking range in 40-nm CMOS[J]. IEEE Trans. Circuits Syst. II Exp. Briefs, 2021, 68(9): 3053-3057.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN61
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766248
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
易宏臻. 基于电路应用的片上变压器建模和优化[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132157-易宏臻-电子与电气工程(3431KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[易宏臻]的文章
百度学术
百度学术中相似的文章
[易宏臻]的文章
必应学术
必应学术中相似的文章
[易宏臻]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。