中文版 | English
题名

单细胞解析骨性关节炎分子机制及其潜在干细胞治疗

姓名
姓名拼音
HUANG Changyuan
学号
11849497
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
靳文菲
导师单位
系统生物学系
论文答辩日期
2024-04-21
论文提交日期
2024-06-28
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

      骨性关节炎(Osteoarthritis , OA)是一种中老年人群中常见的慢性、退行性的关节疾病,主要表现为软骨细胞胞外基质降解、软骨组织退化、软骨下骨异常和滑膜出现炎症等病理特征。在临床上,骨性关节炎患者主要表现为关节疼痛、关节肿胀、关节活动受限和关节畸变等症状,严重时需要进行费用昂贵的关节置换手术,后期甚至会导致残疾,严重影响着患者的生活质量。全球受骨性关节炎疾病影响的人口总数约有5.28亿,整体呈现随年龄增长而增高的趋势。骨性关节炎的致病因素包括年龄、性别、肥胖和遗传等。然而,骨性关节炎发生的具体分子机制尚不完全清楚。软骨细胞被认为是关节软骨中的唯一细胞类型,但人们对软骨细胞异质性的认识不清晰,阻碍了人们对骨性关节炎发病机制的理解。

      本研究首先使用人健康膝关节软骨组织中软骨细胞的单细胞转录组,鉴定了9个软骨细胞亚群,分别是稳态软骨细胞(homeostatic chondrocyte,HomC)、增殖性软骨细胞(proliferate chondrocyte,ProC)、肥大软骨细胞前体细胞(prehypertrophic chondrocyte,PreHTC)、肥大软骨细胞-1(hypertrophic chondrocyte-1,HTC-1)、调节性软骨细胞(regulatory chondrocyte,RegC)、肥大软骨细胞-2(hypertrophic chondrocyte-1,HTC-2)、纤维化软骨细胞前体细胞(prefibrochondrocyte,PreFC)、纤维化软骨细胞(fibrochondrocyte,FC)和增殖性软骨细胞(proliferate fibrochondrocyte,ProFC)。本研究发现了两个不同的HTC亚群,其中HTC-1特异性表达与细胞凋亡和程序性细胞死亡相关的基因。另外,本研究鉴定了软骨细胞的两个分化轨迹,软骨细胞纤维化轨迹(ProC→PreHTC→HTC-2→PreFC→FC)和软骨细胞凋亡轨迹(ProC→PreHTC→HTC-1)。本研究还比较了健康软骨和骨性关节炎软骨中不同软骨细胞亚群表达谱的差异,新鉴定出了增殖性软骨细胞-2(proliferate fibrochondrocyte-2,ProFC-2)亚群,它可能通过炎症促进骨性关节炎的发展。本研究还发现在膝盖软骨组织骨性关节炎病变后,ProC和PreHTC等处于软骨细胞分化轨迹起始位置的细胞亚群群体出现一定程度的萎缩,而PreFC、FC和HTC-1等处于软骨细胞分化轨迹末端的细胞亚群出现了一定程度的扩增,说明软骨细胞分化轨迹起点位置细胞的减少和末端位置细胞的增多,会促进骨性关节炎的发展。

      关节软骨结构和功能的异常是骨性关节炎的主要病理特征,骨性关节炎的有效治疗需要修复损伤的软骨组织,使其恢复完整的结构,因而使用干细胞辅助修复损伤软骨是治疗骨性关节炎的有效方法。间充质干细胞(mesenchymal stem cells,MSCs)是起源于中胚层的多能干细胞,具有自我更新能力、高度增殖能力和多向分化能力。它的来源十分广泛,可以从骨髓、脐带、脂肪、牙髓和滑膜等多种组织中分离得到,是再生医学和自身免疫性疾病治疗中理想的细胞来源。因此比较不同组织来源的间充质干细胞的特征是优化间充质干细胞治疗骨性关节炎临床应用的基础。本研究分析了来自脐带、骨髓、滑膜组织和脂肪组织的间充质干细胞的单细胞RNA-seq数据,发现所有间充质干细胞样本中均存在成软骨间充质干细胞亚群,因而具有骨性关节炎软骨修复的治疗潜能。另外,本研究发现脐带间充质干细胞的细胞干性和免疫调节特性高于其他组织来源的间充质干细胞,说明它是避免免疫应答的理想细胞来源。本研究还发现脐带间充质干细胞中成软骨间充质干细胞亚群数量占比高于其他组织来源的间充质干细胞,且脐带间充质干细胞成软骨分化诱导后,成软骨间充质干细胞亚群比例增加,同时表现出更明显的软骨特征,说明脐带间充质干细胞是软骨修复和骨性关节炎治疗的理想干细胞。另外本研究还鉴定了诱导成软骨调控的基因和转录因子,为提高诱导效率提供了更好的靶点。

      综上所述,本研究构建了关节软骨的细胞图谱,增强了人们对关节软骨中软骨细胞异质性的认识,研究了软骨细胞在骨性关节炎中的变化,发现了骨性关节炎的分子机制,并为间充质干细胞治疗骨性关节炎提供了理论基础。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2024-06
参考文献列表

[1] SAFIRI S, KOLAHI A A, SMITH E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017[J]. Ann Rheum Dis, 2020, 79(6): 819-828.
