[1] 刘京运. “机器人+”应用行动加快推动高质量发展[J]. 机器人产业, 2023(02): 42-47.
[2] 王昊. 基于声达时间差的移动机器人声源定位方法研究[D]. 青岛科技大学, 2021.
[3] FLYNN A M, BROOKS R A, WELLS III W M, et al. Squirt: The prototypical mobile robot for autonomous graduate students[J]. 1989.
[4] BROOKS R A, BREAZEAL C, MARJANOVIĆ M, et al. The Cog project: Building a humanoid robot[C]//International workshop on computation for metaphors, analogy, and agents. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998: 52-87.
[5] BROOKS R A, STEIN L A. Building brains for bodies[J]. Autonomous Robots, 1994, 1: 7-25.
[6] IRIE R E. Robust sound localization: An application of an auditory perception system for a humanoid robot[D]. Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.
[7] TAKANISHI A, MASUKAWA S, MORI Y, et al. Study on anthropomorphic auditory robot continuous localization of a sound source in horizontal plane[C]//11th Annual Conference of the Robotics Society of Japan, 1993: 793-796.
[8] TAKANISHI A, MASUKAWA S, MORI Y, et al. Development of an anthropomorphic auditory robot that localizes a sound direction[J]. Bulletin of the Centre for Informatics, 1995, 20: 24-32.
[9] NAGASHIMA K, YOSHIIKE T, KONNO A, et al. Attention-based interaction between human and the robot chiye[C]//Proceedings 6th IEEE International Workshop on Robot and Human Communication. RO-MAN'97 SENDAI. IEEE, 1997: 100-105.
[10] HUANG J, OHNISHI N, SUGIE N. Building ears for robots: sound localization and separation[J]. Artificial Life and Robotics, 1997, 1: 157-163.
[11] HUANG J, OHNISHI N, SUGIE N. Sound localization in reverberant environment based on the model of the precedence effect[J]. IEEE Transactions on Instrumentation and Measurement, 1997, 46(4): 842-846.
[12] HUANG J, SUPAONGPRAPA T, TERAKURA I, et al. A model-based sound localization system and its application to robot navigation[J]. Robotics and Autonomous Systems, 1999, 27(4): 199-209.
[13] ASONO F, ASOH H, MATSUI T. Sound source localization and signal separation for office robot "Jijo-2"[C]//Proceedings. 1999 IEEE/SICE/RSJ. International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI'99 (Cat. No. 99TH8480). IEEE, 1999: 243-248.
[14] MATSUI T, ASOH H, FRY J, et al. Integrated natural spoken dialogue system of Jijo-2 mobile robot for office services[C]//1999 AAAI.
[15] HASHIMOTO S, NARITA S, KASAHARA H, et al. Humanoid robot-development of an information assistant robot Hadaly[C]//Proceedings 6th IEEE International Workshop on Robot and Human Communication RO-MAN'97 SENDAI. IEEE, 1997: 106-111.
[16] OKUNO H G, NAKADAI K. Active audition for humanoid robots that can listen to three simultaneous talkers[J]. The Journal of the Acoustical Society of America, 2003, 113(4_Supplement): 2230-2230.
[17] KIM U-H, NAKADAI K, OKUNO H G. Improved sound source localization and front-back disambiguation for humanoid robots with two ears [C]//Recent Trends in Applied Artificial Intelligence: 26th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2013, Amsterdam, The Netherlands, June 17-21, 2013. Proceedings 26. Springer Berlin Heidelberg, 2013: 282-291.
[18] PORTELLO A, DANES P, ARGENTIERI S. Active binaural localization of intermittent moving sources in the presence of false measurements[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012: 3294-3299.
[19] KOSSYK I, NEUMANN M, MARTON Z-C. Binaural bearing only tracking of stationary sound sources in reverberant environment[C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), IEEE, 2015: 53-56.
[20] CHEN J C, YIP L, ELSON J, et al. Coherent acoustic array processing and localization on wireless sensor networks[J]. Proceedings of the IEEE, 2003, 91(8): 1154-1162.
[21] FAZENDA B, ATMOKO H, GU F, et al. Acoustic based safety emergency vehicle detection for intelligent transport systems[C]//2009 ICCAS-SICE. IEEE, 2009: 4250-4255.
[22] HOSHIBA K, WASHIZAKI K, WAKABAYASHI M, et al. Design of UAV-embedded microphone array system for sound source localization in outdoor environments[J]. Sensors, 2017, 17(11): 2535.
[23] MICHAUD S, FAUCHER S, GRONDIN F, et al. 3D localization of a sound source using mobile microphone arrays referenced by SLAM[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 10402-10407.
[24] FAN X, LEE D, CHEN Y, et al. Acoustic collision detection and localization for robot manipulators[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 9529-9536.
