[1] Turcotte D L, Oxburgh E R. FINITE AMPLITUDE CONVECTIVE CELLS AND CONTINENTAL DRIFT [J]. J Fluid Mech, 1967, 28: 29-&.
[2] Crosby A G, McKenzie D, Sclater J G. The relationship between depth, age and gravity in the oceans [J]. Geophys J Int, 2006, 166(2): 553-73.
[3] Parsons B, Sclater J G. An analysis of the variation of ocean floor bathymetry and heat flow with age [J]. J Geophys Res-Solid Earth, 1977, 82(5): 803–27.
[4] Ritzwoller M H, Shapiro N M, Zhong S J. Cooling history of the Pacific lithosphere [J]. Earth Planet Sci Lett, 2004, 226(1-2): 69-84.
[5] Stein C A, Stein S. A MODEL FOR THE GLOBAL VARIATION IN OCEANIC DEPTH AND HEAT-FLOW WITH LITHOSPHERIC AGE [J]. Nature, 1992, 359(6391): 123-9.
[6] MORGAN W J. Convection Plumes in the Lower Mantle [J]. Nature, 1971, 230(5288): 42-3.
[7] Morgan W J. Plate Motions and Deep Mantle Convection [J]. Studies in Earth and Space Sciences, 1972: 7-22.
[8] Ballmer M D, van Hunen J, Ito G, et al. Intraplate volcanism with complex age-distance patterns: A case for small-scale sublithospheric convection [J]. Geochem Geophys Geosyst, 2009, 10: 22.
[9] Ballmer M D, van Hunen J, Ito G, et al. Non-hotspot volcano chains originating from small-scale sublithospheric convection [J]. Geophys Res Lett, 2007, 34(23): 5.
[10] Koppers A A P, Staudigel H, Pringle M S, et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? [J]. Geochem Geophys Geosyst, 2003, 4: 49.
[11] McNutt M K, Caress D W, Reynolds J, et al. Failure of plume theory to explain midplate volcanism in the southern Austral islands [J]. Nature, 1997, 389(6650): 479-82.
[12] Sandwell D T, Winterer E L, Mammerickx J, et al. EVIDENCE FOR DIFFUSE EXTENSION OF THE PACIFIC PLATE FROM PUKAPUKA RIDGES AND CROSS-GRAIN GRAVITY LINEATIONS [J]. J Geophys Res-Solid Earth, 1995, 100(B8): 15087-99.
[13] Buck W R, Parmentier E M. CONVECTION BENEATH YOUNG OCEANIC LITHOSPHERE - IMPLICATIONS FOR THERMAL STRUCTURE AND GRAVITY [J]. Journal of Geophysical Research-Solid Earth and Planets, 1986, 91(B2): 1961-74.
[14] Richter F M, Parsons B. On the interaction of two scales of convection in the mantle [J]. Journal of Geophysical Research, 1975, 80(17): 2529-41.
[15] Evernden J F. DIRECTION OF APPROACH OF RAYLEIGH WAVES AND RELATED PROBLEMS [J]. Geol Soc Am Bull, 1952, 63(12): 1352-.
[16] Laske G. GLOBAL OBSERVATION OF OFF-GREAT-CIRCLE PROPAGATION OF LONG-PERIOD SURFACE-WAVES [J]. Geophys J Int, 1995, 123(1): 245-59.
[17] Forsyth D W, Li A B. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference[J]. Geophysical Monograph Series, 2005: 81-97.
[18] Forsyth D W, Webb S C, Dorman L M, et al. Phase velocities of Rayleigh waves in the MELT experiment on the East Pacific Rise [J]. Science, 1998, 280(5367): 1235-8.
[19] Zhou Y, Dahlen F A, Nolet G. Three-dimensional sensitivity kernels for surface wave observables [J]. Geophys J Int, 2004, 158(1): 142-68.
[20] Yang Y J, Forsyth D W. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels [J]. Geophys J Int, 2006, 166(3): 1148-60.
[21] Haxby W F, Weissel J K. EVIDENCE FOR SMALL-SCALE MANTLE CONVECTION FROM SEASAT ALTIMETER DATA [J]. Journal of Geophysical Research-Solid Earth and Planets, 1986, 91(B3): 3507-+.
[22] Richter F M. Convection and the large-scale circulation of the mantle [J]. Journal of Geophysical Research, 1973, 78(35): 8735-45.
[23] Buck W R. WHEN DOES SMALL-SCALE CONVECTION BEGIN BENEATH OCEANIC LITHOSPHERE [J]. Nature, 1985, 313(6005): 775-7.
[24] Korenaga J, Jordan T H. Linear stability analysis of Richter rolls [J]. Geophys Res Lett, 2003, 30(22): 4.
[25] van Hunen J, Huang J S, Zhong S J. The effect of shearing on the onset and vigor of small-scale convection in a Newtonian rheology [J]. Geophys Res Lett, 2003, 30(19): 4.
