中文版 | English
题名

雅鲁藏布江流域水体重金属含量特征及来源解析

其他题名
CHARACTERISTICS OF HEAVY METAL CONTENT AND SOURCE ANALYSIS OF WATER BODIES OF THE YARLUNG ZANGBO RIVER BASIN
姓名
姓名拼音
LIU Yanbiao
学号
12132207
学位类型
硕士
学位专业
化学
学科门类/专业学位类别
07 理学
导师
匡星星
导师单位
环境科学与工程学院
论文答辩日期
2024-05-10
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

青藏高原是一个典型的高原地区,为大约14亿人口提供水源,雅鲁藏布江(雅江)是青藏高原南部的一条重要河流,在水资源供给和水循环过程中扮演着关键角色。为了探究雅江的重金属浓度水平,本研究基于2020年丰水期和枯水期雅江流域水体中重金属浓度数据,利用多元统计模型和健康风险模型,阐明了雅江流域水体重金属的时空分布、来源分析、含量特征和健康风险。本研究的主要发现如下:在丰水期和枯水期,雅江流域分别有12.78%和32.67%的采样点的砷(As)浓度超过中国饮用水标准(GB5749,2006)和世界卫生组织(2017)规定的饮用水重金属最大允许浓度(MAC)。少数采样点的Mn、Fe和Ni浓度在两个雨季均超过了MAC,其余重金属浓度则未超过MAC。健康风险评估结果显示,重金属对儿童的非致癌和致癌健康风险均高于成人,且枯水期的重金属健康风险高于丰水期,As的健康风险远高于其他重金属元素。多元统计分析结果表明,雅江流域水体中重金属的来源复杂,丰水期和枯水期之间的重金属来源没有显著差异,Co、Ni、Mn、As和Cd主要来自自然来源,而Cr和Fe则来自混合来源。重金属的空间分布受到季节变化的显著影响,且与水体理化参数(如水温、pH、溶解氧、总溶解固体和氧化还原电位)存在复杂的相关关系。在丰水期,部分重金属之间显示出强烈的正相关性,而枯水期则表现为更为显著的正或负相关,这可能与水量变化和地下水补给的性质有关。主成分分析揭示了重金属主要来源的多样性,指出了自然来源(如基岩风化和地热水)对雅江流域水体重金属浓度的影响。此外,聚类分析结果也支持了主成分分析的发现,进一步强化了对重金属来源和行为的理解。本研究的结果为雅江流域重金属的地球化学行为及水资源开发与利用提供了数据基础和理论支持。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] ABEDZADEH S, ROOZBAHANI A, HEIDARI A. Risk Assessment of Water Resources Development Plans Using Fuzzy Fault Tree Analysis[J]. Water Resources Management, 2020, 34(8): 2549-2569.
[2] CAI J P, HE Y, XIE R, et al. A footprint-based water security assessment: An analysis of Hunan province in China[J]. Journal of Cleaner Production, 2020, 245, 118485.
[3] LI L M, WU J, LU J, et al. Water quality evaluation and ecological-health risk assessment on trace elements in surface water of the northeastern Qinghai-Tibet Plateau[J]. Ecotoxicology and Environmental Safety, 2022, 241: 113775.
[4] GAVRILESCU M. Water, Soil, and Plants Interactions in a Threatened Environment[J]. Water, 2021, 13(19): 2746.
[5] BARAKAT M A. New trends in removing heavy metals from industrial wastewater[J]. Arabian Journal of Chemistry, 2011, 4(4): 361-377.
[6] KUMAR K S, DAHMS H U, WON E J, et al. Microalgae - A promising tool for heavy metal remediation[J]. Ecotoxicology and Environmental Safety, 2015, 113: 329-352.
[7] ABDULLAH N, YUSOF N, LAU W J, et al. Recent trends of heavy metal removal from water/wastewater by membrane technologies[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 17-38.
[8] SRIKANTH K, RAO J V. Spatial and seasonal variation of potential toxic elements in Adociapigmentifera, seawater and sediment from Rameswaram, southeast coast of India[J]. Environmental Earth Sciences, 2014, 72(8): 2905-2916.
[9] CHOWDHURY S, MAZUMDER M A J, AL-ATTAS O, et al. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries[J]. Science of the Total Environment, 2016, 569: 476-488.
[10] LI Z, LIU J J, GUO H C. Plateau River research: ecological risk assessment of surface sediments in the YarlungTsangpo River[J]. Environmental Science and Pollution Research, 2020, 27(6): 6126-6138.