[25] BAI Y, GARG N, ROY N. Spidr: Ultra-low-power acoustic spatial sensing for micro-robot navigation[C]//Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services. 2022: 99-113.
[26] MAJID A Y, VAN DER HORST C, VAN RIETBERGEN T, et al. Lightweight audio source localization for swarm robots[C]//2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2021: 1-6.
[27] ZHANG T, ZHANG H, LI X, et al. AcousticFusion: Fusing sound source localization to visual SLAM in dynamic environments[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021: 6868-6875.
[28] SAQIB U, JENSEN J R. A model-based approach to acoustic reflector localization with a robotic platform[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 4499-4504.
[29] RYPKEMA N R, FISCHELL E M, SCHMIDT H. Memory-efficient approximate three-dimensional beamforming[J]. The Journal of the Acoustical Society of America, 2020, 148(6): 3467-3480.
[30] WADA K, SHIBATA T, SAITO T, et al. Psychological and social effects of one year robot assisted activity on elderly people at a health service facility for the aged[C]// Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE, 2005: 2785-2790.
[31] MEZA I, RASCON C, FUENTES G, et al. On indexicality, direction of arrival of sound sources, and human-robot interaction[J]. Journal of robotics, 2016.
[32] DO H M, SHENG W, LIU M. An open platform of auditory perception for home service robots[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015: 6161-6166.
[33] REVELEAU A, FERLAND F, LABBé M, et al. Visual representation of interaction force and sound source in a teleoperation user interface for a mobile robot[J]. Journal of Human-Robot Interaction, 2015, 4(2): 1-23.
[34] NISHIMUTA I, ITOYAMA K, YOSHII K, et al. Toward a quizmaster robot for speech-based multiparty interaction[J]. Advanced Robotics, 2015, 29(18): 1205-1219.
[35] CHEN H, LEU M C, YIN Z. Real-time multi-modal human–robot collaboration using gestures and speech[J]. Journal of Manufacturing Science and Engineering, 2022, 144(10): 101007.
[36] MEYER T S, JUNIOR P T A. Sound source localization and tracking for the@ home service robot[C]//II BRAHUR and III Brazilian Workshop on Service Robotics. 2019: 59-64.
[37] CHAKRABARTY S, HABETS E A. Broadband DOA estimation using convolutional neural networks trained with noise signals[C]//2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2017: 136-140.
[38] DIAZ-GUERRA D, MIGUEL A, BELTRAN J R. Robust sound source tracking using SRP-PHAT and 3D convolutional neural networks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 29: 300-311.
[39] CHEN G, XU Y. A sound source localization device based on rectangular pyramid structure for mobile robot[J]. Journal of Sensors, 2019.
[40] QIU Y, LI B, HUANG J, et al. An analytical method for 3-D sound source localization based on a five-element microphone array[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14.
[41] NAKADAI K, TAKAHASHI T, OKUNO H G, et al. Design and implementation of robot audition system 'HARK'—Open source software for listening to three simultaneous speakers[J]. Advanced Robotics, 2010, 24(5-6): 739-761.
[42] GRONDIN F, LéTOURNEAU D, FERLAND F, et al. The ManyEars open framework: Microphone array open software and open hardware system for robotic applications[J]. Autonomous Robots, 2013, 34: 217-232.
[43] GRONDIN F, MICHAUD F. Lightweight and optimized sound source localization and tracking methods for open and closed microphone array configurations[J]. Robotics and Autonomous Systems, 2019, 113: 63-80.
[44] GRONDIN F, LéTOURNEAU D, GODIN C, et al. ODAS: Open embedded audition system[J]. Frontiers in Robotics and AI, 2022, 9: 854444.
[45] PERRODIN F, NIKOLIC J, BUSSET J, et al. Design and calibration of large microphone arrays for robotic applications[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012: 4596-4601.
[46] MIURA H, YOSHIDA T, NAKAMURA K, et al. SLAM-based online calibration of asynchronous microphone array for robot audition[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011: 524-529.
[47] MIURA H, YOSHIDA T, NAKAMURA K, et al. SLAM-based online calibration for asynchronous microphone array[J]. Advanced Robotics, 2012, 26(17): 1941-1965.
[48] SU D, KONG H, SUKKARIEH S, et al. Necessary and sufficient conditions for observability of SLAM-based TDOA sensor array calibration and source localization[J]. IEEE Transactions on Robotics, 2021, 37(5): 1451-1468.
[49] SU D, VIDAL-CALLEJA T, MIRO J V. Simultaneous asynchronous microphone array calibration and sound source localization[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 5561-5567.
[50] SU D, VIDAL-CALLEJA T, MIRO J V. Asynchronous microphone arrays calibration and sound source tracking[J]. Autonomous Robots, 2020, 44(2): 183-204.
