中文版 | English
题名

基于激光辅助转移印刷的Micro-LED巨量转移

其他题名
MICRO-LED MASS TRANSFER BASED ON LASER-ASSISTED TRANSFER PRINTING
姓名
姓名拼音
LI Jiayi
学号
12132124
学位类型
硕士
学位专业
080903 微电子学与固体电子学
学科门类/专业学位类别
08 工学
导师
刘召军
导师单位
电子与电气工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Micro-LED显示技术由于具有高亮度、自发光等优势而成为显示领域的热点,被视为下一代新型显示技术。巨量转移是指将大量Micro-LED芯片从生长基板转移到另一个基板或载体上的技术过程,是实现Micro-LED全彩化显示的重要方法之一。然而,巨量转移面临着诸多挑战:首先,Micro-LED具有尺寸小、数量多的特点,在转移过程中容易发生位移和损伤;其次,要实现显示屏的集成,需要转移数百万个Micro-LED器件,因此对于巨量转移的良率和速率都提出了极高的要求。

针对如何实现高良率高速率的巨量转移技术,本文开展了以下研究:根据巨量转移的需求,设计并制备了器件间相互独立的倒装结构蓝光Micro-LED阵列,对从外延片清洗到金属焊盘蒸镀的半导体加工工艺做出了详细的介绍。接着设计了倒装结构Micro-LED阵列的巨量转移方法,将激光剥离技术用于剥离蓝宝石衬底,利用柔性薄膜的粘性差异对Micro-LED阵列进行两度翻转,单次转移阵列面积6.5×8 mm2,转移器件数量达到2万以上,转移良率可以达到99.35%,实现了高速率高良率的巨量转移过程。通过对转移前后的Micro-LED阵列进行电学光学测试对比,证实了所设计的巨量转移过程没有对Micro-LED器件有源区造成损伤,并且Micro-LED器件的半峰全宽由于激光剥离过程中的高温影响而得到了改善。

综合来说,本文的研究成果为克服Micro-LED巨量转移技术面临的挑战提供了技术方案和实验验证,为其在显示技术领域的进一步应用提供了可靠的基础和支持。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] WU T, SHER C-W, LIN Y, et al. Mini-LED and micro-LED: Promising candidates for the next generation display technology [J]. Applied Sciences, 2018, 8(9): 1557.
[2] LEE T-Y, CHEN L-Y, LO Y-Y, et al. Technology and applications of micro-LEDs: Their characteristics, fabrication, advancement, and challenges [J]. ACS Photonics, 2022, 9(9): 2905-2930.
[3] GUO X, SCHUBERT E F. Current crowding in GaN/InGaN light emitting diodes on insulating substrates [J]. Journal of Applied Physics, 2001, 90(8): 4191-4195.
[4] FU W Y, HUI K N, WANG X H, et al. Geometrical shaping of InGaN light-emitting diodes by laser micromachining [J]. IEEE Photonics Technology Letters, 2009, 21(15): 1078-1080.
[5] LI S-H, LIN C-P, FANG Y-H, et al. Performance analysis of GaN-based micro light-emitting diodes by laser lift-off process [J]. Solid State Electronics Letters, 2019, 1(2): 58-63.
[6] DAY J, LI J, LIE D Y C, et al. III-Nitride full-scale high-resolution microdisplays [J]. Applied Physics Letters, 2011, 99(3): 031116.
[7] 陈美娟. 面向显示应用的稳定量子点制备及色彩转化研究 [D], 2023.
[8] HAN H-V, LIN H-Y, LIN C-C, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology [J]. Optics Express, 2015, 23(25): 32504-32515.
[9] YEH H J J, SMITH J S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates [J]. IEEE Photonics Technology Letters, 1994, 6(6): 706-708.
[10] Sasaki K, Schuele P J, Ulmer K, et al. Method for the fluidic assembly of emissive displays: U.S. Patent 10,276,754[P]. 2019-4-30.
[11] MARINOV V R. 52‐4: Laser‐enabled extremely‐high rate technology for µLED assembly [J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 692-695.
[12] Bibl A, Higginson J A, Law H S, et al. Method of transferring a micro device: U.S. Patent 8,333,860[P]. 2012-12-18.
[13] CHOI M, JANG B, LEE W, et al. Stretchable active matrix inorganic light‐emitting diode display enabled by overlay‐aligned roll‐transfer printing [J]. Advanced Functional Materials, 2017, 27(11): 1606005.