[11] CHENG X L, HUANG Y A, PU X C, et al. Spatial and Seasonal Distribution and Transportation of Different Forms of Phosphorus in the Middle Reaches of the YarlungZangbo River[J]. Water, 2018, 10(12):1858.
[12] CHI K G, PANG B, CUI L Z, et al. Modelling the Vegetation Response to Climate Changes in the YarlungZangbo River Basin Using Random Forest[J]. Water, 2020, 12(5): 1433.
[13] NAN S Q, LI J, ZHANG L L, et al. Distribution Characteristics of Phosphorus in the YarlungZangbo River Basin[J]. Water, 2018, 10(7): 913.
[14] WANG C, ZHOU H, KUANG X X, et al. Water quality and health risk assessment of the water bodies in the Yamdrok-tso basin, southern Tibetan Plateau[J]. Journal of Environmental Management, 2021, 300: 113740.
[15] 曹占琪,苟金明,邱小琮,等.黄河宁夏段水体重金属时空分布特征及健康风险评价[J]. 环境监测管理与技术, 2022, 34: 33-38.
[16] KOBIELSKA P A, HOWARTH A J, FARHA O K, et al. Metal-organic frameworks for heavy metal removal from water[J]. Coordination Chemistry Reviews, 2018, 358: 92-107.
[17] 王志刚,詹华明,徐力刚,等.鄱阳湖入长江口流域水体重金属分布特征及人体健康风险评价[J].长江流域资源与环境, 2023, 32: 1281-1290.
[18] ZHOU W W, LIU G, YANG B, et al. Review on application of perylene diimide (PDI)-based materials in environment: Pollutant detection and degradation[J]. Science of the Total Environment, 2021, 780: 146483.
[19] 张力浩,王国昌,游来勇,等.长江中游某矿区水体和沉积物重金属来源解析及分布特征和生态风险评估[J]. 农业环境科学学报, 2023, 42: 2059-2068.
[20] 王晨希,黄晶,杨紫薇,等.长江镇江段饮用水体中重金属污染现状特征及其健康风险研究[J]. 生物化工, 2023, 9: 133-136.
[21] 张闯,王苒,孙勇刚,等. 衡水湖底泥重金属元素分布特征及污染评价[J]. 能源与环保, 2024, 46, 64-68+75.
[22] SMITH P, ASHMORE M R, BLACK H I J, et al. The role of ecosystems and their management in regulating climate, and soil, water and air quality[J]. Journal of Applied Ecology, 2013, 50(4): 812-829.
[23] 丁光晔,樊贵盛,张艳. 山西省汾河再生水灌区土壤重金属污染及分布特征[J]. 灌溉排水学报, 2015, 34: 53-55.
[24] 方瑞,林曼利,张皖津,等. 宿州市护城河水体重金属含量特征及污染评价[J]. 资源节约与环保, 2023, 12: 23-26+32.
[25] IMMERZEEL W W, BIERKENS M F P. Asian Water Towers: More on Monsoons Response[J]. Science, 2010, 330(6004): 585-585.
[26] TARIQ M, WANGCHUK K, MUTTIL N. A critical review of water resources and their management in bhutan[J]. Hydrology, 2021, 8(1) :31.
[27] 拉巴次仁. 青藏高原雅江流域水化学特征及污染物来源分析[D]. 天津: 天津大学, 2017.
[28] ZHANG J W, YAN Y N, ZHAO Z Q, et al. Spatial and seasonal variations of dissolved arsenic in the YarlungTsangpo River, southern Tibetan Plateau[J]. Science of the Total Environment, 2021, 760: 143416.
[29] QU B, ZHANG Y L, KANG S C, et al. Water chemistry of the southern Tibetan Plateau: an assessment of the YarlungTsangpo river basin[J]. Environmental Earth Sciences, 2017, 76(2): 74.
[30] 陈用泷,李思阳,吴泽璇,等. 湘江源头某河段水体重金属污染特征与健康风险评价[J]. 环境工程技术学报, 2022, 12, 590-596.
[31] FRANZ T E, CAYLOR K K, NORDBOTTEN J M, et al. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems[J]. Advances in Water Resources, 2010, 33(2): 215-230.
[32] 李政. 雅江表层沉积物重金属时空分布特征及生态风险评价研究[D]. 拉萨: 西藏大学, 2019.