[26] Ballmer M D, Ito G, van Hunen J, et al. Spatial and temporal variability in Hawaiian hotspot volcanism induced by small-scale convection [J]. Nat Geosci, 2011, 4(7): 457-60.
[27] Davis A S, Gray L B, Clague D A, et al. The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension [J]. Geochem Geophys Geosyst, 2002, 3: 28.
[28] Winterer E L, Sandwell D T. EVIDENCE FROM EN-ECHELON CROSS-GRAIN RIDGES FOR TENSIONAL CRACKS IN THE PACIFIC PLATE [J]. Nature, 1987, 329(6139): 534-7.
[29] Cormier M H, Gans K D, Wilson D S. Gravity lineaments of the Cocos Plate: Evidence for a thermal contraction crack origin [J]. Geochem Geophys Geosyst, 2011, 12: 19.
[30] Gans K D, Wilson D S, Macdonald K C. Pacific Plate gravity lineaments: Diffuse extension or thermal contraction? [J]. Geochem Geophys Geosyst, 2003, 4: 17.
[31] Sandwell D, Fialko Y. Warping and cracking of the Pacific plate by thermal contraction [J]. J Geophys Res-Solid Earth, 2004, 109(B10): 12.
[32] Weeraratne D S, Forsyth D W, Yang Y J, et al. Rayleigh wave tomography beneath intraplate volcanic ridges in the South Pacific [J]. J Geophys Res-Solid Earth, 2007, 112(B6): 18.
[33] Weeraratne D S, Parmentier E M, Forsyth D W. Viscous fingering instabilities in miscible fluids and the oceanic asthenosphere [J]. EOS Trans AGU, 2003b, 84(86).
[34] Anderson D L. The thermal state of the upper mantle; no role for mantle plumes [J]. Geophys Res Lett, 2000, 27(22): 3623-6.
[35] Harmon N, Forsyth D W, Lamm R, et al. P and S wave delays beneath intraplate volcanic ridges and gravity lineations near the East Pacific Rise [J]. J Geophys Res-Solid Earth, 2007, 112(B3): 12.
[36] Harmon N, Forsyth D W, Scheirer D S. Analysis of gravity and topography in theGLIMPSE study region: Isostatic compensation and uplift of the Sojourn and Hotu Matua Ridge systems [J]. J Geophys Res-Solid Earth, 2006, 111(B11): 20.
[37] McNutt M K. Superswells [J]. Rev Geophys, 1998, 36(2): 211-44.
[38] Lin P Y P, Gaherty J B, Jin G, et al. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere [J]. Nature, 2016, 535(7613): 538-+.
[39] Forsyth D W, Harmon N, Scheirer D S, et al. Distribution of recent volcanism and the morphology of seamounts and ridges in the GLIMPSE study area: Implications for the lithospheric cracking hypothesis for the origin of intraplate, non-hot spot volcanic chains [J]. J Geophys Res-Solid Earth, 2006, 111(B11): 19.
[40] Harmon N, Forsyth D W, Weeraratne D S, et al. Mantle heterogeneity and off axis volcanism on young Pacific lithosphere [J]. Earth Planet Sci Lett, 2011, 311(3-4): 306-15.
[41] Harmon N, Rychert C A, Kendall J M, et al. Evolution of the Oceanic Lithosphere in the Equatorial Atlantic From Rayleigh Wave Tomography, Evidence for Small-Scale Convection From the PI-LAB Experiment [J]. Geochem Geophys Geosyst, 2020, 21(9): 18.
[42] Eilon Z C, Gaherty J B, Zhang L, et al. The Pacific OBS Research into Convecting Asthenosphere (ORCA) Experiment [J]. Seismol Res Lett, 2022, 93(1): 477-93.
[43] Russell J B. Structure and Evolution of the Oceanic Lithosphere-Asthenosphere System from High-Resolution Surface-Wave Imaging, F, 2021 [C].
[44] Eilon Z C, Zhang L, Gaherty J B, et al. Sub-Lithospheric Small-Scale Convection Tomographically Imaged Beneath the Pacific Plate [J]. Geophys Res Lett, 2022, 49(18): 10.
[45] Shearer P M. Introduction to Seismology, F, 2019 [C].
[46] 万永革. 地震学导论 [M]. 地震学导论, 2016.
[47] Nishimura C E, Forsyth D W. The anisotropic structure of the upper mantle in the Pacific [J]. Geophys J Int, 1989, 96(2): 203-29.
[48] Aki K, Lee W H K. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model [J]. Journal of Geophysical Research (1896-1977), 1976, 81(23): 4381-99.
[49] McEvilly T V. Central U.S. crust—Upper mantle structure from Love and Rayleigh wave phase velocity inversion [J]. Bull Seismol Soc Amer, 1964, 54(6A): 1997-2015.
[50] Nafe J E, Brune J N. Observations of phase velocity for Rayleigh waves in the period range 100 to 400 seconds [J]. Bull Seismol Soc Amer, 1960, 50(3): 427-39.
[51] Satô Y. Attenuation, dispersion, and the wave guide of the G wave [J]. Bull Seismol Soc Amer, 1958, 48(3): 231-51.