[2] HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
[3] GLASS G G. Osteoarthritis[J]. Dis Mon, 2006, 52(9): 343-362.
[4] COLLABORATORS G B D O. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Rheumatol, 2023, 5(9): e508-e522.
[5] WOOLF A D, PFLEGER B. Burden of major musculoskeletal conditions[J]. Bull World Health Organ, 2003, 81(9): 646-656.
[6] 薛庆云, 王坤正, 裴福兴, et al. 中国40岁以上人群原发性骨关节炎患病状况调查[J]. 中华骨科杂志, 2015, 35(12): 1206-1212.
[7] ZHANG Y, WU T, SHEN S, et al. Association Between Drinking Water Sources and Osteoarthritis Incidence in Chinese Elderly Population: National Population-Based Cohort Study[J]. Front Med (Lausanne), 2021, 8: 759514.
[8] KATZ J N, ARANT K R, LOESER R F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review[J]. Jama, 2021, 325(6): 568-578.
[9] MOHAMMADINEJAD R, ASHRAFIZADEH M, PARDAKHTY A, et al. Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities[J]. Curr Rheumatol Rep, 2020, 22(4): 12.
[10] SOPHIA FOX A J, BEDI A, RODEO S A. The basic science of articular cartilage: structure, composition, and function[J]. Sports Health, 2009, 1(6): 461-468.
[11] WACHSMUTH L, SöDER S, FAN Z, et al. Immunolocalization of matrix proteins in different human cartilage subtypes[J]. Histol Histopathol, 2006, 21(5): 477-485.
[12] ARMIENTO A R, ALINI M, STODDART M J. Articular fibrocartilage Why does hyaline cartilage fail to repair?[J]. Adv Drug Deliv Rev, 2019, 146: 289-305.
[13] LOY B N, ZIMEL M, GOWDA A L, et al. A Biomechanical and Structural Comparison of Articular Cartilage and Subchondral Bone of the Glenoid and Humeral Head[J]. Orthop J Sports Med, 2018, 6(7): 2325967118785854.
[14] CHEN S, FU P, WU H, et al. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function[J]. Cell Tissue Res, 2017, 370(1): 53-70.
[15] SAFSHEKAN F, TAFAZZOLI-SHADPOUR M, ABDOUSS M, et al. Viscoelastic Properties of Human Tracheal Tissues[J]. J Biomech Eng, 2017, 139(1).
[16] ARCHER C W, FRANCIS-WEST P. The chondrocyte[J]. Int J Biochem Cell Biol, 2003, 35(4): 401-404.
[17] GILLIS J A. The Development and Evolution of Cartilage[M]. Reference Module in Life Sciences. 2019.
[18] JIANG Y, TUAN R S. Origin and function of cartilage stem/progenitor cells in osteoarthritis[J]. Nat Rev Rheumatol, 2015, 11(4): 206-212.
[19] ULRICH-VINTHER M, MALONEY M D, SCHWARZ E M, et al. Articular cartilage biology[J]. J Am Acad Orthop Surg, 2003, 11(6): 421-430.
