[1] VAN DEN BENT M J, GEURTS M, FRENCH P J, et al. Primary brain tumours in adults [J]. Lancet, 2023, 402(10412): 1564-79.
[2] GHAFFARI-RAFI A, SAMANDOURAS G. Effect of Treatment Modalities on Progression-Free Survival and Overall Survival in Molecularly Subtyped World Health Organization Grade II Diffuse Gliomas: A Systematic Review [J]. World Neurosurg, 2020, 133: 366-80.e2.
[3] BIRK H S, HAN S J, BUTOWSKI N A. Treatment options for recurrent high-grade gliomas [J]. CNS Oncol, 2017, 6(1): 61-70.
[4] TYKOCKI T, ELTAYEB M. Ten-year survival in glioblastoma. A systematic review [J]. J Clin Neurosci, 2018, 54: 7-13.
[5] ZHANG S, SUN K, ZHENG R, et al. Cancer incidence and mortality in China, 2015 [J]. Journal of the National Cancer Center, 2020.
[6] LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary [J]. Neuro Oncol, 2021, 23(8): 1231-51.
[7] NABORS B, PORTNOW J, HATTANGADI-GLUTH J, et al. NCCN CNS tumor guidelines update for 2023 [J]. Neuro Oncol, 2023, 25(12): 2114-6.
[8] WELLER M, PFISTER S M, WICK W, et al. Molecular neuro-oncology in clinical practice: a new horizon [J]. Lancet Oncol, 2013, 14(9): e370-9.
[9] ECKEL-PASSOW J E, LACHANCE D H, MOLINARO A M, et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors [J]. N Engl J Med, 2015, 372(26): 2499-508.
[10] BRAT D J, VERHAAK R G, ALDAPE K D, et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas [J]. N Engl J Med, 2015, 372(26): 2481-98.
[11] HU H, MU Q, BAO Z, et al. Mutational Landscape of Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor [J]. Cell, 2018, 175(6): 1665-78.e18.
[12] AIYAPPA-MAUDSLEY R, CHALMERS A J, PARSONS J L. Factors affecting the radiation response in glioblastoma [J]. Neurooncol Adv, 2022, 4(1): vdac156.
[13] MOLINARO A M, HERVEY-JUMPER S, MORSHED R A, et al. Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced Tumor With Survival Within Molecular Subgroups of Patients With Newly Diagnosed Glioblastoma [J]. JAMA Oncol, 2020, 6(4): 495-503.
[14] MCGIRT M J, CHAICHANA K L, ATTENELLO F J, et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas [J]. Neurosurgery, 2008, 63(4): 700-7; author reply 7-8.
[15] ZINN P O, COLEN R R, KASPER E M, et al. Extent of resection and radiotherapy in GBM: A 1973 to 2007 surveillance, epidemiology and end results analysis of 21,783 patients [J]. Int J Oncol, 2013, 42(3): 929-34.
[16] WU J S, GONG X, SONG Y Y, et al. 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial [J]. Neurosurgery, 2014, 61 Suppl 1: 145-54.
[17] HADDAD A F, AGHI M K, BUTOWSKI N. Novel intraoperative strategies for enhancing tumor control: Future directions [J]. Neuro Oncol, 2022, 24(Suppl 6): S25-s32.
[18] LI L, WANG Y, LI Y, et al. Role of molecular biomarkers in glioma resection: a systematic review [J]. Chin Neurosurg J, 2020, 6: 18.
[19] LU C F, HSU F T, HSIEH K L, et al. Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas [J]. Clin Cancer Res, 2018, 24(18): 4429-36.
[20] KORIYAMA S, NITTA M, KOBAYASHI T, et al. A surgical strategy for lower grade gliomas using intraoperative molecular diagnosis [J]. Brain Tumor Pathol, 2018, 35(3): 159-67.
[21] BARANI I J, LARSON D A. Radiation therapy of glioblastoma [J]. Cancer Treat Res, 2015, 163: 49-73.
[22] NIRANJAN A, KANO H, MONACO III E A, et al. Salvage Leksell Stereotactic Radiosurgery for Malignant Gliomas [J]. Prog Neurol Surg, 2019, 34: 191-9.
[23] MILLER K D, NOGUEIRA L, MARIOTTO A B, et al. Cancer treatment and survivorship statistics, 2019 [J]. CA Cancer J Clin, 2019, 69(5): 363-85.
[24] TOMAR M S, KUMAR A, SRIVASTAVA C, et al. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance [J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188616.
[25] VAN DEN BENT M J, KLEIN M, SMITS M, et al. Bevacizumab and temozolomide in patients with first recurrence of WHO grade II and III glioma, without 1p/19q co-deletion (TAVAREC): a randomised controlled phase 2 EORTC trial [J]. Lancet Oncol, 2018, 19(9): 1170-9.
[26] DONO A, MITRA S, SHAH M, et al. PTEN mutations predict benefit from tumor treating fields (TTFields) therapy in patients with recurrent glioblastoma [J]. J Neurooncol, 2021, 153(1): 153-60.
[27] JACKSON C M, CHOI J, LIM M. Mechanisms of immunotherapy resistance: lessons from glioblastoma [J]. Nat Immunol, 2019, 20(9): 1100-9.
[28] STUPP R, TAILLIBERT S, KANNER A A, et al. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial [J]. Jama, 2015, 314(23): 2535-43.
[29] OSTROM Q T, PRICE M, RYAN K, et al. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018 [J]. Neuro Oncol, 2022, 24(Suppl 3): iii1-iii38.
[30] STUPP R, MASON W P, VAN DEN BENT M J, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma [J]. N Engl J Med, 2005, 352(10): 987-96.
