[1] LANGNER R. Stuxnet: Dissecting a cyberwarfare weapon[J]. IEEE Security & Privacy, 2011, 9(3): 49-51.
[2] 工业和信息化部网站. 《工业互联网创新发展行动计划(2021-2023 年)》解读[EB/OL]. http://www.gov.cn/zhengce/2021-02/18/content_5587565.htm.
[3] IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems[S/OL]. International Electrotechnical Commission, 1998. https://law.resource.org/p ub/in/bis/S05/is.iec.61508.1.1998.pdf.
[4] WU J. Cyberspace Endogenous Safety and Security[J/OL]. Engineering, 2022, 15. https: //doi.org/10.1016/j.eng.2021.05.015.
[5] WU J. Development paradigms of cyberspace endogenous safety and security[J/OL]. Scientia Sinica Informationis, 2022, 52(2): 189-204. DOI: 10.1360/SSI-2021-0272.
[6] XIN Y. Protection Architecture of Endogenous Safety and Security for Industrial Control Sys- tems[J/OL]. Security and Safety, 2023, 2. DOI: 10.1051/sands/2023001.
[7] JIN L, HU X, WU J. From Perfect Secrecy to Perfect Safety and Security : Cryptography-Based Analysis of Endogenous Security: Vol. 2[EB/OL]. 2023. DOI: 10.1051/sands/2023004.
[8] LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A. Application of deep rein- forcement learning to intrusion detection for supervised problems[J/OL]. Expert Systems with Applications, 2020, 141(Ml): 1-24. DOI: 10.1016/j.eswa.2019.112963.
[9] SETHI K, KUMAR R, PRAJAPATI N, et al. Deep Reinforcement Learning based Intrusion Detection System for Cloud Infrastructure[J/OL]. 2020 International Conference on COMmu- nication Systems and NETworkS, COMSNETS 2020, 2020: 1-6. DOI: 10.1109/COMSNETS 48256.2020.9027452.
[10] LIU Z, WANG C, WANG W. Online Cyber-Attack Detection in the Industrial Control System: A Deep Reinforcement Learning Approach[J]. Mathematical Problems in Engineering, 2022, 2022.
[11] HUANG X, YUAN T, QIAO G, et al. Deep Reinforcement Learning for Multimedia Traffic Control in Software Defined Networking[J/OL]. IEEE Network, 2018, 32(6): 35-41. DOI: 10.1109/MNET.2018.1800097.
[12] LEI K, LIANG Y, LI W. Congestion control in SDN-based networks via multi-task deep rein- forcement learning[J/OL]. IEEE Network, 2020, 34(4): 28-34. DOI: 10.1109/MNET.011.190 0408.
[13] 朱愉田, 李华强. 基于深度强化学习的孤岛微电网故障区域判定[J]. 计算机仿真, 2021, 38(07): 78-82.
[14] DING Y, MA L, MA J, et al. Intelligent fault diagnosis for rotating machinery using deep Q- network based health state classification: A deep reinforcement learning approach[J]. Advanced Engineering Informatics, 2019, 42: 100977.
[15] FAN S, ZHANG X, SONG Z. Imbalanced sampleselection with deep reinforcement learning for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2021, 18(4): 2518-2527.
[16] LIU X, OSPINA J, KONSTANTINOU C. Deep Reinforcement Learning for Cybersecurity Assessment of Wind Integrated Power Systems[J/OL]. IEEE Access, 2020, 8: 208378-208394. DOI: 10.1109/ACCESS.2020.3038769.
[17] PARK J, KIM T, SEONG S, et al. Control automation in the heat-up mode of a nuclear power plant using reinforcement learning[J]. Progress in Nuclear Energy, 2022, 145: 104107.
[18] ZHOU Y, ZHANG B, XU C, et al. A data-driven method for fast ac optimal power flow solutions via deep reinforcement learning[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(6): 1128-1139.
[19] STOUFFERK, FALCO J, SCARFONE K. Guide to Industrial Control Systems ( ICS ) Security Recommendations of the National Institute of Standards and Technology[J/OL]. NIST Special Publication, 2007, 2: 1-157. http://industryconsulting.org/pdfFiles/NISTDraft-SP800-82.pdf.