[20] ZAKRZEWSKI W, DOBRZYNSKI M, SZYMONOWICZ M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1): 68.
[21] COHNHEIM J. Ueber Entzündung und Eiterung[J]. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin, 1867, 40(1): 1-79.
[22] E. G. Recherches experimentales sur les proprietes physiologiques de la moelle des os[J]. J de L’Anat et de La Physiol, 1869, 6: 399-412.
[23] TAVASSOLI M, CROSBY W H. Transplantation of marrow to extramedullary sites[J]. Science, 1968, 161(3836): 54-56.
[24] FRIEDENSTEIN A J, CHAILAKHJAN R K, LALYKINA K S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970, 3(4): 393-403.
[25] FRIEDENSTEIN A J, DERIGLASOVA U F, KULAGINA N N, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method[J]. Exp Hematol, 1974, 2(2): 83-92.
[26] FRIEDENSTEIN A J, GORSKAJA J F, KULAGINA N N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hematol, 1976, 4(5): 267-274.
[27] FRIEDENSTEIN A J, CHAILAKHYAN R K, GERASIMOV U V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers[J]. Cell Tissue Kinet, 1987, 20(3): 263-272.
[28] CAPLAN A I. Mesenchymal stem cells[J]. J Orthop Res, 1991, 9(5): 641-650.
[29] LAZARUS H M, HAYNESWORTH S E, GERSON S L, et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use[J]. Bone Marrow Transplant, 1995, 16(4): 557-564.
[30] DOMINICI M, LE BLANC K, MUELLER I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[31] SAKAGUCHI Y, SEKIYA I, YAGISHITA K, et al. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates[J]. Blood, 2004, 104(9): 2728-2735.
[32] SUVA D, GARAVAGLIA G, MENETREY J, et al. Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells[J]. J Cell Physiol, 2004, 198(1): 110-118.
[33] SARUGASER R, LICKORISH D, BAKSH D, et al. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors[J]. Stem Cells, 2005, 23(2): 220-229.
[34] KESTENDJIEVA S, KYURKCHIEV D, TSVETKOVA G, et al. Characterization of mesenchymal stem cells isolated from the human umbilical cord[J]. Cell Biol Int, 2008, 32(7): 724-732.
[35] ZUK P A, ZHU M, MIZUNO H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2): 211-228.
[36] ZUK P A, ZHU M, ASHJIAN P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002, 13(12): 4279-4295.
[37] GRONTHOS S, MANKANI M, BRAHIM J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
[38] TATULLO M, MARRELLI M, SHAKESHEFF K M, et al. Dental pulp stem cells: function, isolation and applications in regenerative medicine[J]. J Tissue Eng Regen Med, 2015, 9(11): 1205-1216.
[39] DE BARI C, DELL'ACCIO F, TYLZANOWSKI P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J]. Arthritis Rheum, 2001, 44(8): 1928-1942.
[40] JONES E A, ENGLISH A, HENSHAW K, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis[J]. Arthritis Rheum, 2004, 50(3): 817-827.
[41] WAKITANI S, OKABE T, HORIBE S, et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months[J]. J Tissue Eng Regen Med, 2011, 5(2): 146-150.
[42] SHAPIRO S A, KAZMERCHAK S E, HECKMAN M G, et al. A Prospective, Single-Blind, Placebo-Controlled Trial of Bone Marrow Aspirate Concentrate for Knee Osteoarthritis[J]. Am J Sports Med, 2017, 45(1): 82-90.
[43] JIN Z, REN J, QI S. Exosomal miR-9-5p secreted by bone marrow-derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1[J]. Cell Tissue Res, 2020, 381(1): 99-114.
[44] QIONG J, XIA Z, JING L, et al. Synovial mesenchymal stem cells effectively alleviate osteoarthritis through promoting the proliferation and differentiation of meniscus chondrocytes[J]. Eur Rev Med Pharmacol Sci, 2020, 24(4): 1645-1655.
