[1] SAFIRI S, KOLAHI A A, SMITH E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017[J]. Ann Rheum Dis, 2020, 79(6): 819-828.
[2] HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
[3] GLASS G G. Osteoarthritis[J]. Dis Mon, 2006, 52(9): 343-362.
[4] COLLABORATORS G B D O. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Rheumatol, 2023, 5(9): e508-e522.
[5] WOOLF A D, PFLEGER B. Burden of major musculoskeletal conditions[J]. Bull World Health Organ, 2003, 81(9): 646-656.
[6] 薛庆云, 王坤正, 裴福兴, et al. 中国40岁以上人群原发性骨关节炎患病状况调查[J]. 中华骨科杂志, 2015, 35(12): 1206-1212.
[7] ZHANG Y, WU T, SHEN S, et al. Association Between Drinking Water Sources and Osteoarthritis Incidence in Chinese Elderly Population: National Population-Based Cohort Study[J]. Front Med (Lausanne), 2021, 8: 759514.
[8] KATZ J N, ARANT K R, LOESER R F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review[J]. Jama, 2021, 325(6): 568-578.
[9] MOHAMMADINEJAD R, ASHRAFIZADEH M, PARDAKHTY A, et al. Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities[J]. Curr Rheumatol Rep, 2020, 22(4): 12.
[10] SOPHIA FOX A J, BEDI A, RODEO S A. The basic science of articular cartilage: structure, composition, and function[J]. Sports Health, 2009, 1(6): 461-468.
[11] WACHSMUTH L, SöDER S, FAN Z, et al. Immunolocalization of matrix proteins in different human cartilage subtypes[J]. Histol Histopathol, 2006, 21(5): 477-485.
[12] ARMIENTO A R, ALINI M, STODDART M J. Articular fibrocartilage Why does hyaline cartilage fail to repair?[J]. Adv Drug Deliv Rev, 2019, 146: 289-305.
[13] LOY B N, ZIMEL M, GOWDA A L, et al. A Biomechanical and Structural Comparison of Articular Cartilage and Subchondral Bone of the Glenoid and Humeral Head[J]. Orthop J Sports Med, 2018, 6(7): 2325967118785854.
[14] CHEN S, FU P, WU H, et al. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function[J]. Cell Tissue Res, 2017, 370(1): 53-70.
[15] SAFSHEKAN F, TAFAZZOLI-SHADPOUR M, ABDOUSS M, et al. Viscoelastic Properties of Human Tracheal Tissues[J]. J Biomech Eng, 2017, 139(1).
[16] ARCHER C W, FRANCIS-WEST P. The chondrocyte[J]. Int J Biochem Cell Biol, 2003, 35(4): 401-404.
[17] GILLIS J A. The Development and Evolution of Cartilage[M]. Reference Module in Life Sciences. 2019.
[18] JIANG Y, TUAN R S. Origin and function of cartilage stem/progenitor cells in osteoarthritis[J]. Nat Rev Rheumatol, 2015, 11(4): 206-212.
[19] ULRICH-VINTHER M, MALONEY M D, SCHWARZ E M, et al. Articular cartilage biology[J]. J Am Acad Orthop Surg, 2003, 11(6): 421-430.
[20] ZAKRZEWSKI W, DOBRZYNSKI M, SZYMONOWICZ M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1): 68.
[21] COHNHEIM J. Ueber Entzündung und Eiterung[J]. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin, 1867, 40(1): 1-79.
[22] E. G. Recherches experimentales sur les proprietes physiologiques de la moelle des os[J]. J de L’Anat et de La Physiol, 1869, 6: 399-412.
[23] TAVASSOLI M, CROSBY W H. Transplantation of marrow to extramedullary sites[J]. Science, 1968, 161(3836): 54-56.
[24] FRIEDENSTEIN A J, CHAILAKHJAN R K, LALYKINA K S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970, 3(4): 393-403.