[14] Bibl A, Higginson J A, Hu H H, et al. Method of transferring and bonding an array of micro devices: U.S. Patent 9,773,750[P]. 2017-9-26.
[15] AHN S H, GUO L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting [J]. ACS nano, 2009, 3(8): 2304-2310.
[16] SHARMA B K, JANG B, LEE J E, et al. Load-controlled roll transfer of oxide transistors for stretchable electronics [J]. Advanced Functional Materials, 2013, 23(16): 2024-2032.
[17] COK R S, MEITL M, ROTZOLL R, et al. Inorganic light‐emitting diode displays using micro‐transfer printing [J]. Journal of the Society for Information Display, 2017, 25(10): 589-609.
[18] LEE K J, MOTALA M J, MEITL M A, et al. Large-area, selective transfer of microstructured silicon: A printing- based approach to high-performance thin-film transistors supported on flexible substrates [J]. Advanced Materials (Weinheim), 2005, 17(19): 2332-2336.
[19] KIM-LEE H J, CARLSON A, GRIERSON D S, et al. Interface mechanics of adhesiveless microtransfer printing processes [J]. Journal of Applied Physics, 2014, 115(14): 143513.
[20] JIANG D, FENG X, QU B, et al. Rate-dependent interaction between thin films and interfaces during micro/nanoscale transfer printing [J]. Soft Matter, 2012, 8(2): 418-423.
[21] KIM T-H, CARLSON A, AHN J-H, et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps [J]. Applied Physics Letters, 2009, 94(11): 113502.
[22] FENG X, MEITL M A, BOWEN A M, et al. Competing fracture in kinetically controlled transfer printing [J]. Langmuir, 2007, 23(25): 12555-12560.
[23] CHO S, KIM N, SONG K, et al. Adhesiveless transfer printing of ultrathin microscale semiconductor materials by controlling the bending radius of an elastomeric stamp [J]. Langmuir, 2016, 32(31): 7951-7957.
[24] CARLSON A, KIM-LEE H-J, WU J, et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly [J]. Applied Physics Letters, 2011, 98(26): 264104.
[25] CHENG H, WU J, YU Q, et al. An analytical model for shear-enhanced adhesiveless transfer printing [J]. Mechanics Research Communications, 2012, 43: 46-49.
[26] KIM S, WU J, CARLSON A, et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing [J]. Proceedings of the National Academy of Sciences - PNAS, 2010, 107(40): 17095-17100.
[27] KIM S, CARLSON A, CHENG H, et al. Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing [J]. Applied Physics Letters, 2012, 100(17): 171909.
[28] YI H, LEE S H, KO H, et al. Ultra‐adaptable and wearable photonic skin based on a shape‐memory, responsive cellulose derivative [J]. Advanced Functional Materials, 2019, 29(34): 1902720.
[29] EISENHAURE J D, RHEE S I, AL-OKAILY A M, et al. The use of shape memory polymers for microassembly by transfer printing [J]. Journal of Microelectromechanical Systems, 2014, 23(5): 1012-1014.
[30] LINGHU C, ZHANG S, WANG C, et al. Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects [J]. Science Advances, 2020, 6(7): eaay5120.
[31] PARK J B, CHOI W S, CHUNG T H, et al. Transfer printing of vertical-type microscale light-emitting diode array onto flexible substrate using biomimetic stamp [J]. Optics express, 2019, 27(5): 6832-6841.
[32] CARLSON A, WANG S, ELVIKIS P, et al. Active, programmable elastomeric surfaces with tunable adhesion for deterministic assembly by transfer printing [J]. Advanced Functional Materials, 2012, 22(21): 4476-4484.
[33] BARTLETT M D, CROLL A B, KING D R, et al. Looking beyond fibrillar features to scale gecko-like adhesion [J]. Advanced Materials (Weinheim), 2012, 24(8): 1078-1083.
[34] GEIM A K, DUBONOS S V, GRIGORIEVA I V, et al. Microfabricated adhesive mimicking gecko foot-hair [J]. Nature Materials, 2003, 2(7): 461-463.
[35] KWAK M K, PANG C, JEONG H-E, et al. Towards the next level of bioinspired dry adhesives: New designs and applications [J]. Advanced Functional Materials, 2011, 21(19): 3606-3616.
[36] GONG Y, GONG Z. Laser‐based micro/nano‐processing techniques for microscale LEDs and full‐color displays [J]. Advanced Materials Technologies, 2023, 8(5): 2200949.