[52] Yao H J, van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps [J]. Geophys J Int, 2006, 166(2): 732-44.
[53] Yao H J, Xu G M, Zhu L B, et al. Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions [J]. Phys Earth Planet Inter, 2005, 148(1): 39-54.
[54] Li A, Li L. Love wave tomography in southern Africa from a two-plane-wave inversion method [J]. Geophys J Int, 2015, 202(2): 1005-20.
[55] Lin F C, Ritzwoller M H, Snieder R. Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array [J]. Geophys J Int, 2009, 177(3): 1091-110.
[56] Jin G S. Surface-wave analysis and its application to determining crustal and mantle structure beneath regional arrays, F, 2015 [C].
[57] Lin F C, Ritzwoller M H. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure [J]. Geophys J Int, 2011, 186(3): 1104-20.
[58] 李伦, 蔡晨, 付媛媛, 等.多种面波层析成像方法及其在青藏高原的应用与对比[J].地球与行星物理论评(中英文),2023,54(02):174-96.
[59] Cai C, Wiens D A, Shen W, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data [J]. Nature, 2018, 563(7731): 389-+.
[60] Dave R, Li A B. Destruction of the Wyoming craton: Seismic evidence and geodynamic processes [J]. Geology, 2016, 44(11): 883-6.
[61] Liu Y D, Li L, van Wijk J, et al. Surface-wave tomography of the Emeishan large igneous province (China): Magma storage system, hidden hotspot track, and its impact on the Capitanian mass extinction [J]. Geology, 2021, 49(9): 1032-7.
[62] Friederich W, Wielandt E. Interpretation of seismic surface waves in regional networks: joint estimation of wavefield geometry and local phase velocity. Method and numerical tests [J]. Geophys J Int, 1995, 120(3): 731-44.
[63] Li A B, Forsyth D W, Fischer K M. Shear velocity structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave inversion [J]. J Geophys Res-Solid Earth, 2003, 108(B8): 24.
[64] Li L, Fu Y V. Surface-Wave Tomography of Eastern and Central Tibet from Two-Plane-Wave Inversion: Rayleigh-Wave and Love-Wave Phase Velocity Maps [J]. Bull Seismol Soc Amer, 2020, 110(3): 1359-71.
[65] Yang T, Liu F, Harmon N, et al. Lithospheric structure beneath Indochina block from Rayleigh wave phase velocity tomography [J]. Geophys J Int, 2015, 200(3): 1582-95.
[66] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in FORTRAN: The art of scientific computing [J]. 2nd edn, 1992: 963.
[67] Tarantola A, Valette B. Generalized nonlinear inverse problems solved using the least squares criterion [J]. Rev Geophys, 1982, 20(2): 219-32.
[68] Bell S W, Forsyth D W, Ruan Y. Removing Noise from the Vertical Component Records of Ocean-Bottom Seismometers: Results from Year One of the Cascadia Initiative [J]. Bull Seismol Soc Amer, 2015, 105(1): 300-13.
[69] Crawford W C, Webb S C, Hildebrand J A. Estimating shear velocities in the oceanic crust from compliance measurements by two-dimensional finite difference modeling [J]. J Geophys Res-Solid Earth, 1998, 103(B5): 9895-916.
[70] Friedrich A, Kruger F, Klinge K. Ocean-generated microseismic noise located with the Grafenberg array [J]. J Seismol, 1998, 2(1): 47-64.
[71] Longuet-Higgins M S. A theory of the origin of microseisms [J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1950, 243: 1 - 35.
[72] Crawford W C, Webb S C. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data [J]. Bull Seismol Soc Amer, 2000, 90(4): 952-63.
[73] 海底地震仪垂直分量倾斜噪声的去除——以磐鲲南海测试数据为例[J].地震学报,2023,45(03):568-78.
[74] Bendat J S, Piersol A G. Random Data: Analysis and Measurement Procedures, F, 1987 [C].
[75] Janiszewski H A, Gaherty J B, Abers G A, et al. Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone [J]. Geophys J Int, 2019, 217(3): 1929-48.
[76] Saito M. DISPER80: A subroutine package for the calculation of seismic normal mode solutions [J]. Seismological Algorithms: Computational methods and computer Programs, 1988: pp. 293–319.
[77] Laske G, Masters G, Ma Z, et al. CRUST1.0: An updated global model of Earth's crust [J]. EGUGA, 2013.
[78] Shapiro N M, Ritzwoller M H. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle [J]. Geophys J Int, 2002, 151(1): 88-105.
[79] Le B M, Yang T, Morgan J P. Seismic Constraints on Crustal and Uppermost Mantle Structure Beneath the Hawaiian Swell: Implications for Plume-Lithosphere Interactions [J]. J Geophys Res-Solid Earth, 2022, 127(11): 25.
[80] Parker R L. RAPID CALCULATION OF POTENTIAL ANOMALIES [J]. Geophysical Journal of the Royal Astronomical Society, 1973, 31(4): 447-55.
修改评论