[33] WU J, DUAN D, LU J, et al. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations[J]. Science of the Total Environment, 2016, 550: 628-636.
[34] 王怡,卢俊平,刘廷玺,等.典型沙源区水库周边大气干沉降重金属污染特征及风险评价[J]. 环境科学学报, 2023, 43: 190-199.
[35] QIANQIU L Y. Assessing the effects of climate change on water quality of plateau deep-water lake - A study case of Hongfeng Lake[J]. Science of the Total Environment, 2019, 647: 1518-1530.
[36] 王进,彭进平.北江流域大型水库重金属污染健康风险评价[J]. 广东水利水电, 2023, 11, 60-67.
[37] HOJJATI-NAJAFABADI A, MANSOORIANFAR M, LIANG T X, et al. A review on magnetic sensors for monitoring of hazardous pollutants in water resources[J]. Science of the Total Environment, 2022, 824: 153844.
[38] XIAO F J, ZHAO Y Z, BU D, et al. Concentration, Spatial Distribution, and Source Analysis of Trace Elements in the YarlungZangbo River Basin and Its Two Tributaries[J]. Water, 2023, 15(20): 3558.
[39] ZHANG X, ZHANG Y, SHI P, et al. The deep challenge of nitrate pollution in river water of China[J]. Science of the Total Environment, 2021, 770: 144674.
[40] SALERNO F, GAETANO V, GIANNI T. Urbanization and climate change impacts on surface water quality: Enhancing the resilience by reducing impervious surfaces[J]. Water Research, 2018, 144: 491-502.
[41] HORTON R K, UDDIN J. An index-number system for rating water quality[J]. Water Pollution Control Federation. 1965, 37, 300–306.
[42] 罗平平,武阳,王双涛,等. 沣河流域水质的时空对比分析[J]. 水资源与水工程学报, 2021: 32, 35-41.
[43] 杨婵,吴娟娟,车旭曦,等. 汉江上游水体沉积物污染状况分析与评价[J].物探与化探, 2023, 47: 1361-1370.
[44] EL OSTA M, MASOUD M, ALQARAWY A, et al. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia[J]. Water, 2022, 14(3): 483.
[45] VAREDA J P, VALENTE, A J M, DURAES L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review[J]. Journal of Environmental Management, 2019, 246: 101-118.
[46] RAHMAN M A, ISHIGA H. Geochemical investigation of selected elements in coastal and riverine sediments from Ube, Kasado, and Suo-Oshima Bays in the western Seto Inland Sea, Southwest Japan[J]. Journal of Oceanography, 2012, 68(5): 651-669.
[47] TING Y, ENFENG L, ENLOU Z, et al. The spatio-temporal variations of heavy metals in the sediment of Lake Fuxian and the contamination assessment[J]. Journal of Lake Sciences, 2016, 28(1): 50-58.
[48] 张洋洋. 河湖重金属生态风险评价研究进展[J]. 能源与环境, 2019, 6: 3.
[49] AKHTAR N, ISHAK M I S, AHMAD M I, et al. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review[J]. Water, 2021, 13(7): 905.
[50] Tan H C. A brief history and technical review of the expert system research[C].IOP Publishing, 2017.
[51] ZHAO Y P, WU R, CUI L J, et al. Improvement of water quality in the Pearl River Estuary, China: a long-term (2008–2017) case study of temporal-spatial variation, source identification and ecological risk of heavy metals in surface water of Guangzhou[J]. Environmental Science and Pollution Research, 2020, 27(17): 21084-21097.
[52] GAD M, EL-HATTAB M. Integration of water pollution indices and DRASTIC model for assessment of groundwater quality in El Fayoum depression, western desert, Egypt[J]. Journal of African Earth Sciences, 2019, 158: 103554..
[53] ZHUANG Y, WEN W, RUAN S, et al. Real-time measurement of total nitrogen for agricultural runoff based on multiparameter sensors and intelligent algorithms[J]. Water Reasearch, 2021, 210: 117992.
[54] SAHA N, RAHMAN M S, AHMED M B, et al. Industrial metal pollution in water and probabilistic assessment of human health risk[J]. Journal of Environmental Management, 2017, 185: 70-78.
[55] BANFALVI G. Heavy Metals, Trace Elements and Their Cellular Effects[J]. Springer Netherlands, 2011, 3-28.