[45] 陈子秋, 刘顺贵, 刘义, et al. 关节腔内注射滑膜源间充质干细胞对膝关节软骨损伤的疗效[J]. 中国临床研究, 2018, 31(09): 1232-1235.
[46] PARK Y B, HA C W, KIM J A, et al. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite[J]. Osteoarthritis Cartilage, 2017, 25(4): 570-580.
[47] SONG J S, HONG K T, KIM N M, et al. Human umbilical cord blood-derived mesenchymal stem cell implantation for osteoarthritis of the knee[J]. Arch Orthop Trauma Surg, 2020, 140(4): 503-509.
[48] CONTENTIN R, DEMOOR M, CONCARI M, et al. Comparison of the Chondrogenic Potential of Mesenchymal Stem Cells Derived from Bone Marrow and Umbilical Cord Blood Intended for Cartilage Tissue Engineering[J]. Stem Cell Rev Rep, 2020, 16(1): 126-143.
[49] MATAS J, ORREGO M, AMENABAR D, et al. Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC Dose and to Hyaluronic Acid in a Controlled Randomized Phase I/II Trial[J]. Stem Cells Transl Med, 2019, 8(3): 215-224.
[50] XING D, WU J, WANG B, et al. Intra-articular delivery of umbilical cord-derived mesenchymal stem cells temporarily retard the progression of osteoarthritis in a rat model[J]. Int J Rheum Dis, 2020, 23(6): 778-787.
[51] MAUTNER K, BOWERS R, EASLEY K, et al. Functional Outcomes Following Microfragmented Adipose Tissue Versus Bone Marrow Aspirate Concentrate Injections for Symptomatic Knee Osteoarthritis[J]. Stem Cells Transl Med, 2019, 8(11): 1149-1156.
[52] LEE W S, KIM H J, KIM K I, et al. Intra-Articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Phase IIb, Randomized, Placebo-Controlled Clinical Trial[J]. Stem Cells Transl Med, 2019, 8(6): 504-511.
[53] BĄKOWSKI P, KASZYŃSKI J, WAŁECKA J, et al. Autologous adipose tissue injection versus platelet-rich plasma (PRP) injection in the treatment of knee osteoarthritis: a randomized, controlled study study protocol[J]. BMC Musculoskelet Disord, 2020, 21(1): 314.
[54] BIANCONI E, PIOVESAN A, FACCHIN F, et al. An estimation of the number of cells in the human body[J]. Ann Hum Biol, 2013, 40(6): 463-471.
[55] KHAN Y S, FARHANA A. Histology, Cell[M]. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Aisha Farhana declares no relevant financial relationships with ineligible companies.; StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC. 2023.
[56] COONS A H, CREECH H J, JONES R N. Immunological properties of an antibody containing a fluorescent group[J]. Proc Soc Exp Biol Med, 1941, 47(2): 200-202.
[57] FULWYLER M J. Electronic separation of biological cells by volume[J]. Science, 1965, 150(3698): 910-911.
[58] 10X G. Sample Preparation Tips for Single Cell Gene Expression[EB/OL]. https://www.10xgenomics.com.
[59] TANG F, BARBACIORU C, WANG Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
[60] ISLAM S, KJäLLQUIST U, MOLINER A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Res, 2011, 21(7): 1160-1167.
[61] RAMSKöLD D, LUO S, WANG Y C, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30(8): 777-782.
[62] HASHIMSHONY T, WAGNER F, SHER N, et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3): 666-673.
[63] PICELLI S, BJöRKLUND Å K, FARIDANI O R, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098.
[64] HASHIMSHONY T, SENDEROVICH N, AVITAL G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17: 77.
[65] SVENSSON V, VENTO-TORMO R, TEICHMANN S A. Exponential scaling of single-cell RNA-seq in the past decade[J]. Nat Protoc, 2018, 13(4): 599-604.
[66] FAN H C, FU G K, FODOR S P. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry[J]. Science, 2015, 347(6222): 1258367.
[67] KLEIN A M, MAZUTIS L, AKARTUNA I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5): 1187-1201.
[68] MACOSKO E Z, BASU A, SATIJA R, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets[J]. Cell, 2015, 161(5): 1202-1214.
[69] BIREY F, ANDERSEN J, MAKINSON C D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652): 54-59.