[25] FRIEDENSTEIN A J, DERIGLASOVA U F, KULAGINA N N, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method[J]. Exp Hematol, 1974, 2(2): 83-92.
[26] FRIEDENSTEIN A J, GORSKAJA J F, KULAGINA N N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hematol, 1976, 4(5): 267-274.
[27] FRIEDENSTEIN A J, CHAILAKHYAN R K, GERASIMOV U V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers[J]. Cell Tissue Kinet, 1987, 20(3): 263-272.
[28] CAPLAN A I. Mesenchymal stem cells[J]. J Orthop Res, 1991, 9(5): 641-650.
[29] LAZARUS H M, HAYNESWORTH S E, GERSON S L, et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use[J]. Bone Marrow Transplant, 1995, 16(4): 557-564.
[30] DOMINICI M, LE BLANC K, MUELLER I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[31] SAKAGUCHI Y, SEKIYA I, YAGISHITA K, et al. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates[J]. Blood, 2004, 104(9): 2728-2735.
[32] SUVA D, GARAVAGLIA G, MENETREY J, et al. Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells[J]. J Cell Physiol, 2004, 198(1): 110-118.
[33] SARUGASER R, LICKORISH D, BAKSH D, et al. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors[J]. Stem Cells, 2005, 23(2): 220-229.
[34] KESTENDJIEVA S, KYURKCHIEV D, TSVETKOVA G, et al. Characterization of mesenchymal stem cells isolated from the human umbilical cord[J]. Cell Biol Int, 2008, 32(7): 724-732.
[35] ZUK P A, ZHU M, MIZUNO H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2): 211-228.
[36] ZUK P A, ZHU M, ASHJIAN P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002, 13(12): 4279-4295.
[37] GRONTHOS S, MANKANI M, BRAHIM J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
[38] TATULLO M, MARRELLI M, SHAKESHEFF K M, et al. Dental pulp stem cells: function, isolation and applications in regenerative medicine[J]. J Tissue Eng Regen Med, 2015, 9(11): 1205-1216.
[39] DE BARI C, DELL'ACCIO F, TYLZANOWSKI P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J]. Arthritis Rheum, 2001, 44(8): 1928-1942.
[40] JONES E A, ENGLISH A, HENSHAW K, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis[J]. Arthritis Rheum, 2004, 50(3): 817-827.
[41] WAKITANI S, OKABE T, HORIBE S, et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months[J]. J Tissue Eng Regen Med, 2011, 5(2): 146-150.
[42] SHAPIRO S A, KAZMERCHAK S E, HECKMAN M G, et al. A Prospective, Single-Blind, Placebo-Controlled Trial of Bone Marrow Aspirate Concentrate for Knee Osteoarthritis[J]. Am J Sports Med, 2017, 45(1): 82-90.
[43] JIN Z, REN J, QI S. Exosomal miR-9-5p secreted by bone marrow-derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1[J]. Cell Tissue Res, 2020, 381(1): 99-114.
[44] QIONG J, XIA Z, JING L, et al. Synovial mesenchymal stem cells effectively alleviate osteoarthritis through promoting the proliferation and differentiation of meniscus chondrocytes[J]. Eur Rev Med Pharmacol Sci, 2020, 24(4): 1645-1655.
[45] 陈子秋, 刘顺贵, 刘义, et al. 关节腔内注射滑膜源间充质干细胞对膝关节软骨损伤的疗效[J]. 中国临床研究, 2018, 31(09): 1232-1235.
[46] PARK Y B, HA C W, KIM J A, et al. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite[J]. Osteoarthritis Cartilage, 2017, 25(4): 570-580.
[47] SONG J S, HONG K T, KIM N M, et al. Human umbilical cord blood-derived mesenchymal stem cell implantation for osteoarthritis of the knee[J]. Arch Orthop Trauma Surg, 2020, 140(4): 503-509.