[56] HU W, HUANG B, HE Y, et al. Assessment of potential health risk of heavy metals in soils from a rapidly developing region of China[J]. Human And Ecological Risk Assessment, 2013, 22(1): 211-225.
[57] USEPA, 1989. Risk assessment guidance for superfund volume i human health evaluation manual (part a). Risk assessment guidance for superfund. Office ofEmergency and Remedial Response, Washington, DC.
[58] QU C, LI B, WU H, et al. Probabilistic ecological risk assessment of heavy metals in sediments from China's major aquatic bodies[J]. Stochastic Environmental Research & Risk Assessment, 2016, 30(1): 271-282.
[59] DJAHED B, TAGHAVI M, FARZADKIA M, et al. Stochastic exposure and health risk assessment of rice contamination to the heavy metals in the market of Iranshahr, Iran[J]. Food and Chemical Toxicology, 2018, 115: 405-412.
[60] ZHONGFANG L, LIDE T, TANDONG Y, et al. Temporal and spatial variations of δ^18O in precipitation of the YarlungZangbo River Basin[J]. Journal of Geographical Sciences, 2007, 17(3): 10.
[61] 李伯根, 包宇飞, 胡明明, et al. 雅江流域水化学特征及碳汇计算[J]. 人民长江, 2023, 54(04): 49-56.
[62] LIU J, YAO Z J, CHEN C Y. Evolution Trend and Causation Analysis of the Runoff Evolution in the YarlungZangbo River Basin[J]. Journal of Natural Resources, 2007, 22(3): 471-477.
[63] HUANG X, SILLANPAA M, GJESSING E T, et al. Water quality in the southern tibetan plateau: chemical evaluation of the YarlungTsangpo (Brahmaputra)[J]. River Research and Applications, 2011, 27(1): 113-121.
[64] HREN M T, CHAMBERLAIN C P, HILLEY G E, et al. Major ion chemistry of the YarlungTsangpo–Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya[J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 2907-2935.
[65] ZHOU X, AO Y, JIANG X, et al. Water use efficiency of China's karst ecosystems: The effect of different ecohydrological and climatic factors[J]. Science of the Total Environment, 2023, 905: 167069.
[66] AITCHISON J C, DAVIS A M, BADENGZHU B, et al. New constraints on the India–Asia collision: the Lower Miocene Gangrinboche conglomerates, YarlungTsangpo suture zone, SE Tibet[J]. Journal of Asian Earth Sciences, 2002, 21(3): 251-263.
[67] XU X Z, YANG J S, ROBINSON P T, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015, 27(2): 686-700.
[68] YAMAMOTO S, KOMIYA T, HIROSE K, MARUYAMA S. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 2009, 109(3-4): 314-322.
[69] YANG J S, DOBRZHINETSKAYA L, BAI W J, et al. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 2007, 35(10): 875-878.
[70] ZHIGANG Y, ZHUOMA, HONGYA L U, et al. Characteristics of precipitation variation and its effects on runoff in the YarlungZangbo River basin during 1961- 2010[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 166-172.
[71] JINPING L, WANCHANG Z, CAI D, et al. Spatiotemporal variations of snow cover over YarlungZangbo River basin in Tibet from 2000 to 2014 and its response to key climate factors[J]. Journal of Glaciology and Geocryology, 2018, 40(4):643-654.
[72] WANG G X,LIU G S, LIU L A. Spatial scale effect on seasonal streamflows in permafrost catchments on the Qinghai-Tibet Plateau[J]. Hydrological Processes, 2012, 26(7): 973-984.
[73] LIU J P, ZHANG W C, LIU T, et al. Runoff Dynamics and Associated Multi-Scale Responses to Climate Changes in the Middle Reach of the YarlungZangbo River Basin, China[J]. Water, 2018, 10(3): 295.
[74] SHEN W, LI H, SUN M, et al. Dynamics of aeolian sandy land in the YarlungZangbo River basin of Tibet, China from 1975 to 2008[J]. Global and Planetary Change, 2012, 86-87: 37-44.
[75] 刘昭. 雅江拉萨—林芝段天然水水化学及同位素特征研究[D]. 成都: 成都理工大学, 2011.
[76] ALDAKHEEL Y Y. Assessing NDVI Spatial Pattern as Related to Irrigation and Soil Salinity Management in Al-Hassa Oasis, Saudi Arabia[J]. Journal of the Indian Society of Remote Sensing, 2011, 39(2): 171-180.