[70] ULBRICH J, LOPEZ-SALMERON V, GERRARD I. BD Rhapsody™ Single-Cell Analysis System Workflow: From Sample to Multimodal Single-Cell Sequencing Data[J]. Methods Mol Biol, 2023, 2584: 29-56.
[71] SVENSSON V, NATARAJAN K N, LY L H, et al. Power analysis of single-cell RNA-sequencing experiments[J]. Nat Methods, 2017, 14(4): 381-387.
[72] QIN P, PANG Y, HOU W, et al. Integrated decoding hematopoiesis and leukemogenesis using single-cell sequencing and its medical implication[J]. Cell Discov, 2021, 7(1): 2.
[73] WANG J, CHEN W, YUE W, et al. Comprehensive mapping of alternative polyadenylation site usage and its dynamics at single-cell resolution[J]. Proc Natl Acad Sci U S A, 2022, 119(49): e2113504119.
[74] JI Q, ZHENG Y, ZHANG G, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis[J]. Ann Rheum Dis, 2019, 78(1): 100-110.
[75] SUN H, WEN X, LI H, et al. Single-cell RNA-seq analysis identifies meniscus progenitors and reveals the progression of meniscus degeneration[J]. Annals of the Rheumatic Diseases, 2020, 79(3): 408-417.
[76] WANG X, NING Y, ZHANG P, et al. Comparison of the major cell populations among osteoarthritis, Kashin-Beck disease and healthy chondrocytes by single-cell RNA-seq analysis[J]. Cell Death Dis, 2021, 12(6): 551.
[77] LV Z, HAN J, LI J, et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis[J]. EBioMedicine, 2022, 84: 104258.
[78] FU W, CHEN S, YANG R, et al. Cellular features of localized microenvironments in human meniscal degeneration: a single-cell transcriptomic study[J]. Elife, 2022, 11.
[79] SWAHN H, LI K, DUFFY T, et al. Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus[J]. Ann Rheum Dis, 2023, 82(3): 403-415.
[80] SCANZELLO C R, GOLDRING S R. The role of synovitis in osteoarthritis pathogenesis[J]. Bone, 2012, 51(2): 249-257.
[81] NANUS D E, BADOUME A, WIJESINGHE S N, et al. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets[J]. EBioMedicine, 2021, 72: 103618.
[82] HUANG Z Y, LUO Z Y, CAI Y R, et al. Single cell transcriptomics in human osteoarthritis synovium and in silico deconvoluted bulk RNA sequencing[J]. Osteoarthritis Cartilage, 2022, 30(3): 475-480.
[83] FAUST H J, ZHANG H, HAN J, et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis[J]. J Clin Invest, 2020, 130(10): 5493-5507.
[84] HU W, CHEN Y, DOU C, et al. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis[J]. Ann Rheum Dis, 2021, 80(4): 413-422.
[85] WANG L, ZHANG H, WANG S, et al. Bone Marrow Adipocytes: A Critical Player in the Bone Marrow Microenvironment[J]. Front Cell Dev Biol, 2021, 9: 770705.
[86] HU Y, CHEN X, WANG S, et al. Subchondral bone microenvironment in osteoarthritis and pain[J]. Bone Res, 2021, 9(1): 20.
[87] HU Y, CUI J, LIU H, et al. Single-cell RNA-sequencing analysis reveals the molecular mechanism of subchondral bone cell heterogeneity in the development of osteoarthritis[J]. Rmd Open, 2022, 8(2): e002314.
[88] GU Y, HU Y, ZHANG H, et al. Single-cell RNA sequencing in osteoarthritis[J]. Cell Prolif, 2023, 56(12): e13517.
[89] RAUCH A, HAAKONSSON A K, MADSEN J G S, et al. Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis[J]. Nat Genet, 2019, 51(4): 716-727.
[90] LIU X, XIANG Q, XU F, et al. Single-cell RNA-seq of cultured human adipose-derived mesenchymal stem cells[J]. Sci Data, 2019, 6: 190031.
[91] LI X, LIANG Y, XU X, et al. Cell-to-Cell Culture Inhibits Dedifferentiation of Chondrocytes and Induces Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells[J]. Biomed Res Int, 2019, 2019: 1-11.