[20] BASHA O, ALAJMY J, NEWAZ T. Bhopal gas Tragedy: A safety case study[J]. The OAK- Trust Digital Repository, 2009.
[21] JAIN P, PASMAN H J, WALDRAM S P, et al. Did we learn about risk control since Seveso? Yes, we surely did, but is it enough? An historical brief and problem analysis[J/OL]. Journal of Loss Prevention in the Process Industries, 2017, 49: 5-17. http://dx.doi.org/10.1016/j.jlp.2 016.09.023.
[22] M.PIETERSEN C. The two largest industrial disasters, 25 year later The investigation, the facts and the importance for industrial safety[J/OL]. 13th Loss Prevention Conference, 2010 (December). https://www.researchgate.net/publication/321938846_The_two_largest_industrial_disasters_25_year_later_The_investigation_the_facts_and_the_importance_for_industrial_ safety.
[23] LEEMANN J E. Applying interactive planning at Dupont: The case of transforming a safety, health, and environmental function to deliver business value[J/OL]. Systemic Practice and Action Research, 2002, 15(2): 85-109. DOI: 10.1023/A:1015236423688.
[24] TANAKA H, FAN L T, LAIF S, et al. Fault-Tree Analysis By Fuzzy Probability.[J/OL]. IEEE Transactions on Reliability, 1983, R-32(5): 453-457. DOI: 10.1109/TR.1983.5221727.
[25] AKHTAR I, KIRMANI S. An Application of Fuzzy Fault Tree Analysis for Reliability Evaluation of Wind Energy System[J/OL]. IETE Journal of Research, 2020: 1-14. DOI: 10.1080/03772063.2020.1791741.
[26] TABESH M, ROOZBAHANI A, HADIGOL F, et al. Risk Assessment of Water Treatment Plants Using Fuzzy Fault Tree Analysis and Monte Carlo Simulation[J/OL]. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2022, 46(1): 643-658. https://doi.org/10.1007/s40996-020-00498-3.
[27] 姚海燕, 李勋章, 杨秀芹. 模糊故障树理论在航空充电设备故障诊断中的应用研究[J/OL]. 计量与测试技术, 2021, 48: 82-84. DOI: 10.15988/j.cnki.1004-6941.2021.6.026.
[28] MODARRES M, KAMINSKIY MP, KRIVTSOV V. Reliability engineering and risk analysis: a practical guide[M]. CRC press, 2016.
[29] DISTEFANO S, PULIAFITO A. Dynamic reliability block diagrams: Overview of a method- ology[J]. Proceedings of the European Safety and Reliability Conference 2007, ESREL 2007 - Risk,Reliability and Societal Safety, 2007, 2(January 2007): 1059-1068.
[30] ELDERHALLI Y, HASAN O, TAHAR S. A Formally Verified Algebraic Approach for Dy- namic Reliability Block Diagrams: August[R/OL]//Lecture Notes in Computer Science (in- cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019: 253-269. DOI: 10.1007/978-3-030-32409-4_16.
[31] XU H, XING L, ROBIDOUX R. Drbd: Dynamic reliability block diagrams for system relia- bility modelling[J]. International journal of computers and applications, 2009, 31(2): 132-141.
[32] KOVTUN V, IZONIN I, GREGUS M. The functional safety assessment of cyber-physical system operation process described by Markov chain[J/OL]. Scientific Reports, 2022, 12(1): 1-13. https://doi.org/10.1038/s41598-022-11193-w.
[33] BHATTI Z E, ROOP P S, SINHA R. Unified Functional Safety Assessment of Industrial Au- tomation Systems[J/OL]. IEEE Transactions on Industrial Informatics, 2017, 13(1): 17-26. DOI: 10.1109/TII.2016.2610185.
[34] ОдарущенкоОлегМиколайович, ОдарущенкоОленаБорисівна, ХарченкоВячеславСергійович . MARKOV MODELS FOR FUNCTIONAL SAFETY ASSESSMENT OF INSTRUMENTATION AND CONTROL SYSTEMS BASED ON SELF-CHECKING PROGRAMMABLE PLATFORMS[J]. Radioelectronic and Computer Systems, 2019(4): 17-29.