[48] CONTENTIN R, DEMOOR M, CONCARI M, et al. Comparison of the Chondrogenic Potential of Mesenchymal Stem Cells Derived from Bone Marrow and Umbilical Cord Blood Intended for Cartilage Tissue Engineering[J]. Stem Cell Rev Rep, 2020, 16(1): 126-143.
[49] MATAS J, ORREGO M, AMENABAR D, et al. Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC Dose and to Hyaluronic Acid in a Controlled Randomized Phase I/II Trial[J]. Stem Cells Transl Med, 2019, 8(3): 215-224.
[50] XING D, WU J, WANG B, et al. Intra-articular delivery of umbilical cord-derived mesenchymal stem cells temporarily retard the progression of osteoarthritis in a rat model[J]. Int J Rheum Dis, 2020, 23(6): 778-787.
[51] MAUTNER K, BOWERS R, EASLEY K, et al. Functional Outcomes Following Microfragmented Adipose Tissue Versus Bone Marrow Aspirate Concentrate Injections for Symptomatic Knee Osteoarthritis[J]. Stem Cells Transl Med, 2019, 8(11): 1149-1156.
[52] LEE W S, KIM H J, KIM K I, et al. Intra-Articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Phase IIb, Randomized, Placebo-Controlled Clinical Trial[J]. Stem Cells Transl Med, 2019, 8(6): 504-511.
[53] BĄKOWSKI P, KASZYŃSKI J, WAŁECKA J, et al. Autologous adipose tissue injection versus platelet-rich plasma (PRP) injection in the treatment of knee osteoarthritis: a randomized, controlled study study protocol[J]. BMC Musculoskelet Disord, 2020, 21(1): 314.
[54] BIANCONI E, PIOVESAN A, FACCHIN F, et al. An estimation of the number of cells in the human body[J]. Ann Hum Biol, 2013, 40(6): 463-471.
[55] KHAN Y S, FARHANA A. Histology, Cell[M]. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Aisha Farhana declares no relevant financial relationships with ineligible companies.; StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC. 2023.
[56] COONS A H, CREECH H J, JONES R N. Immunological properties of an antibody containing a fluorescent group[J]. Proc Soc Exp Biol Med, 1941, 47(2): 200-202.
[57] FULWYLER M J. Electronic separation of biological cells by volume[J]. Science, 1965, 150(3698): 910-911.
[58] 10X G. Sample Preparation Tips for Single Cell Gene Expression[EB/OL]. https://www.10xgenomics.com.
[59] TANG F, BARBACIORU C, WANG Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
[60] ISLAM S, KJäLLQUIST U, MOLINER A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Res, 2011, 21(7): 1160-1167.
[61] RAMSKöLD D, LUO S, WANG Y C, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30(8): 777-782.
[62] HASHIMSHONY T, WAGNER F, SHER N, et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3): 666-673.
[63] PICELLI S, BJöRKLUND Å K, FARIDANI O R, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098.
[64] HASHIMSHONY T, SENDEROVICH N, AVITAL G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17: 77.
[65] SVENSSON V, VENTO-TORMO R, TEICHMANN S A. Exponential scaling of single-cell RNA-seq in the past decade[J]. Nat Protoc, 2018, 13(4): 599-604.
[66] FAN H C, FU G K, FODOR S P. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry[J]. Science, 2015, 347(6222): 1258367.
[67] KLEIN A M, MAZUTIS L, AKARTUNA I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5): 1187-1201.
[68] MACOSKO E Z, BASU A, SATIJA R, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets[J]. Cell, 2015, 161(5): 1202-1214.
[69] BIREY F, ANDERSEN J, MAKINSON C D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652): 54-59.
[70] ULBRICH J, LOPEZ-SALMERON V, GERRARD I. BD Rhapsody™ Single-Cell Analysis System Workflow: From Sample to Multimodal Single-Cell Sequencing Data[J]. Methods Mol Biol, 2023, 2584: 29-56.
[71] SVENSSON V, NATARAJAN K N, LY L H, et al. Power analysis of single-cell RNA-sequencing experiments[J]. Nat Methods, 2017, 14(4): 381-387.
