[1] LAL D, ALI A and RICKETTS D. Analysis and comparison of high-resolution GS/ssamplers in advanced BiCMOS and CMOS[J]. IEEE Transactions on Circuits andSystems II: Express Briefs, 2018, 65(5): 532-536.
[2] WATANABE T et al. Comparison of CMOS and BiCMOS 1-Mbit DRAM performance[J]. IEEE Journal of Solid-State Circuits, 1989, 24(3): 771-778.
[3] KAZIOR TE. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems[J]. Philos Trans A Math Phys Eng Sci, 2014, 24: 372.
[4] BIERBUESSE D and NEGRA R. Insertion-Loss optimization of transformer-based matching networks for mm-Wave Applications[C]. 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), Tallinn, Estonia, 2018, 1-5,
[5] HOSSAIN M. S, FUJISHIMA M, YOSHIDA T, AMAKAWA S and RASHID M. M. Design of CMOS on-chip transformer coupled matching network for millimeter-wave amplifiers with optimal chip Area[C]. 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 2019, 1-6.
[6] JIA H, PRAWOTO C. C, CHI B, WANG Z and YUE C. P. A 32.9% PAE, 15.3 dBm, 21.6–41.6 GHz power amplifier in 65nm CMOS using coupled resonators[C]. 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, Japan, 2016, 345- 348.
[7] TSAI J. H. Design of a 5.2-GHz CMOS power amplifier Using TF-based 2-stage dual-radial power splitting/combining Architecture[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66: 3690-3699.
[8] LI K, LIU B, CHI P. L, WANG Y AND YANG T. A 2.2–3.6 GHz CMOS reconfigurable fourth-order bandpass filter with compact size and high Selectivity Using Transformer-Type Resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71: 218-229.
[9] SHIN W, CALLENDER S, PELLERANO S, and HULL C. A compact 75 GHz LNA with 20 dB gain and 4 dB noise figure in 22 nm FinFET CMOS technology[C]. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2018, 284-287.
[10] GHADIRI A and MOEZ K. Bandwidth enhancement of on-chip transformers using negative capacitance[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59: 648-652.
[11] ELKHOLY M, SHAKIB S, DUNWORTH J, APARIN V and ENTESARI K. A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS[J]. IEEE Microwave and Wireless Components Letters, 2017, 28: 64-66.
[12] HU S, WANG F and WANG H. A 28 GHz/37 GHz/39 GHz multiband linear Doherty power amplifier for 5G massive MIMO applications[C]. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2017, 32-33.
[13] 郁翀宇.基于片上变压器耦合的 CMOS 毫米波功率放大器研究[D].东南大学.
[14] WAN J et al. A 20.65-to-40.55 GHz dual-core quad-mode VCO with modeindependent transformer-switching Technique in 65-nm CMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023,70: 4073-4077.
[15] NASR I, LAEMMLE B, KNAPP H, FISCHER G, WEIGEL R and KISSINGER D. A wide tuning range high output power 56-74 GHz VCO with on-chip transformer load in SiGe technology[C]. 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Santa Clara, CA, USA, 2012, 49-52.
[16] ZHANG J, LIU H, WU Y, ZHAO C, KANG K. Analysis and design of ultra- wideband mm-wave injection-locked frequency dividers using transformer-based high-order resonators[J]. IEEE J. Solid-State Circuits, 2018, 53: 2177-2189.
[17] KIHARA S, MATSUDA and YOSHIMURA T. Analysis and design of differentialLNAs with on-chip transformers in 65-nm CMOS technology[C]. 2016 14th IEEEInternational New Circuits and Systems Conference (NEWCAS), Vancouver, BC, Canada, 2016, 1-4.
[18] HOSSAIN S, FUJISHIMA M, YOSHIDA T, AMAKAWA S and RASHID M M. Design of CMOS on-chip millimeter-wave transformer coupled balun and power divider-combiner with optimal amplitude and phase imbalance[C]. 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 2019, 1-7.
[19] WU R, CHEN J, LIAO N and FANG X. On-chip transformers with shielding structures for high dV/dt immunity isolated gate drive[C]. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, 1-6.
[20] FRUTUOSO T M. Nanowire-based 3-D transmission-Line transformer for millimeter-wave applications[J]. IEEE Microwave and Wireless Components Letters, 2022, 32:1171-1174.
[21] LEITE B, KERHERVE E, BEGUERET J.B and BELOT D. An analytical broadband model for millimeter-wave transformers in silicon technologies[J]. IEEE Transactions on Electron Devices, 2012, 59: 582-589.
[22] MOISIADIS Y, NIKELIS K and PAPADOPOULOS P. A methodology for integrated transformer compact modeling[C]. 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 2017, 1-4.
[23] LAN M et al. An improved six-port equivalent-circuit model for millimeter-wave on- chip transformers with accurate coupling factor modeling[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69: 3989-4000.
[24] KOZIEL S, PIETRENKO A D, CHENG Q S and ZHANG Z. Low cost surrogate modeling of compact microstrip circuits in highly-dimensional parameters spaces using variable-fidelity nested co-kriging[C]. 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling andOptimization (NEMO), Hangzhou, China, 2020, 1-4.
[25] WEI Y, WEI J, WU Q and WANG H. Machine learning-assisted on-chip quadrilateral interleaved transformer automatic synthesis[C]. 2023 16th UK-Europe- China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Guangzhou, China, 2023, 1-3.