[31] FERGUSON S D, XIU J, WEATHERS S P, et al. GBM-associated mutations and altered protein expression are more common in young patients [J]. Oncotarget, 2016, 7(43): 69466-78.
[32] SRIVIDYA M R, THOTA B, ARIVAZHAGAN A, et al. Age-dependent prognostic effects of EGFR/p53 alterations in glioblastoma: study on a prospective cohort of 140 uniformly treated adult patients [J]. J Clin Pathol, 2010, 63(8): 687-91.
[33] STUPP R, HEGI M E, MASON W P, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial [J]. Lancet Oncol, 2009, 10(5): 459-66.
[34] WESTPHAL M, HILT D C, BORTEY E, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma [J]. Neuro Oncol, 2003, 5(2): 79-88.
[35] KREISL T N, KIM L, MOORE K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma [J]. J Clin Oncol, 2009, 27(5): 740-5.
[36] CHINOT O L, WICK W, MASON W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma [J]. N Engl J Med, 2014, 370(8): 709-22.
[37] LIAU L M, ASHKAN K, TRAN D D, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma [J]. J Transl Med, 2018, 16(1): 142.
[38] WICK W, VAN DEN BENT M J. First results on the DCVax phase III trial: raising more questions than providing answers [J]. Neuro Oncol, 2018, 20(10): 1283-4.
[39] LANG F F, CONRAD C, GOMEZ-MANZANO C, et al. Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma [J]. J Clin Oncol, 2018, 36(14): 1419-27.
[40] TWUMASI-BOATENG K, PETTIGREW J L, KWOK Y Y E, et al. Oncolytic viruses as engineering platforms for combination immunotherapy [J]. Nat Rev Cancer, 2018, 18(7): 419-32.
[41] BIROCCHI F, CUSIMANO M, ROSSARI F, et al. Targeted inducible delivery of immunoactivating cytokines reprograms glioblastoma microenvironment and inhibits growth in mouse models [J]. Sci Transl Med, 2022, 14(653): eabl4106.
[42] WEISS T, PUCA E, SILGINER M, et al. Immunocytokines are a promising immunotherapeutic approach against glioblastoma [J]. Sci Transl Med, 2020, 12(564).
[43] MEI Y, WANG X, ZHANG J, et al. Siglec-9 acts as an immune-checkpoint molecule on macrophages in glioblastoma, restricting T-cell priming and immunotherapy response [J]. Nat Cancer, 2023, 4(9): 1273-91.
[44] REARDON D A, BRANDES A A, OMURO A, et al. Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial [J]. JAMA Oncol, 2020, 6(7): 1003-10.
[45] RUSTENHOVEN J, KIPNIS J. Bypassing the blood-brain barrier [J]. Science, 2019, 366(6472): 1448-9.
[46] LOUVEAU A, SMIRNOV I, KEYES T J, et al. Structural and functional features of central nervous system lymphatic vessels [J]. Nature, 2015, 523(7560): 337-41.
[47] RUSTENHOVEN J, DRIEU A, MAMULADZE T, et al. Functional characterization of the dural sinuses as a neuroimmune interface [J]. Cell, 2021, 184(4): 1000-16.e27.
[48] MAJZNER R G, THERUVATH J L, NELLAN A, et al. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors [J]. Clin Cancer Res, 2019, 25(8): 2560-74.
[49] THERUVATH J, SOTILLO E, MOUNT C W, et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors [J]. Nat Med, 2020, 26(5): 712-9.
[50] BAGLEY S J, DESAI A S, LINETTE G P, et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges [J]. Neuro Oncol, 2018, 20(11): 1429-38.
[51] TANG X, WANG Y, HUANG J, et al. Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma [J]. Signal Transduct Target Ther, 2021, 6(1): 125.
[52] SATO N, MIZUMOTO K, NAKAMURA M, et al. Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells [J]. Exp Cell Res, 2000, 255(2): 321-6.
[53] SCHMITT C A, WANG B, DEMARIA M. Senescence and cancer - role and therapeutic opportunities [J]. Nat Rev Clin Oncol, 2022, 19(10): 619-36.
[54] SALAM R, SALIOU A, BIELLE F, et al. Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma [J]. Nat Commun, 2023, 14(1): 441.
[55] FLETCHER-SANANIKONE E, KANJI S, TOMIMATSU N, et al. Elimination of Radiation-Induced Senescence in the Brain Tumor Microenvironment Attenuates Glioblastoma Recurrence [J]. Cancer Res, 2021, 81(23): 5935-47.
[56] JI J, DING K, CHENG B, et al. Radiotherapy-Induced Astrocyte Senescence Promotes an Immunosuppressive Microenvironment in Glioblastoma to Facilitate Tumor Regrowth [J]. Adv Sci (Weinh), 2024: e2304609.
[57] LEBLANC V G, TRINH D L, ASLANPOUR S, et al. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity [J]. Cancer Cell, 2022, 40(4): 379-92.e9.
[58] ZHAO M, LI Y, LU C, et al. PGC1α Degradation Suppresses Mitochondrial Biogenesis to Confer Radiation Resistance in Glioma [J]. Cancer Res, 2023, 83(7): 1094-110.
[59] BHAT K P L, BALASUBRAMANIYAN V, VAILLANT B, et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma [J]. Cancer Cell, 2013, 24(3): 331-46.
[60] FAN Y, GAO Z, XU J, et al. SPI1-mediated MIR222HG transcription promotes proneural-to-mesenchymal transition of glioma stem cells and immunosuppressive polarization of macrophages [J]. Theranostics, 2023, 13(10): 3310-29.