[72] QIN P, PANG Y, HOU W, et al. Integrated decoding hematopoiesis and leukemogenesis using single-cell sequencing and its medical implication[J]. Cell Discov, 2021, 7(1): 2.
[73] WANG J, CHEN W, YUE W, et al. Comprehensive mapping of alternative polyadenylation site usage and its dynamics at single-cell resolution[J]. Proc Natl Acad Sci U S A, 2022, 119(49): e2113504119.
[74] JI Q, ZHENG Y, ZHANG G, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis[J]. Ann Rheum Dis, 2019, 78(1): 100-110.
[75] SUN H, WEN X, LI H, et al. Single-cell RNA-seq analysis identifies meniscus progenitors and reveals the progression of meniscus degeneration[J]. Annals of the Rheumatic Diseases, 2020, 79(3): 408-417.
[76] WANG X, NING Y, ZHANG P, et al. Comparison of the major cell populations among osteoarthritis, Kashin-Beck disease and healthy chondrocytes by single-cell RNA-seq analysis[J]. Cell Death Dis, 2021, 12(6): 551.
[77] LV Z, HAN J, LI J, et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis[J]. EBioMedicine, 2022, 84: 104258.
[78] FU W, CHEN S, YANG R, et al. Cellular features of localized microenvironments in human meniscal degeneration: a single-cell transcriptomic study[J]. Elife, 2022, 11.
[79] SWAHN H, LI K, DUFFY T, et al. Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus[J]. Ann Rheum Dis, 2023, 82(3): 403-415.
[80] SCANZELLO C R, GOLDRING S R. The role of synovitis in osteoarthritis pathogenesis[J]. Bone, 2012, 51(2): 249-257.
[81] NANUS D E, BADOUME A, WIJESINGHE S N, et al. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets[J]. EBioMedicine, 2021, 72: 103618.
[82] HUANG Z Y, LUO Z Y, CAI Y R, et al. Single cell transcriptomics in human osteoarthritis synovium and in silico deconvoluted bulk RNA sequencing[J]. Osteoarthritis Cartilage, 2022, 30(3): 475-480.
[83] FAUST H J, ZHANG H, HAN J, et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis[J]. J Clin Invest, 2020, 130(10): 5493-5507.
[84] HU W, CHEN Y, DOU C, et al. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis[J]. Ann Rheum Dis, 2021, 80(4): 413-422.
[85] WANG L, ZHANG H, WANG S, et al. Bone Marrow Adipocytes: A Critical Player in the Bone Marrow Microenvironment[J]. Front Cell Dev Biol, 2021, 9: 770705.
[86] HU Y, CHEN X, WANG S, et al. Subchondral bone microenvironment in osteoarthritis and pain[J]. Bone Res, 2021, 9(1): 20.
[87] HU Y, CUI J, LIU H, et al. Single-cell RNA-sequencing analysis reveals the molecular mechanism of subchondral bone cell heterogeneity in the development of osteoarthritis[J]. Rmd Open, 2022, 8(2): e002314.
[88] GU Y, HU Y, ZHANG H, et al. Single-cell RNA sequencing in osteoarthritis[J]. Cell Prolif, 2023, 56(12): e13517.
[89] RAUCH A, HAAKONSSON A K, MADSEN J G S, et al. Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis[J]. Nat Genet, 2019, 51(4): 716-727.
[90] LIU X, XIANG Q, XU F, et al. Single-cell RNA-seq of cultured human adipose-derived mesenchymal stem cells[J]. Sci Data, 2019, 6: 190031.
[91] LI X, LIANG Y, XU X, et al. Cell-to-Cell Culture Inhibits Dedifferentiation of Chondrocytes and Induces Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells[J]. Biomed Res Int, 2019, 2019: 1-11.
[92] LI X, DUAN L, LIANG Y, et al. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes[J]. Biomed Res Int, 2016, 2016: 3827057.