[92] LI X, DUAN L, LIANG Y, et al. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes[J]. Biomed Res Int, 2016, 2016: 3827057.
[93] BUTLER A, HOFFMAN P, SMIBERT P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nat Biotechnol, 2018, 36(5): 411-420.
[94] WOLOCK S L, LOPEZ R, KLEIN A M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data[J]. Cell Syst, 2019, 8(4): 281-291.e289.
[95] MCGINNIS C S, MURROW L M, GARTNER Z J. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors[J]. Cell Syst, 2019, 8(4): 329-337.e324.
[96] PEARSON K. LIII. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 1901, 2(11): 559-572.
[97] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11).
[98] MCINNES L, HEALY J, MELVILLE J. Umap: Uniform manifold approximation and projection for dimension reduction[J]. arXiv preprint arXiv:180203426, 2018
[99] BECHT E, MCINNES L, HEALY J, et al. Dimensionality reduction for visualizing single-cell data using UMAP[J]. Nat Biotechnol, 2018.
[100] LLOYD S. Least squares quantization in PCM[J]. IEEE transactions on information theory, 1982, 28(2): 129-137.
[101] FORGY E W. Cluster analysis of multivariate data: efficiency versus interpretability of classifications[J]. biometrics, 1965, 21: 768-769.
[102] ERTöZ L, STEINBACH M S, KUMAR V. Finding Topics in Collections of Documents: A Shared Nearest Neighbor Approach; proceedings of the Clustering and Information Retrieval, F, 2003 [C].
[103] BLONDEL V D, GUILLAUME J-L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics: theory and experiment, 2008, 2008(10): P10008.
[104] WALTMAN L, VAN ECK N J. A smart local moving algorithm for large-scale modularity-based community detection[J]. Eur Phys J B, 2013, 86: 1-14.
[105] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523.
[106] JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat[J]. Nat Commun, 2021, 12(1): 1088.
[107] EFREMOVA M, VENTO-TORMO M, TEICHMANN S A, et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes[J]. Nat Protoc, 2020, 15(4): 1484-1506.
[108] WANG Y, WANG R, ZHANG S, et al. iTALK: an R Package to Characterize and Illustrate Intercellular Communication[J]. bioRxiv, 2019: 507871.
[109] STREET K, RISSO D, FLETCHER R B, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics[J]. BMC Genomics, 2018, 19(1): 477.
[110] TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nat Biotechnol, 2014, 32(4): 381-386.
[111] QIU X, HILL A, PACKER J, et al. Single-cell mRNA quantification and differential analysis with Census[J]. Nat Methods, 2017, 14(3): 309-315.
[112] CAO J, SPIELMANN M, QIU X, et al. The single-cell transcriptional landscape of mammalian organogenesis[J]. Nature, 2019, 566(7745): 496-502.
[113] WOLF F A, HAMEY F K, PLASS M, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[J]. Genome Biol, 2019, 20: 1-9.
[114] LA MANNO G, SOLDATOV R, ZEISEL A, et al. RNA velocity of single cells[J]. Nature, 2018, 560(7719): 494-498.
[115] BERGEN V, LANGE M, PEIDLI S, et al. Generalizing RNA velocity to transient cell states through dynamical modeling[J]. Nat Biotechnol, 2020, 38(12): 1408-1414.
[116] FLANDRY F, HOMMEL G. Normal anatomy and biomechanics of the knee[J]. Sports Med Arthrosc Rev, 2011, 19(2): 82-92.
[117] HUMMERT T W, SCHWARTZ Z, SYLVIA V L, et al. Stathmin levels in growth plate chondrocytes are modulated by vitamin D3 metabolites and transforming growth factor-beta1 and are associated with proliferation[J]. Endocrine, 2001, 15(1): 93-101.
[118] STANTON H, ROGERSON F M, EAST C J, et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro[J]. Nature, 2005, 434(7033): 648-652.
[119] ROGERS-DECOTES A W, PORTO S C, DUPUIS L E, et al. ADAMTS5 is required for normal trabeculated bone development in the mandibular condyle[J]. Osteoarthritis Cartilage, 2021, 29(4): 547-557.