[61] HEGI M E, DISERENS A C, GORLIA T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma [J]. N Engl J Med, 2005, 352(10): 997-1003.
[62] VASAN N, BASELGA J, HYMAN D M. A view on drug resistance in cancer [J]. Nature, 2019, 575(7782): 299-309.
[63] LANG F, LIU Y, CHOU F J, et al. Genotoxic therapy and resistance mechanism in gliomas [J]. Pharmacol Ther, 2021, 228: 107922.
[64] FU D, CALVO J A, SAMSON L D. Balancing repair and tolerance of DNA damage caused by alkylating agents [J]. Nat Rev Cancer, 2012, 12(2): 104-20.
[65] LIN K, GUEBLE S E, SUNDARAM R K, et al. Mechanism-based design of agents that selectively target drug-resistant glioma [J]. Science, 2022, 377(6605): 502-11.
[66] AOKI K, NATSUME A. Overview of DNA methylation in adult diffuse gliomas [J]. Brain Tumor Pathol, 2019, 36(2): 84-91.
[67] CURTIN N J. DNA repair dysregulation from cancer driver to therapeutic target [J]. Nat Rev Cancer, 2012, 12(12): 801-17.
[68] STARK A M, DOUKAS A, HUGO H H, et al. Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma [J]. Neurol Res, 2015, 37(2): 95-105.
[69] SHINSATO Y, FURUKAWA T, YUNOUE S, et al. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma [J]. Oncotarget, 2013, 4(12): 2261-70.
[70] CAHILL D P, LEVINE K K, BETENSKY R A, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment [J]. Clin Cancer Res, 2007, 13(7): 2038-45.
[71] YAMASHIRO K, NAKAO K, OHBA S, et al. Human Glioma Cells Acquire Temozolomide Resistance After Repeated Drug Exposure Via DNA Mismatch Repair Dysfunction [J]. Anticancer Res, 2020, 40(3): 1315-23.
[72] KIM G W, LEE D H, YEON S K, et al. Temozolomide-resistant Glioblastoma Depends on HDAC6 Activity Through Regulation of DNA Mismatch Repair [J]. Anticancer Res, 2019, 39(12): 6731-41.
[73] BAO S, WU Q, MCLENDON R E, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response [J]. Nature, 2006, 444(7120): 756-60.
[74] BRENNAN C W, VERHAAK R G, MCKENNA A, et al. The somatic genomic landscape of glioblastoma [J]. Cell, 2013, 155(2): 462-77.
[75] HUANG K, LIU X, LI Y, et al. Genome-Wide CRISPR-Cas9 Screening Identifies NF-κB/E2F6 Responsible for EGFRvIII-Associated Temozolomide Resistance in Glioblastoma [J]. Adv Sci (Weinh), 2019, 6(17): 1900782.
[76] GARCIA J H, JAIN S, AGHI M K. Metabolic Drivers of Invasion in Glioblastoma [J]. Front Cell Dev Biol, 2021, 9: 683276.
[77] IMMANUEL S R C, GHANATE A D, PARMAR D S, et al. Integrated genetic and metabolic landscapes predict vulnerabilities of temozolomide resistant glioblastoma cells [J]. NPJ Syst Biol Appl, 2021, 7(1): 2.
[78] CUI X, ZHAO J, LI G, et al. Blockage of EGFR/AKT and mevalonate pathways synergize the antitumor effect of temozolomide by reprogramming energy metabolism in glioblastoma [J]. Cancer Commun (Lond), 2023, 43(12): 1326-53.
[79] HOMBACH-KLONISCH S, MEHRPOUR M, SHOJAEI S, et al. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response [J]. Pharmacol Ther, 2018, 184: 13-41.
[80] HUANG T, WAN X, ALVAREZ A A, et al. MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy [J]. Autophagy, 2019, 15(6): 1100-11.
[81] CHIEN C H, YANG W B, CHUANG J Y, et al. SH3GLB1-related autophagy mediates mitochondrial metabolism to acquire resistance against temozolomide in glioblastoma [J]. J Exp Clin Cancer Res, 2022, 41(1): 220.
[82] WEN Z P, ZENG W J, CHEN Y H, et al. Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux [J]. J Exp Clin Cancer Res, 2019, 38(1): 298.
[83] HONG B, YANG E, SU D, et al. EPIC-1042 as a potent PTRF/Cavin1-caveolin-1 interaction inhibitor to induce PARP1 autophagic degradation and suppress temozolomide efflux for glioblastoma [J]. Neuro Oncol, 2024, 26(1): 100-14.
[84] OHBA S, KUWAHARA K, YAMADA S, et al. Correlation between IDH, ATRX, and TERT promoter mutations in glioma [J]. Brain Tumor Pathol, 2020, 37(2): 33-40.
[85] WU W, KLOCKOW J L, ZHANG M, et al. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance [J]. Pharmacological Research, 2021, 171.
[86] CHOE J H, WATCHMAKER P B, SIMIC M S, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma [J]. Sci Transl Med, 2021, 13(591).
[87] NEHAMA D, DI IANNI N, MUSIO S, et al. B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres [J]. EBioMedicine, 2019, 47: 33-43.
[88] LEMOINE J, RUELLA M, HOUOT R. Born to survive: how cancer cells resist CAR T cell therapy [J]. J Hematol Oncol, 2021, 14(1): 199.
[89] LIU G, RUI W, ZHAO X, et al. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment [J]. Cell Mol Immunol, 2021, 18(5): 1085-95.
