[1] WU T, SHER C-W, LIN Y, et al. Mini-LED and micro-LED: Promising candidates for the next generation display technology [J]. Applied Sciences, 2018, 8(9): 1557.
[2] LEE T-Y, CHEN L-Y, LO Y-Y, et al. Technology and applications of micro-LEDs: Their characteristics, fabrication, advancement, and challenges [J]. ACS Photonics, 2022, 9(9): 2905-2930.
[3] GUO X, SCHUBERT E F. Current crowding in GaN/InGaN light emitting diodes on insulating substrates [J]. Journal of Applied Physics, 2001, 90(8): 4191-4195.
[4] FU W Y, HUI K N, WANG X H, et al. Geometrical shaping of InGaN light-emitting diodes by laser micromachining [J]. IEEE Photonics Technology Letters, 2009, 21(15): 1078-1080.
[5] LI S-H, LIN C-P, FANG Y-H, et al. Performance analysis of GaN-based micro light-emitting diodes by laser lift-off process [J]. Solid State Electronics Letters, 2019, 1(2): 58-63.
[6] DAY J, LI J, LIE D Y C, et al. III-Nitride full-scale high-resolution microdisplays [J]. Applied Physics Letters, 2011, 99(3): 031116.
[7] 陈美娟. 面向显示应用的稳定量子点制备及色彩转化研究 [D], 2023.
[8] HAN H-V, LIN H-Y, LIN C-C, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology [J]. Optics Express, 2015, 23(25): 32504-32515.
[9] YEH H J J, SMITH J S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates [J]. IEEE Photonics Technology Letters, 1994, 6(6): 706-708.
[10] Sasaki K, Schuele P J, Ulmer K, et al. Method for the fluidic assembly of emissive displays: U.S. Patent 10,276,754[P]. 2019-4-30.
[11] MARINOV V R. 52‐4: Laser‐enabled extremely‐high rate technology for µLED assembly [J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 692-695.
[12] Bibl A, Higginson J A, Law H S, et al. Method of transferring a micro device: U.S. Patent 8,333,860[P]. 2012-12-18.
[13] CHOI M, JANG B, LEE W, et al. Stretchable active matrix inorganic light‐emitting diode display enabled by overlay‐aligned roll‐transfer printing [J]. Advanced Functional Materials, 2017, 27(11): 1606005.
[14] Bibl A, Higginson J A, Hu H H, et al. Method of transferring and bonding an array of micro devices: U.S. Patent 9,773,750[P]. 2017-9-26.
[15] AHN S H, GUO L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting [J]. ACS nano, 2009, 3(8): 2304-2310.
[16] SHARMA B K, JANG B, LEE J E, et al. Load-controlled roll transfer of oxide transistors for stretchable electronics [J]. Advanced Functional Materials, 2013, 23(16): 2024-2032.
[17] COK R S, MEITL M, ROTZOLL R, et al. Inorganic light‐emitting diode displays using micro‐transfer printing [J]. Journal of the Society for Information Display, 2017, 25(10): 589-609.
[18] LEE K J, MOTALA M J, MEITL M A, et al. Large-area, selective transfer of microstructured silicon: A printing- based approach to high-performance thin-film transistors supported on flexible substrates [J]. Advanced Materials (Weinheim), 2005, 17(19): 2332-2336.
[19] KIM-LEE H J, CARLSON A, GRIERSON D S, et al. Interface mechanics of adhesiveless microtransfer printing processes [J]. Journal of Applied Physics, 2014, 115(14): 143513.
[20] JIANG D, FENG X, QU B, et al. Rate-dependent interaction between thin films and interfaces during micro/nanoscale transfer printing [J]. Soft Matter, 2012, 8(2): 418-423.
[21] KIM T-H, CARLSON A, AHN J-H, et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps [J]. Applied Physics Letters, 2009, 94(11): 113502.
[22] FENG X, MEITL M A, BOWEN A M, et al. Competing fracture in kinetically controlled transfer printing [J]. Langmuir, 2007, 23(25): 12555-12560.
[23] CHO S, KIM N, SONG K, et al. Adhesiveless transfer printing of ultrathin microscale semiconductor materials by controlling the bending radius of an elastomeric stamp [J]. Langmuir, 2016, 32(31): 7951-7957.
[24] CARLSON A, KIM-LEE H-J, WU J, et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly [J]. Applied Physics Letters, 2011, 98(26): 264104.
[25] CHENG H, WU J, YU Q, et al. An analytical model for shear-enhanced adhesiveless transfer printing [J]. Mechanics Research Communications, 2012, 43: 46-49.
[26] KIM S, WU J, CARLSON A, et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing [J]. Proceedings of the National Academy of Sciences - PNAS, 2010, 107(40): 17095-17100.
[27] KIM S, CARLSON A, CHENG H, et al. Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing [J]. Applied Physics Letters, 2012, 100(17): 171909.
[28] YI H, LEE S H, KO H, et al. Ultra‐adaptable and wearable photonic skin based on a shape‐memory, responsive cellulose derivative [J]. Advanced Functional Materials, 2019, 29(34): 1902720.
[29] EISENHAURE J D, RHEE S I, AL-OKAILY A M, et al. The use of shape memory polymers for microassembly by transfer printing [J]. Journal of Microelectromechanical Systems, 2014, 23(5): 1012-1014.
[30] LINGHU C, ZHANG S, WANG C, et al. Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects [J]. Science Advances, 2020, 6(7): eaay5120.