[120] YU X, XU X, DONG W, et al. DDIT3/CHOP mediates the inhibitory effect of ER stress on chondrocyte differentiation by AMPKα-SIRT1 pathway[J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(8): 119265.
[121] NUMMENMAA E, HAMALAINEN M, MOILANEN T, et al. Effects of FGF-2 and FGF receptor antagonists on MMP enzymes, aggrecan, and type II collagen in primary human OA chondrocytes[J]. Scand J Rheumatol, 2015, 44(4): 321-330.
[122] ARNOLD M A, KIM Y, CZUBRYT M P, et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development[J]. Dev Cell, 2007, 12(3): 377-389.
[123] BREW C J, CLEGG P D, BOOT-HANDFORD R P, et al. Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy[J]. Ann Rheum Dis, 2010, 69(1): 234-240.
[124] LONG J T, LEINROTH A, LIAO Y, et al. Hypertrophic chondrocytes serve as a reservoir for marrow-associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development[J]. Elife, 2022, 11.
[125] SCHAEFER L, IOZZO R V. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction[J]. J Biol Chem, 2008, 283(31): 21305-21309.
[126] CHEN S, BIRK D E. The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly[J]. FEBS J, 2013, 280(10): 2120-2137.
[127] HAN B, LI Q, WANG C, et al. Differentiated activities of decorin and biglycan in the progression of post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(8): 1181-1192.
[128] JIANG Q, QIU Y T, CHEN M J, et al. Synovial TGF-beta1 and MMP-3 levels and their correlation with the progression of temporomandibular joint osteoarthritis combined with disc displacement: A preliminary study[J]. Biomed Rep, 2013, 1(2): 218-222.
[129] VAN EEGHER S, PEREZ-LOZANO M L, TOILLON I, et al. The differentiation of prehypertrophic into hypertrophic chondrocytes drives an OA-remodeling program and IL-34 expression[J]. Osteoarthritis Cartilage, 2021, 29(2): 257-268.
[130] JIANG Y, HU C, YU S, et al. Cartilage stem/progenitor cells are activated in osteoarthritis via interleukin-1beta/nerve growth factor signaling[J]. Arthritis Res Ther, 2015, 17: 327.
[131] VAN DEN PLAS D, MERREGAERT J. In vitro studies on Itm2a reveal its involvement in early stages of the chondrogenic differentiation pathway[J]. Biol Cell, 2004, 96(6): 463-470.
[132] ZHANG Y, ZUO T, MCVICAR A, et al. Runx1 is a key regulator of articular cartilage homeostasis by orchestrating YAP, TGFbeta, and Wnt signaling in articular cartilage formation and osteoarthritis[J]. Bone Res, 2022, 10(1): 63.
[133] SWEETWYNE M T, MURPHY-ULLRICH J E. Thrombospondin1 in tissue repair and fibrosis: TGF-beta-dependent and independent mechanisms[J]. Matrix Biol, 2012, 31(3): 178-186.
[134] LI J, JIANG H, LV Z, et al. Articular fibrocartilage-targeted therapy by microtubule stabilization[J]. Sci Adv, 2022, 8(46): eabn8420.
[135] TARDIF G, PELLETIER J P, BOILEAU C, et al. The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: an immunohistochemical study[J]. Osteoarthritis Cartilage, 2009, 17(2): 263-270.
[136] SINGH P N P, YADAV U S, AZAD K, et al. NFIA and GATA3 are crucial regulators of embryonic articular cartilage differentiation[J]. Development, 2018, 145(2).
[137] WILKINSON D J, ARQUES M D C, HUESA C, et al. Serine proteinases in the turnover of the cartilage extracellular matrix in the joint: implications for therapeutics[J]. Br J Pharmacol, 2019, 176(1): 38-51.
[138] WANG C, ZHOU G L, VEDANTAM S, et al. Mitochondrial shuttling of CAP1 promotes actinand cofilin-dependent apoptosis[J]. J Cell Sci, 2008, 121(Pt 17): 2913-2920.