[90] NA S Y, HERMANN A, SANCHEZ-RUIZ M, et al. Oligodendrocytes enforce immune tolerance of the uninfected brain by purging the peripheral repertoire of autoreactive CD8+ T cells [J]. Immunity, 2012, 37(1): 134-46.
[91] KLEIN R S, IZIKSON L, MEANS T, et al. IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis [J]. J Immunol, 2004, 172(1): 550-9.
[92] VEGLIA F, PEREGO M, GABRILOVICH D. Myeloid-derived suppressor cells coming of age [J]. Nat Immunol, 2018, 19(2): 108-19.
[93] MANTOVANI A, MARCHESI F, MALESCI A, et al. Tumour-associated macrophages as treatment targets in oncology [J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416.
[94] HUANG C, LI G, WU J, et al. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction [J]. Genome Biol, 2021, 22(1): 80.
[95] GROSSMAN S A, YE X, LESSER G, et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide [J]. Clin Cancer Res, 2011, 17(16): 5473-80.
[96] FEINS S, KONG W, WILLIAMS E F, et al. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer [J]. Am J Hematol, 2019, 94(S1): S3-s9.
[97] SHADMAN M. Diagnosis and Treatment of Chronic Lymphocytic Leukemia: A Review [J]. Jama, 2023, 329(11): 918-32.
[98] MELENHORST J J, CHEN G M, WANG M, et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells [J]. Nature, 2022, 602(7897): 503-9.
[99] O'ROURKE D M, NASRALLAH M P, DESAI A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma [J]. Sci Transl Med, 2017, 9(399).
[100] BROWN C E, ALIZADEH D, STARR R, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy [J]. N Engl J Med, 2016, 375(26): 2561-9.
[101] BROWN C E, BADIE B, BARISH M E, et al. Bioactivity and Safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma [J]. Clin Cancer Res, 2015, 21(18): 4062-72.
[102] PITUCH K C, MISKA J, KRENCIUTE G, et al. Adoptive Transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells Creates a Pro-inflammatory Environment in Glioblastoma [J]. Mol Ther, 2018, 26(4): 986-95.
[103] SAMPSON J H, CHOI B D, SANCHEZ-PEREZ L, et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss [J]. Clin Cancer Res, 2014, 20(4): 972-84.
[104] ABBOTT R C, VERDON D J, GRACEY F M, et al. Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma [J]. Clin Transl Immunology, 2021, 10(5): e1283.
[105] CHOW K K, NAIK S, KAKARLA S, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma [J]. Mol Ther, 2013, 21(3): 629-37.
[106] RODRIGUEZ A, BROWN C, BADIE B. Chimeric antigen receptor T-cell therapy for glioblastoma [J]. Transl Res, 2017, 187: 93-102.
[107] AHMED N, BRAWLEY V, HEGDE M, et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial [J]. JAMA Oncol, 2017, 3(8): 1094-101.
[108] HAYDAR D, HOUKE H, CHIANG J, et al. Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery [J]. Neuro Oncol, 2021, 23(6): 999-1011.
[109] DE BILLY E, PELLEGRINO M, ORLANDO D, et al. Dual IGF1R/IR inhibitors in combination with GD2-CAR T-cells display a potent anti-tumor activity in diffuse midline glioma H3K27M-mutant [J]. Neuro Oncol, 2022, 24(7): 1150-63.
[110] JIN L, GE H, LONG Y, et al. CD70, a novel target of CAR T-cell therapy for gliomas [J]. Neuro Oncol, 2018, 20(1): 55-65.
[111] LIU M, ZHANG L, ZHONG M, et al. CRISPR/Cas9-mediated knockout of intracellular molecule SHP-1 enhances tumor-killing ability of CD133-targeted CAR T cells in vitro [J]. Exp Hematol Oncol, 2023, 12(1): 88.
[112] HäNSCH L, PEIPP M, MASTALL M, et al. Chimeric antigen receptor T cell-based targeting of CD317 as a novel immunotherapeutic strategy against glioblastoma [J]. Neuro Oncol, 2023, 25(11): 2001-14.
[113] ROUSSO-NOORI L, MASTANDREA I, TALMOR S, et al. P32-specific CAR T cells with dual antitumor and antiangiogenic therapeutic potential in gliomas [J]. Nat Commun, 2021, 12(1): 3615.
[114] WANG D, STARR R, CHANG W C, et al. Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma [J]. Sci Transl Med, 2020, 12(533).
[115] LARSON R C, MAUS M V. Recent advances and discoveries in the mechanisms and functions of CAR T cells [J]. Nat Rev Cancer, 2021, 21(3): 145-61.
[116] CHOI B D, YU X, CASTANO A P, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity [J]. Nat Biotechnol, 2019, 37(9): 1049-58.
[117] SATTIRAJU A, KANG S, GIOTTI B, et al. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression [J]. Immunity, 2023, 56(8): 1825-43.e6.
[118] FLUGEL C L, MAJZNER R G, KRENCIUTE G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours [J]. Nat Rev Clin Oncol, 2023, 20(1): 49-62.
[119] BAK R O, GOMEZ-OSPINA N, PORTEUS M H. Gene Editing on Center Stage [J]. Trends Genet, 2018, 34(8): 600-11.
[120] MAKAROVA K S, ZHANG F, KOONIN E V. SnapShot: Class 2 CRISPR-Cas Systems [J]. Cell, 2017, 168(1-2): 328- e1.
[121] ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors [J]. Nature Biotechnology, 2020, 38(7): 824-44.
[122] KAMPMANN M. CRISPR-based functional genomics for neurological disease [J]. Nat Rev Neurol, 2020, 16(9): 465-80.