[35] NIESEN T, HOUY C, FETTKE P, et al. Towards an integrative big data analysis framework for data-driven risk management in industry 4.0[J/OL]. Proceedings of the Annual Hawaii International Conference on System Sciences, 2016, 2016-March: 5065-5074. DOI: 10.1109/ HICSS.2016.627.
[36] PALTRINIERIN, COMFORT L, RENIERS G. Learning about risk: Machine learning for risk assessment[J/OL]. Safety Science, 2019, 118(May): 475-486. https://doi.org/10.1016/j.ssci.2 019.06.001.
[37] JAMSHIDI A, FAGHIH-ROOHI S, HAJIZADEH S, et al. A Big Data Analysis Approach for Rail Failure Risk Assessment[J/OL]. Risk Analysis, 2017, 37(8): 1495-1507. DOI: 10.1111/ri sa.12836.
[38] VON SOLMS R,VANNIEKERK J. From information security to cyber security[J]. computers & security, 2013, 38: 97-102.
[39] SAMONAS S, COSS D. the Cia Strikes Back: Redefining Confidentiality, Integrity and Availability in Security[J/OL]. Journal of Information System Security, 2014, 10(3): 21-45. www.jissec.org.
[40] MOSER A, KRUEGEL C,KIRDAE. Exploring multiple execution paths for malware analysis [C]//2007 IEEE Symposium on Security and Privacy (SP’07). IEEE, 2007: 231-245.
[41] LYU M R, LAU L K. Firewall security: Policies, testing and performance evaluation [C]//Proceedings 24th Annual International Computer Software and Applications Conference. COMPSAC2000. IEEE, 2000: 116-121.
[42] KORET J, BACHAALANY E. The antivirus hacker’s handbook[M]. John Wiley & Sons, 2015.
[43] MORRIS T H, THORNTON Z, TURNIPSEED I P. Industrial Control System Simulation and Data Logging for Intrusion Detection System Research[C/OL]//2015. https://api.semanticscho lar.org/CorpusID:42986835.
[44] PONOMAREV S, ATKISON T. Industrial control system network intrusion detection by telemetry analysis[J]. IEEE Transactions on Dependable and Secure Computing, 2015, 13(2): 252-260.
[45] LIN C Y, NADJM-TEHRANI S, ASPLUND M. Timing-based anomaly detection in SCADA networks[C]//Critical Information Infrastructures Security: 12th International Conference, CRITIS 2017, Lucca, Italy, October 8-13, 2017, Revised Selected Papers 12. Springer, 2018: 48-59.
[46] CHEN Q, BRIDGES R A. Automated behavioral analysis of malware: A case study of wan- nacry ransomware[C]//2017 16th IEEE International Conference on machine learning and ap- plications (ICMLA). IEEE, 2017: 454-460.
[47] BONNER L. Cyber risk: How the 2011 Sony data breach and the need for cyber risk insurance policies should direct the federal response to rising data breaches[J]. Wash. UJL & Pol’y, 2012, 40: 257.
[48] MINKUS T, ROSS K W. I know what you ’re buying: Privacy breaches on ebay[C]//Privacy Enhancing Technologies: 14th International Symposium, PETS 2014, Amsterdam, The Nether- lands, July 16-18, 2014. Proceedings 14. Springer, 2014: 164-183.
[49] WU J. Cyberspace mimic defense[M]. Springer, 2020.
[50] FORREST S, BEAUCHEMIN C. Computer immunology[J]. Immunological reviews, 2007, 216(1): 176-197.
[51] ZHIWEN J, TAO L, AIQUN H. Research on Endogenous Security Methods of Embedded System[J/OL]. 2020 IEEE 6th International Conference on Computer and Communications, ICCC 2020, 2020: 1946-1950. DOI: 10.1109/ICCC51575.2020.9344972.
[52] XU M, GUO J, YUAN H, et al. Zero-Trust Security Authentication Based on SPA and Endoge- nous Security Architecture[J]. Electronics, 2023, 12(4): 782.
[53] GUO J, XU M. ZTESA—A Zero-Trust Endogenous Safety Architecture: Gain the endogenous safety benefit, avoid insider threats[C]//International Symposium on Computer Applications and Information Systems (ISCAIS 2022): Vol. 12250. SPIE, 2022: 192-202.