[139] YANG L, TSANG K Y, TANG H C, et al. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation[J]. Proc Natl Acad Sci U S A, 2014, 111(33): 12097-12102.
[140] HUNTER D J, MARCH L, CHEW M. Osteoarthritis in 2020 and beyond: a Lancet Commission[J]. Lancet, 2020, 396(10264): 1711-1712.
[141] KAMADA K, KUBOTA Y, ARATA T, et al. Structure of the human GINS complex and its assembly and functional interface in replication initiation[J]. Nat Struct Mol Biol, 2007, 14(5): 388-396.
[142] TIAN L, SUN S, WANG J, et al. GINS2 affects activity/differentiation, apoptosis and proliferation of osteoblast and osteoclast in steroid-induced osteonecrosis of the femoral head by regulating P53/GADD45A signaling pathway[J]. Food Sci Technol, 2021, 42.
[143] KUNITOKU N, SASAYAMA T, MARUMOTO T, et al. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function[J]. Dev Cell, 2003, 5(6): 853-864.
[144] LE BLANC K, RASMUSSON I, SUNDBERG B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells[J]. Lancet, 2004, 363(9419): 1439-1441.
[145] WAKITANI S, IMOTO K, YAMAMOTO T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees[J]. Osteoarthritis Cartilage, 2002, 10(3): 199-206.
[146] YLOSTALO J, BAZHANOV N, PROCKOP D J. Reversible commitment to differentiation by human multipotent stromal cells in single-cell-derived colonies[J]. Exp Hematol, 2008, 36(10): 1390-1402.
[147] RUSSELL K C, PHINNEY D G, LACEY M R, et al. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment[J]. Stem Cells, 2010, 28(4): 788-798.
[148] WHITFIELD M J, LEE W C, VAN VLIET K J. Onset of heterogeneity in culture-expanded bone marrow stromal cells[J]. Stem Cell Res, 2013, 11(3): 1365-1377.
[149] WOLOCK S L, KRISHNAN I, TENEN D E, et al. Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths[J]. Cell Rep, 2019, 28(2): 302-311 e305.
[150] MENG M Y, PANG W, JIANG L H, et al. Stemness gene expression profile analysis in human umbilical cord mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2012, 237(6): 709-719.
[151] ZELENSKI N A, LEDDY H A, SANCHEZ-ADAMS J, et al. Type VI Collagen Regulates Pericellular Matrix Properties, Chondrocyte Swelling, and Mechanotransduction in Mouse Articular Cartilage[J]. Arthritis Rheumatol, 2015, 67(5): 1286-1294.
[152] KRINNER A, ZSCHARNACK M, BADER A, et al. Impact of oxygen environment on mesenchymal stem cell expansion and chondrogenic differentiation[J]. Cell Prolif, 2009, 42(4): 471-484.
[153] KARRETH F, HOEBERTZ A, SCHEUCH H, et al. The AP1 transcription factor Fra2 is required for efficient cartilage development[J]. Development, 2004, 131(22): 5717-5725.
[154] CHEN D, GONG Y, XU L, et al. Bidirectional regulation of osteogenic differentiation by the FOXO subfamily of Forkhead transcription factors in mammalian MSCs[J]. Cell Prolif, 2019, 52(2): e12540.
[155] TANG C Y, CHEN W, LUO Y, et al. Runx1 up-regulates chondrocyte to osteoblast lineage commitment and promotes bone formation by enhancing both chondrogenesis and osteogenesis[J]. Biochem J, 2020, 477(13): 2421-2438.
[156] YUAN S, ZHANG L, JI L, et al. FoxO3a cooperates with RUNX1 to promote chondrogenesis and terminal hypertrophic of the chondrogenic progenitor cells[J]. Biochem Biophys Res Commun, 2022, 589: 41-47.

所在学位评定分委会
生物学
国内图书分类号
Q344
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766252
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
黄常源. 单细胞解析骨性关节炎分子机制及其潜在干细胞治疗[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849497-黄常源-生物系.pdf(9396KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄常源]的文章
百度学术
百度学术中相似的文章
[黄常源]的文章
必应学术
必应学术中相似的文章
[黄常源]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。