[93] BUTLER A, HOFFMAN P, SMIBERT P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nat Biotechnol, 2018, 36(5): 411-420.
[94] WOLOCK S L, LOPEZ R, KLEIN A M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data[J]. Cell Syst, 2019, 8(4): 281-291.e289.
[95] MCGINNIS C S, MURROW L M, GARTNER Z J. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors[J]. Cell Syst, 2019, 8(4): 329-337.e324.
[96] PEARSON K. LIII. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 1901, 2(11): 559-572.
[97] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11).
[98] MCINNES L, HEALY J, MELVILLE J. Umap: Uniform manifold approximation and projection for dimension reduction[J]. arXiv preprint arXiv:180203426, 2018
[99] BECHT E, MCINNES L, HEALY J, et al. Dimensionality reduction for visualizing single-cell data using UMAP[J]. Nat Biotechnol, 2018.
[100] LLOYD S. Least squares quantization in PCM[J]. IEEE transactions on information theory, 1982, 28(2): 129-137.
[101] FORGY E W. Cluster analysis of multivariate data: efficiency versus interpretability of classifications[J]. biometrics, 1965, 21: 768-769.
[102] ERTöZ L, STEINBACH M S, KUMAR V. Finding Topics in Collections of Documents: A Shared Nearest Neighbor Approach; proceedings of the Clustering and Information Retrieval, F, 2003 [C].
[103] BLONDEL V D, GUILLAUME J-L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics: theory and experiment, 2008, 2008(10): P10008.
[104] WALTMAN L, VAN ECK N J. A smart local moving algorithm for large-scale modularity-based community detection[J]. Eur Phys J B, 2013, 86: 1-14.
[105] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523.
[106] JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat[J]. Nat Commun, 2021, 12(1): 1088.
[107] EFREMOVA M, VENTO-TORMO M, TEICHMANN S A, et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes[J]. Nat Protoc, 2020, 15(4): 1484-1506.
[108] WANG Y, WANG R, ZHANG S, et al. iTALK: an R Package to Characterize and Illustrate Intercellular Communication[J]. bioRxiv, 2019: 507871.
[109] STREET K, RISSO D, FLETCHER R B, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics[J]. BMC Genomics, 2018, 19(1): 477.
[110] TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nat Biotechnol, 2014, 32(4): 381-386.
[111] QIU X, HILL A, PACKER J, et al. Single-cell mRNA quantification and differential analysis with Census[J]. Nat Methods, 2017, 14(3): 309-315.
[112] CAO J, SPIELMANN M, QIU X, et al. The single-cell transcriptional landscape of mammalian organogenesis[J]. Nature, 2019, 566(7745): 496-502.
[113] WOLF F A, HAMEY F K, PLASS M, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[J]. Genome Biol, 2019, 20: 1-9.
[114] LA MANNO G, SOLDATOV R, ZEISEL A, et al. RNA velocity of single cells[J]. Nature, 2018, 560(7719): 494-498.
[115] BERGEN V, LANGE M, PEIDLI S, et al. Generalizing RNA velocity to transient cell states through dynamical modeling[J]. Nat Biotechnol, 2020, 38(12): 1408-1414.
[116] FLANDRY F, HOMMEL G. Normal anatomy and biomechanics of the knee[J]. Sports Med Arthrosc Rev, 2011, 19(2): 82-92.
[117] HUMMERT T W, SCHWARTZ Z, SYLVIA V L, et al. Stathmin levels in growth plate chondrocytes are modulated by vitamin D3 metabolites and transforming growth factor-beta1 and are associated with proliferation[J]. Endocrine, 2001, 15(1): 93-101.
[118] STANTON H, ROGERSON F M, EAST C J, et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro[J]. Nature, 2005, 434(7033): 648-652.
[119] ROGERS-DECOTES A W, PORTO S C, DUPUIS L E, et al. ADAMTS5 is required for normal trabeculated bone development in the mandibular condyle[J]. Osteoarthritis Cartilage, 2021, 29(4): 547-557.