[123] CHO S W, KIM S, KIM J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J]. Nat Biotechnol, 2013, 31(3): 230-2.
[124] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-23.
[125] KATTI A, DIAZ B J, CARAGINE C M, et al. CRISPR in cancer biology and therapy [J]. Nature Reviews Cancer, 2022, 22(5): 259-79.
[126] QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression [J]. Cell, 2013, 152(5): 1173-83.
[127] LIU S J, MALATESTA M, LIEN B V, et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma [J]. Genome Biol, 2020, 21(1): 83.
[128] TIAN R, GACHECHILADZE M A, LUDWIG C H, et al. CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons [J]. Neuron, 2019, 104(2): 239-55 e12.
[129] GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes [J]. Cell, 2013, 154(2): 442-51.
[130] GRONER A C, MEYLAN S, CIUFFI A, et al. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading [J]. PLoS Genet, 2010, 6(3): e1000869.
[131] KAMPMANN M. CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine [J]. ACS Chem Biol, 2018, 13(2): 406-16.
[132] PRZYBYLA L, GILBERT L A. A new era in functional genomics screens [J]. Nat Rev Genet, 2022, 23(2): 89-103.
[133] KULKARNI S, GOEL-BHATTACHARYA S, SENGUPTA S, et al. A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells [J]. Mol Cancer Res, 2018, 16(1): 103-14.
[134] SA J K, YOON Y, KIM M, et al. In vivo RNAi screen identifies NLK as a negative regulator of mesenchymal activity in glioblastoma [J]. Oncotarget, 2015, 6(24): 20145-59.
[135] CHEN M, MAO A, XU M, et al. CRISPR-Cas9 for cancer therapy: Opportunities and challenges [J]. Cancer Lett, 2019, 447: 48-55.
[136] WEBER J, BRAUN C J, SAUR D, et al. In vivo functional screening for systems-level integrative cancer genomics [J]. Nature Reviews Cancer, 2020, 20(10): 573-93.
[137] LI K, OUYANG M, ZHAN J, et al. CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types [J]. Cell Genom, 2023, 3(5): 100300.
[138] LINO C A, HARPER J C, CARNEY J P, et al. Delivering CRISPR: a review of the challenges and approaches [J]. Drug Deliv, 2018, 25(1): 1234-57.
[139] KAMPMANN M, BASSIK M C, WEISSMAN J S. Integrated platform for genome-wide screening and construction of high-density genetic interaction maps in mammalian cells [J]. Proc Natl Acad Sci U S A, 2013, 110(25): E2317-26.
[140] PRELICH G. Gene overexpression: uses, mechanisms, and interpretation [J]. Genetics, 2012, 190(3): 841-54.
[141] HOCHHEISER K, KUEH A J, GEBHARDT T, et al. CRISPR/Cas9: A tool for immunological research [J]. Eur J Immunol, 2018, 48(4): 576-83.
[142] ANDERSEN B M, FAUST AKL C, WHEELER M A, et al. Glial and myeloid heterogeneity in the brain tumour microenvironment [J]. Nat Rev Cancer, 2021, 21(12): 786-802.
[143] LI C, KASINSKI A L. In Vivo Cancer-Based Functional Genomics [J]. Trends in Cancer, 2020, 6(12): 1002-17.
[144] CHOW R D, CHEN S. Cancer CRISPR Screens In Vivo [J]. Trends in Cancer, 2018, 4(5): 349-58.
[145] CHOW R D, GUZMAN C D, WANG G, et al. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma [J]. Nature Neuroscience, 2017, 20(10): 1329-41.
[146] ZHU S, LI W, LIU J, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library [J]. Nature Biotechnology, 2016, 34(12): 1279-86.
[147] BERGADà-PIJUAN J, PULIDO-QUETGLAS C, VANCURA A, et al. CASPR, an analysis pipeline for single and paired guide RNA CRISPR screens, reveals optimal target selection for long non-coding RNAs [J]. Bioinformatics, 2020, 36(6): 1673-80.
[148] KAMPMANN M. CRISPR-based functional genomics for neurological disease [J]. Nature Reviews Neurology, 2020, 16(9): 465-80.
[149] TOLEDO CHAD M, DING Y, HOELLERBAUER P, et al. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells [J]. Cell Reports, 2015, 13(11): 2425-39.
[150] MACLEOD G, BOZEK D A, RAJAKULENDRAN N, et al. Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells [J]. Cell Rep, 2019, 27(3): 971-86 e9.
[151] TANG M, XIE Q, GIMPLE R C, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions [J]. Cell Research, 2020, 30(10): 833-53.
[152] Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J]. Nature, 2008, 455(7216): 1061-8.
[153] SUN X, KLINGBEIL O, LU B, et al. BRD8 maintains glioblastoma by epigenetic reprogramming of the p53 network [J]. Nature, 2023, 613(7942): 195-202.
[154] OZYERLI-GOKNAR E, KALA E Y, AKSU A C, et al. Epigenetic-focused CRISPR/Cas9 screen identifies (absent, small, or homeotic)2-like protein (ASH2L) as a regulator of glioblastoma cell survival [J]. Cell Commun Signal, 2023, 21(1): 328.
[155] QIU Z, ZHAO L, SHEN J Z, et al. Transcription Elongation Machinery Is a Druggable Dependency and Potentiates Immunotherapy in Glioblastoma Stem Cells [J]. Cancer Discovery, 2022, 12(2): 502-21.