[77]
[1]王欣,覃光华,李红霞.雅江干流年径流变化趋势及特性分析[J].人民长江,2016,47(01):23-26.
[78] WANG X D, ZHONG X H, FAN J R, et al. Assessment and spatial distribution of sensitivity of soil erosion in Tibet[J]. Journal of Geographical Sciences, 2004, 14(1): 6.
[79] LI F, ZHANG Y, XU Z, et al. The impact of climate change on runoff in the southeastern Tibetan Plateau[J]. Journal of Hydrology, 2013, 505: 188-201.
[80] 李新平,李素俭,王社平等.西藏“一江两河”地区耕种土壤肥力状况研究[J].西北农业大学学报,1997,02:60-64.
[81] LI H, LIU L, SHAN B, et al. Spatiotemporal Variation of Drought and Associated Multi-Scale Response to Climate Change over the YarlungZangbo River Basin of Qinghai–Tibet Plateau, China[J]. Remote Sensing, 2019, 12(1): 1596-1616.
[82] DE CARVALHO V S , DOS SANTOS I F, ALMEIDA L C, et al. Spatio-temporal assessment, sources and health risks of water pollutants at trace levels in public supply river using multivariate statistical techniques [J]. Chemosphere, 2021, 282: 130942.
[83] RAVINDRA K, THIND P S, MOR S, et al. Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment[J]. Environmental Pollution, 2019, 255(Pt 1): 113062.
[84] XIAO J, WANG L Q, DENG L, et al. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau[J]. The Science of the total environment, 2018, 650: 2004-2012.
[85] HASAN M, RAHMAN M, AL AHMED A, et al. Heavy metal pollution and ecological risk assessment in the surface water from a marine protected area, Swatch of No Ground, north-western part of the Bay of Bengal[J]. Regional Studies In Marine Science,2022, 52: 102278.
[86]
[1]张海峰,崔航,孙梨雪等.改性木质素的制备及其在重金属离子吸附应用的研究进展[J].辽宁化工,2018,47(11):1124-1126+1130.
[87] NAUJOKAS M F, ANDERSON B, AHSAN H, et al. The Broad Scope of Health Effects from Chronic Arsenic Exposure: Update on a Worldwide Public Health Problem[J]. Environmental Health Perspectives, 2013, 121(3): 295-302.
[88] GUO Q H, CAO Y W, LI J X, et al. Natural attenuation of geothermal arsenic from Yangbajain power plant discharge in the Zangbo River, Tibet, China[J]. Applied Geochemistry, 2015, 62: 164-170.
[89] MUKHERJEE A, VERMA S, GUPTA S, et al. Influence of tectonics, sedimentation and aqueous flow cycles on the origin of global groundwater arsenic: Paradigms from three continents[J]. Journal of Hydrology, 2014, 518: 284-299.
[90] LI C, KANG S, CHEN P, et al. Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China[J]. Environmental Earth Sciences, 2014, 71(9): 4143-4148.
[91] MOHAN D, SARSWAT A, OK Y S, PITTMAN C U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review[J]. Bioresource Technology, 2014, 160: 191-202.
[92] 王静. 临海童燎水库Mn的季节性超标原因分析及治理对策[J]. 城镇供水, 2014, 6: 3.
[93] HONG J R, ZHANG J, SONG Y Y, CAO X. Spatial and Temporal Distribution Characteristics of Nutrient Elements and Heavy Metals in Surface Water of Tibet, China and Their Pollution Assessment[J]. Water, 2022, 14(22):3664.
[94] XIA Z H, ZHANG J W, YAN Y N, et al. Heavy metals in suspended particulate matter in the YarlungTsangpo River, Southwest China[J]. Geosystems and Geoenvironment, 2022, 100160.
[95] SHI D, TAN H, CHEN X, et al. Temporal and spatial variations of runoff composition revealed by isotopic signals in Nianchu River catchment, Tibet[J]. Journal of Hydro-environment Research, 2021, 37: 1-12.
[96] HUDSON-EDWARDS K A, HOUGHTON S L, OSBORN A. Extraction and analysis of arsenic in soils and sediments[J]. Trends in Analytical Chemistry, 2004, 23(s 10–11): 745-752.
[97] 钱晓燕,袁鹏,颜志衡等.西藏年楚河流域水资源承载能力研究[J].东北水利水电,2010,28(02):19-21+51+72.