[120] YU X, XU X, DONG W, et al. DDIT3/CHOP mediates the inhibitory effect of ER stress on chondrocyte differentiation by AMPKα-SIRT1 pathway[J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(8): 119265.
[121] NUMMENMAA E, HAMALAINEN M, MOILANEN T, et al. Effects of FGF-2 and FGF receptor antagonists on MMP enzymes, aggrecan, and type II collagen in primary human OA chondrocytes[J]. Scand J Rheumatol, 2015, 44(4): 321-330.
[122] ARNOLD M A, KIM Y, CZUBRYT M P, et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development[J]. Dev Cell, 2007, 12(3): 377-389.
[123] BREW C J, CLEGG P D, BOOT-HANDFORD R P, et al. Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy[J]. Ann Rheum Dis, 2010, 69(1): 234-240.
[124] LONG J T, LEINROTH A, LIAO Y, et al. Hypertrophic chondrocytes serve as a reservoir for marrow-associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development[J]. Elife, 2022, 11.
[125] SCHAEFER L, IOZZO R V. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction[J]. J Biol Chem, 2008, 283(31): 21305-21309.
[126] CHEN S, BIRK D E. The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly[J]. FEBS J, 2013, 280(10): 2120-2137.
[127] HAN B, LI Q, WANG C, et al. Differentiated activities of decorin and biglycan in the progression of post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(8): 1181-1192.
[128] JIANG Q, QIU Y T, CHEN M J, et al. Synovial TGF-beta1 and MMP-3 levels and their correlation with the progression of temporomandibular joint osteoarthritis combined with disc displacement: A preliminary study[J]. Biomed Rep, 2013, 1(2): 218-222.
[129] VAN EEGHER S, PEREZ-LOZANO M L, TOILLON I, et al. The differentiation of prehypertrophic into hypertrophic chondrocytes drives an OA-remodeling program and IL-34 expression[J]. Osteoarthritis Cartilage, 2021, 29(2): 257-268.
[130] JIANG Y, HU C, YU S, et al. Cartilage stem/progenitor cells are activated in osteoarthritis via interleukin-1beta/nerve growth factor signaling[J]. Arthritis Res Ther, 2015, 17: 327.
[131] VAN DEN PLAS D, MERREGAERT J. In vitro studies on Itm2a reveal its involvement in early stages of the chondrogenic differentiation pathway[J]. Biol Cell, 2004, 96(6): 463-470.
[132] ZHANG Y, ZUO T, MCVICAR A, et al. Runx1 is a key regulator of articular cartilage homeostasis by orchestrating YAP, TGFbeta, and Wnt signaling in articular cartilage formation and osteoarthritis[J]. Bone Res, 2022, 10(1): 63.
[133] SWEETWYNE M T, MURPHY-ULLRICH J E. Thrombospondin1 in tissue repair and fibrosis: TGF-beta-dependent and independent mechanisms[J]. Matrix Biol, 2012, 31(3): 178-186.
[134] LI J, JIANG H, LV Z, et al. Articular fibrocartilage-targeted therapy by microtubule stabilization[J]. Sci Adv, 2022, 8(46): eabn8420.
[135] TARDIF G, PELLETIER J P, BOILEAU C, et al. The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: an immunohistochemical study[J]. Osteoarthritis Cartilage, 2009, 17(2): 263-270.
[136] SINGH P N P, YADAV U S, AZAD K, et al. NFIA and GATA3 are crucial regulators of embryonic articular cartilage differentiation[J]. Development, 2018, 145(2).
[137] WILKINSON D J, ARQUES M D C, HUESA C, et al. Serine proteinases in the turnover of the cartilage extracellular matrix in the joint: implications for therapeutics[J]. Br J Pharmacol, 2019, 176(1): 38-51.