[156] LIN K, SHEN S-H, LU F, et al. CRISPR screening of E3 ubiquitin ligases reveals Ring Finger Protein 185 as a novel tumor suppressor in glioblastoma repressed by promoter hypermethylation and miR-587 [J]. Journal of Translational Medicine, 2022, 20(1).
[157] ZHENG C, WEI Y, ZHANG Q, et al. Multiomics analyses reveal DARS1-AS1/YBX1-controlled posttranscriptional circuits promoting glioblastoma tumorigenesis/radioresistance [J]. Sci Adv, 2023, 9(31): eadf3984.
[158] PROLO L M, LI A, OWEN S F, et al. Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion [J]. Scientific Reports, 2019, 9(1).
[159] GARCIA J H, AKINS E A, JAIN S, et al. Multiomic screening of invasive GBM cells reveals targetable transsulfuration pathway alterations [J]. J Clin Invest, 2023, 134(3).
[160] TU K J, STEWART C E, HENDRICKSON P G, et al. Pooled genetic screens to identify vulnerabilities in TERT-promoter-mutant glioblastoma [J]. Oncogene, 2023, 42(44): 3274-86.
[161] ROCHA C R R, REILY ROCHA A, MOLINA SILVA M, et al. Revealing Temozolomide Resistance Mechanisms via Genome-Wide CRISPR Libraries [J]. Cells, 2020, 9(12).
[162] HUANG K, LIU X, LI Y, et al. Genome-Wide CRISPR-Cas9 Screening Identifies NF-kappaB/E2F6 Responsible for EGFRvIII-Associated Temozolomide Resistance in Glioblastoma [J]. Adv Sci (Weinh), 2019, 6(17): 1900782.
[163] TONG F, ZHAO J X, FANG Z Y, et al. MUC1 promotes glioblastoma progression and TMZ resistance by stabilizing EGFRvIII [J]. Pharmacol Res, 2023, 187: 106606.
[164] CHENG X, AN J, LOU J, et al. Trans-lesion synthesis and mismatch repair pathway crosstalk defines chemoresistance and hypermutation mechanisms in glioblastoma [J]. Nat Commun, 2024, 15(1): 1957.
[165] NITISS J L. DNA topoisomerase II and its growing repertoire of biological functions [J]. Nat Rev Cancer, 2009, 9(5): 327-37.
[166] AWAH C U, CHEN L, BANSAL M, et al. Ribosomal protein S11 influences glioma response to TOP2 poisons [J]. Oncogene, 2020, 39(27): 5068-81.
[167] CAO Z, LIU X, ZHANG W, et al. Biomimetic Macrophage Membrane-Camouflaged Nanoparticles Induce Ferroptosis by Promoting Mitochondrial Damage in Glioblastoma [J]. ACS Nano, 2023, 17(23): 23746-60.
[168] QU J, QIU B, ZHANG Y, et al. The tumor-enriched small molecule gambogic amide suppresses glioma by targeting WDR1-dependent cytoskeleton remodeling [J]. Signal Transduct Target Ther, 2023, 8(1): 424.
[169] MATT S, HOFMANN T G. The DNA damage-induced cell death response: a roadmap to kill cancer cells [J]. Cell Mol Life Sci, 2016, 73(15): 2829-50.
[170] ZHU G D, YU J, SUN Z Y, et al. Genome-wide CRISPR/Cas9 screening identifies CARHSP1 responsible for radiation resistance in glioblastoma [J]. Cell Death Dis, 2021, 12(8): 724.
[171] LIU X, CAO Z, WANG W, et al. Engineered Extracellular Vesicle-Delivered CRISPR/Cas9 for Radiotherapy Sensitization of Glioblastoma [J]. ACS Nano, 2023, 17(17): 16432-47.
[172] SHIMASAKI N, JAIN A, CAMPANA D. NK cells for cancer immunotherapy [J]. Nature Reviews Drug Discovery, 2020, 19(3): 200-18.
[173] BERNAREGGI D, XIE Q, PRAGER B C, et al. CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity [J]. Nat Commun, 2022, 13(1): 1899.
[174] TOMASZEWSKI W, SANCHEZ-PEREZ L, GAJEWSKI T F, et al. Brain Tumor Microenvironment and Host State: Implications for Immunotherapy [J]. Clinical Cancer Research, 2019, 25(14): 4202-10.
[175] MITTRüCKER H W, VISEKRUNA A, HUBER M. Heterogeneity in the differentiation and function of CD8⁺ T cells [J]. Arch Immunol Ther Exp (Warsz), 2014, 62(6): 449-58.
[176] DMELLO C, ZHAO J, CHEN L, et al. Checkpoint kinase 1/2 inhibition potentiates anti-tumoral immune response and sensitizes gliomas to immune checkpoint blockade [J]. Nature Communications, 2023, 14(1).
[177] LEE J M, NAIR J, ZIMMER A, et al. Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: a first-in-class proof-of-concept phase 2 study [J]. Lancet Oncol, 2018, 19(2): 207-15.
[178] GATTI-MAYS M E, KARZAI F H, SOLTANI S N, et al. A Phase II Single Arm Pilot Study of the CHK1 Inhibitor Prexasertib (LY2606368) in BRCA Wild-Type, Advanced Triple-Negative Breast Cancer [J]. Oncologist, 2020, 25(12): 1013-e824.
[179] YE L, PARK J J, DONG M B, et al. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma [J]. Nature Biotechnology, 2019, 37(11): 1302-13.
[180] WANG D, PRAGER B C, GIMPLE R C, et al. CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies [J]. Cancer Discovery, 2021, 11(5): 1192-211.
[181] CORTEZ J T, MONTAUTI E, SHIFRUT E, et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3 [J]. Nature, 2020, 582(7812): 416-20.