[31] PARK J B, CHOI W S, CHUNG T H, et al. Transfer printing of vertical-type microscale light-emitting diode array onto flexible substrate using biomimetic stamp [J]. Optics express, 2019, 27(5): 6832-6841.
[32] CARLSON A, WANG S, ELVIKIS P, et al. Active, programmable elastomeric surfaces with tunable adhesion for deterministic assembly by transfer printing [J]. Advanced Functional Materials, 2012, 22(21): 4476-4484.
[33] BARTLETT M D, CROLL A B, KING D R, et al. Looking beyond fibrillar features to scale gecko-like adhesion [J]. Advanced Materials (Weinheim), 2012, 24(8): 1078-1083.
[34] GEIM A K, DUBONOS S V, GRIGORIEVA I V, et al. Microfabricated adhesive mimicking gecko foot-hair [J]. Nature Materials, 2003, 2(7): 461-463.
[35] KWAK M K, PANG C, JEONG H-E, et al. Towards the next level of bioinspired dry adhesives: New designs and applications [J]. Advanced Functional Materials, 2011, 21(19): 3606-3616.
[36] GONG Y, GONG Z. Laser‐based micro/nano‐processing techniques for microscale LEDs and full‐color displays [J]. Advanced Materials Technologies, 2023, 8(5): 2200949.
[37] SAEIDPOURAZAR R, RUI L, YUHANG L, et al. Laser-driven micro transfer placement of prefabricated microstructures [J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1049-1058.
[38] SAEIDPOURAZAR R, SANGID M D, ROGERS J A, et al. A prototype printer for laser driven micro-transfer printing [J]. Journal of Manufacturing Processes, 2012, 14(4): 416-424.
[39] LUO H, WANG S, WANG C, et al. Thermal controlled tunable adhesive for deterministic assembly by transfer printing [J]. Advanced Functional Materials, 2021, 31(16): 2010297.
[40] LUO H, WANG C, LINGHU C, et al. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp [J]. National Science Review, 2020, 7(2): 296-304.
[41] WANG C, LINGHU C, NIE S, et al. Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics [J]. Science Advances, 2020, 6(25): eabb2393.
[42] KIM T-I, JUNG Y H, SONG J, et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates [J]. Small (Weinheim an der Bergstrasse, Germany), 2012, 8(11): 1643-1649.
[43] CHOI W-S, PARK H J, PARK S-H, et al. Flexible InGaN LEDs on a polyimide substrate fabricated using a simple direct-transfer method [J]. IEEE Photonics Technology Letters, 2014, 26(21): 2115-2117.
[44] PARK S-I, XIONG Y, KIM R-H, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays [J]. Science (American Association for the Advancement of Science), 2009, 325(5943): 977-981.
[45] KIM D W, SUNG Y J, PARK J W, et al. A study of transparent indium tin oxide (ITO) contact to p-GaN [J]. Thin Solid Films, 2001, 398: 87-92.
[46] REEVES G K, HARRISON H B. Obtaining the specific contact resistance from transmission line model measurements [J]. IEEE Electron Device Letters, 1982, 3(5): 111-113.
[47] KIM J, KIM J-H. Laser lift-off (LLO) process for micro-LED fabrication [M]. Singapore; Springer Nature Singapore. 2021: 33-53.
[48] MUTH J F, LEE J H, SHMAGIN I K, et al. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements [J]. Applied Physics Letters, 1997, 71(18): 2572-2574.
[49] CHEN M, ZHANG B P, CAI L E, et al. Auto-split laser lift-off technique for vertical-injection GaN-based green light-emitting diodes [J]. IEEE Photonics Journal, 2013, 5(4): 8400407.
[50] WU Y S, CHENG J H, PENG W C, et al. Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes [J]. Applied Physics Letters, 2007, 90(25): 251110.
[51] SHAN W, SCHMIDT T J, YANG X H, et al. Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition [J]. Applied Physics Letters, 1995, 66(8): 985–987.
[52] MONEMAR B. Fundamental energy gap of GaN from photoluminescence excitation spectra [J]. Physical Review B, 1974, 10(2): 676-681.
[53] QIXIN G U O, YOSHIDA A. Temperature dependence of band gap change in InN and AlN [J]. Japanese Journal of Applied Physics, 1994, 33(5A): 2453-2456.
[54] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for III–V compound semiconductors and their alloys [J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.
[55] TAKEUCHI T, SOTA S, KATSURAGAWA M, et al. Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells [J]. Japanese Journal of Applied Physics, 1997, 36(4A): L382-L385.
[56] CAO X A, TEETSOV J A, SHAHEDIPOUR-SANDVIK F, et al. Microstructural origin of leakage current in GaN/InGaN light-emitting diodes [J]. Journal of Crystal Growth, 2004, 264(1): 172-177.
[57] 王艳. 红光Micro-LED的制备和表征 [D], 2020.
[58] CHANG M-H, DAS D, VARDE P V, et al. Light emitting diodes reliability review [J]. Microelectronics and Reliability, 2012, 52(5): 762-782.
[59] ASAD M, LI Q, SACHDEV M, et al. Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates [J]. Nano Energy, 2020, 73: 104724.
[60] SURYANARAYANA D, WU T Y, VARCOE J A. Encapsulants used in flip-chip packages [J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1993, 16(8): 858-862.
[61] CHU C-F, LAI F-I, CHU J-T, et al. Study of GaN light-emitting diodes fabricated by laser lift-off technique [J]. Journal of Applied Physics, 2004, 95(8): 3916-3922.
修改评论