[37] SAEIDPOURAZAR R, RUI L, YUHANG L, et al. Laser-driven micro transfer placement of prefabricated microstructures [J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1049-1058.
[38] SAEIDPOURAZAR R, SANGID M D, ROGERS J A, et al. A prototype printer for laser driven micro-transfer printing [J]. Journal of Manufacturing Processes, 2012, 14(4): 416-424.
[39] LUO H, WANG S, WANG C, et al. Thermal controlled tunable adhesive for deterministic assembly by transfer printing [J]. Advanced Functional Materials, 2021, 31(16): 2010297.
[40] LUO H, WANG C, LINGHU C, et al. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp [J]. National Science Review, 2020, 7(2): 296-304.
[41] WANG C, LINGHU C, NIE S, et al. Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics [J]. Science Advances, 2020, 6(25): eabb2393.
[42] KIM T-I, JUNG Y H, SONG J, et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates [J]. Small (Weinheim an der Bergstrasse, Germany), 2012, 8(11): 1643-1649.
[43] CHOI W-S, PARK H J, PARK S-H, et al. Flexible InGaN LEDs on a polyimide substrate fabricated using a simple direct-transfer method [J]. IEEE Photonics Technology Letters, 2014, 26(21): 2115-2117.
[44] PARK S-I, XIONG Y, KIM R-H, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays [J]. Science (American Association for the Advancement of Science), 2009, 325(5943): 977-981.
[45] KIM D W, SUNG Y J, PARK J W, et al. A study of transparent indium tin oxide (ITO) contact to p-GaN [J]. Thin Solid Films, 2001, 398: 87-92.
[46] REEVES G K, HARRISON H B. Obtaining the specific contact resistance from transmission line model measurements [J]. IEEE Electron Device Letters, 1982, 3(5): 111-113.
[47] KIM J, KIM J-H. Laser lift-off (LLO) process for micro-LED fabrication [M]. Singapore; Springer Nature Singapore. 2021: 33-53.
[48] MUTH J F, LEE J H, SHMAGIN I K, et al. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements [J]. Applied Physics Letters, 1997, 71(18): 2572-2574.
[49] CHEN M, ZHANG B P, CAI L E, et al. Auto-split laser lift-off technique for vertical-injection GaN-based green light-emitting diodes [J]. IEEE Photonics Journal, 2013, 5(4): 8400407.
[50] WU Y S, CHENG J H, PENG W C, et al. Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes [J]. Applied Physics Letters, 2007, 90(25): 251110.
[51] SHAN W, SCHMIDT T J, YANG X H, et al. Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition [J]. Applied Physics Letters, 1995, 66(8): 985–987.
[52] MONEMAR B. Fundamental energy gap of GaN from photoluminescence excitation spectra [J]. Physical Review B, 1974, 10(2): 676-681.
[53] QIXIN G U O, YOSHIDA A. Temperature dependence of band gap change in InN and AlN [J]. Japanese Journal of Applied Physics, 1994, 33(5A): 2453-2456.
[54] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for III–V compound semiconductors and their alloys [J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.
[55] TAKEUCHI T, SOTA S, KATSURAGAWA M, et al. Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells [J]. Japanese Journal of Applied Physics, 1997, 36(4A): L382-L385.
[56] CAO X A, TEETSOV J A, SHAHEDIPOUR-SANDVIK F, et al. Microstructural origin of leakage current in GaN/InGaN light-emitting diodes [J]. Journal of Crystal Growth, 2004, 264(1): 172-177.
[57] 王艳. 红光Micro-LED的制备和表征 [D], 2020.
[58] CHANG M-H, DAS D, VARDE P V, et al. Light emitting diodes reliability review [J]. Microelectronics and Reliability, 2012, 52(5): 762-782.
[59] ASAD M, LI Q, SACHDEV M, et al. Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates [J]. Nano Energy, 2020, 73: 104724.
[60] SURYANARAYANA D, WU T Y, VARCOE J A. Encapsulants used in flip-chip packages [J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1993, 16(8): 858-862.
[61] CHU C-F, LAI F-I, CHU J-T, et al. Study of GaN light-emitting diodes fabricated by laser lift-off technique [J]. Journal of Applied Physics, 2004, 95(8): 3916-3922.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN364+.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766720
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
李嘉怡. 基于激光辅助转移印刷的Micro-LED巨量转移[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132124-李嘉怡-电子与电气工程(3692KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李嘉怡]的文章
百度学术
百度学术中相似的文章
[李嘉怡]的文章
必应学术
必应学术中相似的文章
[李嘉怡]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。