[182] WANG D, PRAGER B C, GIMPLE R C, et al. CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies [J]. Cancer Discov, 2021, 11(5): 1192-211.
[183] LARSON R C, KANN M C, BAILEY S R, et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours [J]. Nature, 2022, 604(7906): 563-70.
[184] VERA J, SAVOLDO B, VIGOUROUX S, et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells [J]. Blood, 2006, 108(12): 3890-7.
[185] HORLBECK M A, GILBERT L A, VILLALTA J E, et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation [J]. Elife, 2016, 5.
[186] FENG Y, ZHENG H, TANG J, et al. Protocol for generating in vitro glioma models using human-induced pluripotent- or embryonic-stem-cell-derived cerebral organoids [J]. STAR Protoc, 2023, 4(3): 102346.
[187] DIVAKARUNI A S, PARADYSE A, FERRICK D A, et al. Analysis and interpretation of microplate-based oxygen consumption and pH data [J]. Methods Enzymol, 2014, 547: 309-54.
[188] XU Y, ZHANG M, RAMOS C A, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15 [J]. Blood, 2014, 123(24): 3750-9.
[189] LENG K, KAMPMANN M. Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics [J]. Genome Med, 2022, 14(1): 130.
[190] TIAN R, GACHECHILADZE M A, LUDWIG C H, et al. CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons [J]. Neuron, 2019, 104(2): 239-55.e12.
[191] SAMELSON A J, TRAN Q D, ROBINOT R, et al. BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2 [J]. Nat Cell Biol, 2022, 24(1): 24-34.
[192] NIE H, JU H, FAN J, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth [J]. Nature Communications, 2020, 11(1): 36.
[193] XU D, SHAO F, BIAN X, et al. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies [J]. Cell Metab, 2021, 33(1): 33-50.
[194] LI X, ZHENG Y, LU Z. PGK1 is a new member of the protein kinome [J]. Cell Cycle, 2016, 15(14): 1803-4.
[195] HU H, ZHU W, QIN J, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis [J]. Hepatology, 2017, 65(2): 515-28.
[196] LI X, JIANG Y, MEISENHELDER J, et al. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis [J]. Mol Cell, 2016, 61(5): 705-19.
[197] LUNT S Y, VANDER HEIDEN M G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation [J]. Annu Rev Cell Dev Biol, 2011, 27: 441-64.
[198] SU W Y, TIAN L Y, GUO L P, et al. PI3K signaling-regulated metabolic reprogramming: From mechanism to application [J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(5): 188952.
[199] STEINBERG G R, HARDIE D G. New insights into activation and function of the AMPK [J]. Nat Rev Mol Cell Biol, 2023, 24(4): 255-72.
[200] POBBATI A V, HONG W. A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy [J]. Theranostics, 2020, 10(8): 3622-35.
[201] ZHANG Y, AISKER G, DONG H, et al. Urolithin A suppresses glucolipotoxicity-induced ER stress and TXNIP/NLRP3/IL-1β inflammation signal in pancreatic β cells by regulating AMPK and autophagy [J]. Phytomedicine, 2021, 93: 153741.
[202] WANG Z, ZHAO J, WANG G, et al. Comutations in DNA Damage Response Pathways Serve as Potential Biomarkers for Immune Checkpoint Blockade [J]. Cancer Res, 2018, 78(22): 6486-96.
[203] LIN J, SHI J, GUO H, et al. Alterations in DNA Damage Repair Genes in Primary Liver Cancer [J]. Clin Cancer Res, 2019, 25(15): 4701-11.
[204] JIANG Y, DONG Y, LUO Y, et al. AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ [J]. Cell Rep, 2021, 34(7): 108713.
[205] NEWICK K, O'BRIEN S, MOON E, et al. CAR T Cell Therapy for Solid Tumors [J]. Annu Rev Med, 2017, 68: 139-52.
[206] VIGDOROVICH V, RAMAGOPAL U A, LáZáR-MOLNáR E, et al. Structure and T cell inhibition properties of B7 family member, B7-H3 [J]. Structure, 2013, 21(5): 707-17.
[207] DU H, HIRABAYASHI K, AHN S, et al. Antitumor Responses in the Absence of Toxicity in Solid Tumors by Targeting B7-H3 via Chimeric Antigen Receptor T Cells [J]. Cancer Cell, 2019, 35(2): 221-37.e8.
[208] SOUWEIDANE M M, KRAMER K, PANDIT-TASKAR N, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial [J]. Lancet Oncol, 2018, 19(8): 1040-50.
[209] HIRABAYASHI K, DU H, XU Y, et al. Dual Targeting CAR-T Cells with Optimal Costimulation and Metabolic Fitness enhance Antitumor Activity and Prevent Escape in Solid Tumors [J]. Nat Cancer, 2021, 2(9): 904-18.
[210] LI G, WANG H, WU H, et al. B7-H3-targeted CAR-T cell therapy for solid tumors [J]. Int Rev Immunol, 2022, 41(6): 625-37.
[211] ZHAO Z, ZHANG K N, WANG Q, et al. Chinese Glioma Genome Atlas (CGGA): A Comprehensive Resource with Functional Genomic Data from Chinese Glioma Patients [J]. Genomics Proteomics Bioinformatics, 2021, 19(1): 1-12.
[212] RASKOV H, ORHAN A, CHRISTENSEN J P, et al. Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy [J]. Br J Cancer, 2021, 124(2): 359-67.