[98] YU K C, TSAI L J, CHEN S H, HO S T. Correlation analyses on binding behavior of heavy metals with sediment matrices[J]. Water Research, 2001, 35(10): 2417-2428.
[99] 拉巴次仁, 布多, 谭欣, et al. 西藏尼洋河水环境重金属元素水平与风险评估[J]. 环境监测管理与技术, 2017, 29(4): 33-36.
[100] 王珍, 侯磊, 罗怀秀, 徐瑾. 西藏尼洋河流域表层沉积物重金属污染特征分析[J]. 环境科学导刊, 2021, 40(5): 34-39.
[101] LU L, LI Z, HUANG Y, CUI C. Distribution characteristics and risk assessment of heavy metals in Niyang River, Tibet[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 193-199.
[102] 黄毅, 苏立彬, 郝守宁. 尼洋河流域水体重金属健康风险评估[J]. 高原农业, 2020, 4(2): 185-190.
[103] 张强英, 布多, 吕学斌, et al. 西藏帕隆藏布江流域天然水的水化学特征[J]. 环境化学, 2018, 37(4): 889-896.
[104] ApaninA ,Smajovi A , Pehli E ,et al.Health risk assessments based on the contents of heavy metals in sarajevo urban soil[C].International Conference on New Technologies, Development and Application, 2019, 76, 595-603.
[105] SALMANI-GHABESHI, S., FUNES, et al. Spatial gradient of human health risk from exposure to trace elements and radioactive pollutants in soils at the Puchuncavi-Ventanas industrial complex, Chile[J]. Environmental Pollution, 2016, 21: 322-330.
[106] MUKHERJEE I, SINGH U K, PATRA P K. Exploring a multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of east India[J]. Chemosphere, 2019, 23: 164-173.
[107] GROUP C R R. Science advisory board to review guidance on early-life exposure to carcinogens[J]. Chemical Regulation Reporter, 2003(15): 27.
[108] KHAN K, LU Y, KHAN H, et al. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan[J]. Journal of Environmental Sciences, 2013, 25(010): 2003-2013.
[109] TUNG H, TRAN T H, RICHARD J, et al. Assessing health risk due to exposure to arsenic in drinking water in hanam province, vietnam[J]. International Journal of Environmental Research and Public Health, 2014, 11(8):7575-7591.
[110] CHE F F, JIANG X, YAO C, et al. Arsenic distribution and speciation in multiphase media of a lake basin, Tibet: The influences of environmental factors on arsenic biogeochemical behavior in the cold arid plateau lake[J]. Science of the Total Environment, 2020, 714: 136772.
[111] BANERJEE S, MAITI S K, KUMAR A. Metal contamination in water and bioaccumulation of metals in the planktons, molluscs and fishes in Jamshedpur stretch of Subarnarekha River of Chotanagpur plateau, India[J]. Water and Environment Journal, 2015, 29(2): 207-213.
[112] MA L Q, LIU H M, JING J, et al. Impacts of the development of mineral metal resources on surface water quality in the Mongolian Plateau based on meta-analysis[J]. Frontiers in Environmental Science, 2022, 10, 1048500.
[113] YIN D L, PENG F C, HE T R, et al. Ecological risks of heavy metals as influenced by water-level fluctuations in a polluted plateau wetland, southwest China[J]. Science of the Total Environment, 2020, 742, 110319.
[114] NI Z X, LI S Y, CHEN X, et al. Characteristics of sedimentary and dissolved heavy metals in the Chukchi plateau and adjacent waters[J]. Marine Pollution Bulletin, 2022, 184, 114232.
[115] YAO Y Y, ZHENG C M, ANDREWS C B, et al. Role of Groundwater in Sustaining Northern Himalayan Rivers[J]. Geophysical Research Letters, 2021, 48, 10.
[116] FAN L F, KUANG X X, OR D, ZHENG C M. Streamflow composition and water "imbalance" in the northern himalayas[J]. Water Resources Research, 2023, 59, 10.
[117] 李若晨. 渭河流域水体重金属的污染特征、来源分析及风险评估[D]. 西安: 西北大学, 2022.

所在学位评定分委会
化学
国内图书分类号
X52
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766703
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
刘彦标. 雅鲁藏布江流域水体重金属含量特征及来源解析[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132207-刘彦标-环境科学与工程(9461KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘彦标]的文章
百度学术
百度学术中相似的文章
[刘彦标]的文章
必应学术
必应学术中相似的文章
[刘彦标]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。