[138] WANG C, ZHOU G L, VEDANTAM S, et al. Mitochondrial shuttling of CAP1 promotes actinand cofilin-dependent apoptosis[J]. J Cell Sci, 2008, 121(Pt 17): 2913-2920.
[139] YANG L, TSANG K Y, TANG H C, et al. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation[J]. Proc Natl Acad Sci U S A, 2014, 111(33): 12097-12102.
[140] HUNTER D J, MARCH L, CHEW M. Osteoarthritis in 2020 and beyond: a Lancet Commission[J]. Lancet, 2020, 396(10264): 1711-1712.
[141] KAMADA K, KUBOTA Y, ARATA T, et al. Structure of the human GINS complex and its assembly and functional interface in replication initiation[J]. Nat Struct Mol Biol, 2007, 14(5): 388-396.
[142] TIAN L, SUN S, WANG J, et al. GINS2 affects activity/differentiation, apoptosis and proliferation of osteoblast and osteoclast in steroid-induced osteonecrosis of the femoral head by regulating P53/GADD45A signaling pathway[J]. Food Sci Technol, 2021, 42.
[143] KUNITOKU N, SASAYAMA T, MARUMOTO T, et al. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function[J]. Dev Cell, 2003, 5(6): 853-864.
[144] LE BLANC K, RASMUSSON I, SUNDBERG B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells[J]. Lancet, 2004, 363(9419): 1439-1441.
[145] WAKITANI S, IMOTO K, YAMAMOTO T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees[J]. Osteoarthritis Cartilage, 2002, 10(3): 199-206.
[146] YLOSTALO J, BAZHANOV N, PROCKOP D J. Reversible commitment to differentiation by human multipotent stromal cells in single-cell-derived colonies[J]. Exp Hematol, 2008, 36(10): 1390-1402.
[147] RUSSELL K C, PHINNEY D G, LACEY M R, et al. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment[J]. Stem Cells, 2010, 28(4): 788-798.
[148] WHITFIELD M J, LEE W C, VAN VLIET K J. Onset of heterogeneity in culture-expanded bone marrow stromal cells[J]. Stem Cell Res, 2013, 11(3): 1365-1377.
[149] WOLOCK S L, KRISHNAN I, TENEN D E, et al. Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths[J]. Cell Rep, 2019, 28(2): 302-311 e305.
[150] MENG M Y, PANG W, JIANG L H, et al. Stemness gene expression profile analysis in human umbilical cord mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2012, 237(6): 709-719.
[151] ZELENSKI N A, LEDDY H A, SANCHEZ-ADAMS J, et al. Type VI Collagen Regulates Pericellular Matrix Properties, Chondrocyte Swelling, and Mechanotransduction in Mouse Articular Cartilage[J]. Arthritis Rheumatol, 2015, 67(5): 1286-1294.
[152] KRINNER A, ZSCHARNACK M, BADER A, et al. Impact of oxygen environment on mesenchymal stem cell expansion and chondrogenic differentiation[J]. Cell Prolif, 2009, 42(4): 471-484.
[153] KARRETH F, HOEBERTZ A, SCHEUCH H, et al. The AP1 transcription factor Fra2 is required for efficient cartilage development[J]. Development, 2004, 131(22): 5717-5725.
[154] CHEN D, GONG Y, XU L, et al. Bidirectional regulation of osteogenic differentiation by the FOXO subfamily of Forkhead transcription factors in mammalian MSCs[J]. Cell Prolif, 2019, 52(2): e12540.
[155] TANG C Y, CHEN W, LUO Y, et al. Runx1 up-regulates chondrocyte to osteoblast lineage commitment and promotes bone formation by enhancing both chondrogenesis and osteogenesis[J]. Biochem J, 2020, 477(13): 2421-2438.
[156] YUAN S, ZHANG L, JI L, et al. FoxO3a cooperates with RUNX1 to promote chondrogenesis and terminal hypertrophic of the chondrogenic progenitor cells[J]. Biochem Biophys Res Commun, 2022, 589: 41-47.
修改评论