[54] YOU W, XU M, ZHOU D. Research on security protection technology for 5G cloud network [J/OL]. 2021 International Conference on Advanced Computing and Endogenous Security, ICACES 2021, 2021: 1-11. DOI: 10.1109/IEEECONF52377.2022.10013352.
[55] JI X, WU J, JIN L, et al. Discussion on a new paradigm of endogenous security towards 6G networks[J/OL]. Frontiers of Information Technology and Electronic Engineering, 2022, 23(10): 1421-1450. DOI: 10.1631/FITEE.2200060.
[56] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep rein- forcement learning[J]. nature, 2015, 518(7540): 529-533.
[57] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. nature, 2015, 521(7553): 436-444.
[58] SUTTON R S, BARTO A G. Reinforcement learning: An introduction[M]. MIT press, 2018.
[59] AN D, YANG Q, LIU W, et al. Defending against data integrity attacks in smart grid: A deep reinforcement learning-based approach[J]. IEEE Access, 2019, 7: 110835-110845.
[60] WEI F, WAN Z, HE H. Cyber-attack recovery strategy for smart grid based on deep reinforce- ment learning[J]. IEEE Transactions on Smart Grid, 2019, 11(3): 2476-2486.
[61] CAMINERO G, LOPEZ-MARTIN M, CARRO B. Adversarial environment reinforcement learning algorithm for intrusion detection[J]. Computer Networks, 2019, 159: 96-109.
[62] QIANG, LIU J. Development of deep reinforcement learning-based fault diagnosis method for rotating machinery in nuclear powerplants[J]. Progress in Nuclear Energy, 2022, 152: 104401.
[63] LIU Y, ZHANG D, GOOI H B. Optimization strategy based on deep reinforcement learning for home energy management[J]. CSEE Journal of Power and Energy Systems, 2020, 6(3): 572-582.
[64] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal Policy Optimization Algorithms [A/OL]. 2017: 1-12. arXiv: 1707.06347. http://arxiv.org/abs/1707.06347.
[65] ALMAHAMID F, GROLINGER K. Reinforcement learning algorithms: An overview and classification[C]//2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2021: 1-7.
[66] SCHULMAN J, MORITZ P, LEVINE S, et al. High-dimensional continuous control using generalized advantage estimation[A]. 2015.
[67] DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J/OL]. Computers and Chemical Engineering, 1993, 17(3): 245-255. DOI: 10.1016/0098-1354(93)80018-I.
[68] RICKER N L. Optimal steady-state operation of the Tennessee Eastman challenge process [J/OL]. Computers and Chemical Engineering, 1995, 19(9): 949-959. http://dx.doi.org/10.10 16/0098-1354(94)00043-N.
[69] RICKER N L. Tennessee Eastman Challenge Archive[EB/OL]. https://depts.washington.edu /control/LARRY/TE/download.html.
[70] ANDERSEN E B, UDUGAMA I A, GERNAEY K V, et al. An easy to use GUI for simu- lating big data using Tennessee Eastman process[J/OL]. Quality and Reliability Engineering International, 2022, 38(1): 264-282. DOI: 10.1002/qre.2975.
[71] BATHELT A, RICKER N L, JELALI M. Revision of the Tennessee eastman process model [J/OL]. IFAC-PapersOnLine, 2015, 28(8): 309-314. http://dx.doi.org/10.1016/j.ifacol.2015.0 8.199.
[72] REINARTZ C, ENEVOLDSEN T T. pyTEP: A Python package for interactive simulations of the Tennessee Eastman process[J/OL]. SoftwareX, 2022, 18: 101053. https://doi.org/10.1016/ j.softx.2022.101053.
[73] CHOU P W, MATURANA D, SCHERER S. Improving stochastic policy gradients in contin- uous control with deep reinforcement learning using the beta distribution[J]. 34th International Conference on Machine Learning, ICML 2017, 2017, 2: 1386-1396.
[74] PASZKEA, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[J]. Advances in neural information processing systems, 2019, 32.
[75] GOLSHAN M, BOOZARJOMEHRY R B, PISHVAIE M R. A new approach to realtime op- timization of the Tennessee Eastman challenge problem[J/OL]. Chemical Engineering Journal, 2005, 112(1-3): 33-44. DOI: 10.1016/j.cej.2005.06.005.
修改评论