[26] BARDEH M G, FU J, NASEH N, PARAMESH J and ENTESARI K. A mm-wave wideband/reconfigurable LNA using a 3-winding transformer load in 22-nm CMOS FDSOI[C]. 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Diego, CA, USA, 2023, 121-124.
[27] JEON T, YOO K, KIM T and CHEON J. Advanced impedance matching technology to optimize RF circuit design of practical wireless systems[C]. 2017 Asia-PacificInternational Symposium on Electromagnetic Compatibility (APEMC), Seoul, Korea(South), 2017, pp. 328-330.
[28] YIN S, WANG R, ZHANG J and WANG Y. Asynchronous parallel expected improvement matrix-based constrained multi-objective optimization for analog circuit sizing[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 9, pp. 3869-3873, Sept. 2022.
[29] PARK H and et al. Scalable transformer network-based reinforcement learning method for psij optimization in HBM[C]. 2022 IEEE 31st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2022, 1-3.
[30] 史丽云.基于异质集成工艺的毫米波片上无源器件建模及参数提取研究[D].华东师范大学.
[31] BAJWA R, YAPICI M. Integrated on-chip transformers: recent progress in the design, layout, modeling and fabrication[J]. Sensors. 2019, 19(16):3535.
[32] CHEN W, HSU K. Miniaturized 3-Dimensional transformer design[C]. Proceedings of the IEEE 2005 Custom Integrated Circuits Conference 2005, pp. 285–288.
[33] LUONG H.C, YIN J. Transformer design and characterization in CMOS process[C]. Transformer-Based Design Techniques for Oscillators and Frequency Dividers Springer: Cham, Switzerland, 2016, 7–19.
[34] HSU, H, LAI S, TSENG C, FU G. Layout design of on-chip transformer with uniform variation of coil widths[C]. Proceedings of the 2009 European Microwave Conference (EuMC), Rome, Italy, 2009.
[35] CHEN C, PAN P, GU J, LIU M and LI X. Design and wafer-level fabrication of stacked-type transformers for High-Density Power Converters[J]. IEEE Transactionson Power Electronics.2024
[36] KANG K, GAO Z. Characterization and modeling of multiple coupled Inductors Based on on-chip four-port measurement[J]. IEEE Transactions on Components and Packaging Technologies, 2014, 4(10):1696-1704.
[37] CHUNG E, LIM G, C, HA J. I and PERREAULT D J. Resonant converter design using two-port passive network: single frequency design[C]. 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 2018, 1-7.
[38] CHEVALIER P, LIEBL, W, RUCKER H, GAUTHIER A, MANGER D, HEINEMANN B, AVENIER G, BOCK J. SiGe BiCMOS current status and future trends in Europe[C]. Proceedings of the 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, USA, 2018, 64-71.
[39] SPASARO M, ZITO D. Millimeter-Wave integrated silicon devices: active versus passive—The eternal struggle between good and evil (Invited Paper)[C]. Proceedings of the 2019 International Semiconductor Conference (CAS), Sinaia, Romania, 2019, 11–20.
[40] 黄康,动化 王剑平. 常用电磁场仿真软件及其应用[C]. //中国农业工程学会电气信息与自专委会、中国电机工程学会农村电气化分会科技与教育专委会 2010 年学术年会. 2010.
[41] JI C and LIOU J J. Improved and physics-based model for symmetrical spiral inductors[J]. IEEE Transactions on Electron Devices, 2006, 53(6): 1300-1309.
[42] LEITE B, KERHERVE E, BEGUERET J, BELOT D. An analytical broadband nodel for nillimeter-wave transformers in silicon technologies[J]. IEEE Trans. Electron. Devices 2012, 59, 582–589.
[43] LEE Y, KIM C. Q-Enhanced 5GHz CMOS VCO using 4-port transformer [C]. IEEE Silicon Monolithic Integrated Circuits in RF Systems, 2007: 265-269.
[44] LEE D, SHIN G, LEE S, KIM K, OH T. H, and SONG H. J. Neural-network-based automated synthesis of transformer matching circuits for RF amplifier design[J]. IEEE Trans. Microw. Theory Techn. 2022, 70(11): 4726-4739.
[45] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining andMetallurgy, 1951, 52(6): 119-139.
[46] JONES D R. A Taxonomy of Global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383
[47] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4): 409-23.
[48] ZHOU Y. Study of sampling methods in Monte Carlo simulation[J]. Structure & Environment Engineering, 1997, 3: 14-18.
[49] KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceedings of theIEEE international conference on neural networks, vol. 4. 1995. 1942-1948.
[50] RAZAVI H AND RAZAVI B. A study of injection locking in oscillators andfrequency dividers[J]. IEEE J. Solid-State Circuits, 2023, 58(8): 2129-2140.
[51] RAZAVI B. A study of injection locking and pulling in oscillators[J]. IEEE J. Solid- State Circuits, 2004, 39(9): 1415-1424.
[52] JIANG Q and PAN Q. Analysis and design of tuning-less mm-wave injection-locked frequency dividers with wide locking range using 8th-order transformer-based resonator in 40 nm CMOS[J]. IEEE J. Solid-State Circuits, 2022, 57(9): 2812-2828.
[53] ZHU J, JIANG Q, MOSALAM H, ZHAN C, and PAN Q. A 19–48.3-GHz 6th-order transformer-based injection-locked frequency divider with 87.1% locking range in 40-nm CMOS[J]. IEEE Trans. Circuits Syst. II Exp. Briefs, 2021, 68(9): 3053-3057.
修改评论