[51] DAN K, ITOYAMA K, NISHIDA K, et al. Calibration of a microphone array based on a probabilistic model of microphone positions [C]//International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Cham: Springer International Publishing, 2020: 614-625.
[52] PLINGE A, FINK G A, GANNOT S. Passive online geometry calibration of acoustic sensor networks[J]. IEEE Signal Processing Letters, 2017, 24(3): 324-328.
[53] WOŹNIAK S, KOWALCZYK K. Passive joint localization and synchronization of distributed microphone arrays[J]. IEEE Signal Processing Letters, 2018, 26(2): 292-296.
[54] GALA D, LINDSAY N, SUN L. Realtime active sound source localization for unmanned ground robots using a self-rotational bi-microphone array[J]. Journal of Intelligent & Robotic Systems, 2019, 95: 935-954.
[55] SUGIYAMA C, ITOYAMA K, NISHIDA K, et al. Simultaneous calibration of positions, orientations, and time offsets, among multiple microphone arrays[C]//2021 IEEE International Conference on Autonomous Systems (ICAS). IEEE, 2021: 1-5.
[56] 李威燃. 基于移动机器人平台的声源定位技术研究[D]. 浙江大学, 2019.
[57] 徐志夺. 基于小波变换的语音增强算法研究[D]. 哈尔滨工程大学, 2014.
[58] HUANG S, DISSANAYAKE G. A critique of current developments in simultaneous localization and mapping[J]. International Journal of Advanced Robotic Systems, 2016, 13(5): 1729881416669482.
[59] WANG Z, DISSANAYAKE G. Observability analysis of SLAM using Fisher information matrix [C]//2008 10th International Conference on Control, Automation, Robotics and Vision. IEEE, 2008: 1242-1247.
[60] SICILIANA B, SCIAVICOO L, VILLANI L, et al. Robotics modeling, planning and control[J]. Springer-Verlag London Limited, 2009.
[61] 冯仕轩. 基于麦克风阵列的无人机定位方法研究[D]. 西安电子科技大学, 2019.
[62] 韩智轩. 基于波束形成的机器人声源定位方法研究[D]. 南京信息工程大学, 2021.
[63] 刘永存, 贺慧勇. 声音时延测量的数字电路实现与应用[J]. 仪表技术与传感器, 2020.
[64] 袁列萍. 基于声信号处理的被动目标探测定位方法研究[D]. 西安电子科技大学, 2019.
[65] 王铭喆, 邹捷源, 张国才等. 基于GCC算法的声源识别与三维空间实时定位[J]. 物联网技术, 2023, 13(10): 42-44+48.
[66] 杨思琪, 田杨萌, 王彩霞等. TDOA声源定位中阵列阵型对误差的影响[J]. 太赫兹科学与电子信息学报, 2023, 21(01): 50-57.
[67] 段丽萍. 基于 TDOA 算法的四麦克风阵列三维声源定位研究[J]. 2014
[68] 陈颖睿. 麦克风阵列波束成形算法研究与实现[D]. 南京: 南京邮电大学, 2020.
[69] 黄晓琴. 基于移动机器人的声源定位与跟踪方法研究[D]. 武汉理工大学, 2020.
[70] 张二亮, 曹雪林, 朱松. 快速 SRP-PHAT多声源定位算法[J]. 重庆理工大学学报 (自然科学), 2023, 37(9): 167-172.
[71] 刘海涛, 陈永华, 林艳明等. 基于TDOA多声源定位的虚假声源消除方法[J]. 振动.测试与诊断, 2021, 41(02): 319-326+413-414.
[72] 王小怀, 伊树彬, 蔡洛思. 基于TDOA技术及几何模型的声源精准定位[J]. 中国新技术新产品, 2022(22): 29-31+84.
[73] 吉爱国,刘伟平,刘志强等.麦克风阵列近场声源定位与跟踪系统[J]. 信息记录材料, 2019, 20(07): 149-152.
[74] 刘生. 基于 SRP-PHAT 的实时声源定位算法设计与实现[J]. 软件导刊, 2021.
[75] 黄静, 胡馨月. 基于麦克风阵列的室内三维声源定位优化算法[J]. 计算机系统应用, 2021, 30(09): 212-218.
[76] 杜鹏. 基于六轴传感器MPU6050的一种低功耗姿态及深度测量装置[J]. 舰船电子工程, 2022, 42(6): 168-170.
[77] RAFIQ A A, ROHMAN W N, RIYANTO S D. Development of a simple and low-cost smartphone gimbal with MPU-6050 sensor[J]. Journal of Robotics and Control (JRC), 2020, 1(4): 136-140.
[78] SULTAN J M, ZANI N H, AZUANI M, et al. Analysis of inertial measurement accuracy using complementary filter for MPU6050 sensor[J]. Jurnal Kejuruteraan, 2022, 34(5): 959-964.
修改评论