[213] XIE Q, DING J, CHEN Y. Role of CD8(+) T lymphocyte cells: Interplay with stromal cells in tumor microenvironment [J]. Acta Pharm Sin B, 2021, 11(6): 1365-78.
[214] BOJJIREDDY N, BOTYANSZKI J, HAMMOND G, et al. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels [J]. J Biol Chem, 2014, 289(9): 6120-32.
[215] MEYLAN F, RICHARD A C, SIEGEL R M. TL1A and DR3, a TNF family ligand-receptor pair that promotes lymphocyte costimulation, mucosal hyperplasia, and autoimmune inflammation [J]. Immunol Rev, 2011, 244(1): 188-96.
[216] XU W D, LI R, HUANG A F. Role of TL1A in Inflammatory Autoimmune Diseases: A Comprehensive Review [J]. Front Immunol, 2022, 13: 891328.
[217] CUI A, HUANG T, LI S, et al. Dictionary of immune responses to cytokines at single-cell resolution [J]. Nature, 2023.
[218] RAMKUMAR P, ABARIENTOS A B, TIAN R, et al. CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma [J]. Blood Adv, 2020, 4(13): 2899-911.
[219] BAGLEY S J, LOGUN M, FRAIETTA J A, et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results [J]. Nat Med, 2024.
[220] RODRíGUEZ C, PUENTE-MONCADA N, REITER R J, et al. Regulation of cancer cell glucose metabolism is determinant for cancer cell fate after melatonin administration [J]. J Cell Physiol, 2021, 236(1): 27-40.
[221] HUANG D, LI T, WANG L, et al. Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress [J]. Cell Res, 2016, 26(10): 1112-30.
[222] XIA L, OYANG L, LIN J, et al. The cancer metabolic reprogramming and immune response [J]. Mol Cancer, 2021, 20(1): 28.
[223] VIALE A, PETTAZZONI P, LYSSIOTIS C A, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function [J]. Nature, 2014, 514(7524): 628-32.
[224] SHAO C, YANG F, MIAO S, et al. Role of hypoxia-induced exosomes in tumor biology [J]. Mol Cancer, 2018, 17(1): 120.
[225] EZZEDDINI R, TAGHIKHANI M, SALEK FARROKHI A, et al. Downregulation of fatty acid oxidation by involvement of HIF-1α and PPARγ in human gastric adenocarcinoma and related clinical significance [J]. J Physiol Biochem, 2021, 77(2): 249-60.
[226] DU W, ZHANG L, BRETT-MORRIS A, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism [J]. Nat Commun, 2017, 8(1): 1769.
[227] BENSAAD K, FAVARO E, LEWIS C A, et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation [J]. Cell Rep, 2014, 9(1): 349-65.
[228] QIU B, ACKERMAN D, SANCHEZ D J, et al. HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma [J]. Cancer Discov, 2015, 5(6): 652-67.
[229] ACKERMAN D, TUMANOV S, QIU B, et al. Triglycerides Promote Lipid Homeostasis during Hypoxic Stress by Balancing Fatty Acid Saturation [J]. Cell Rep, 2018, 24(10): 2596-605.e5.
[230] FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression [J]. Science, 2020, 368(6487).
[231] SANLI T, RASHID A, LIU C, et al. Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells [J]. Int J Radiat Oncol Biol Phys, 2010, 78(1): 221-9.
[232] VARA-CIRUELOS D, DANDAPANI M, GRAY A, et al. Genotoxic Damage Activates the AMPK-α1 Isoform in the Nucleus via Ca(2+)/CaMKK2 Signaling to Enhance Tumor Cell Survival [J]. Mol Cancer Res, 2018, 16(2): 345-57.
[233] LI S, LAVAGNINO Z, LEMACON D, et al. Ca(2+)-Stimulated AMPK-Dependent Phosphorylation of Exo1 Protects Stressed Replication Forks from Aberrant Resection [J]. Mol Cell, 2019, 74(6): 1123-37.e6.
[234] KIM Y K, CHAE S C, YANG H J, et al. Cereblon Deletion Ameliorates Lipopolysaccharide-induced Proinflammatory Cytokines through 5'-Adenosine Monophosphate-Activated Protein Kinase/Heme Oxygenase-1 Activation in ARPE-19 Cells [J]. Immune Netw, 2020, 20(3): e26.
[235] SALMINEN A, KAUPPINEN A, KAARNIRANTA K. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging [J]. J Mol Med (Berl), 2019, 97(8): 1049-64.
[236] WANG S, LIN Y, XIONG X, et al. Low-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical Trial [J]. Clin Cancer Res, 2020, 26(18): 4921-32.
[237] ZHU Y P, BROWN J R, SAG D, et al. Adenosine 5'-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages [J]. J Immunol, 2015, 194(2): 584-94.
[238] YUNEVA M O, FAN T W, ALLEN T D, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type [J]. Cell Metab, 2012, 15(2): 157-70.
[239] HU C M, TIEN S C, HSIEH P K, et al. High Glucose Triggers Nucleotide Imbalance through O-GlcNAcylation of Key Enzymes and Induces KRAS Mutation in Pancreatic Cells [J]. Cell Metab, 2019, 29(6): 1334-49.e10.
[240] TANG X, ZHAO S, ZHANG Y, et al. B7-H3 as a Novel CAR-T Therapeutic Target for Glioblastoma [J]. Mol Ther Oncolytics, 2019, 14: 279-87.
[241] BONAVENTURA P, SHEKARIAN T, ALCAZER V, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy [J]. Front Immunol, 2019, 10: 168.
[242] MIGONE T S, ZHANG J, LUO X, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator [J]. Immunity, 2002, 16(3): 479-92.
修改评论