[1] PIVOTO D G, DE ALMEIDA L F, DA ROSA RIGHI R, et al. Cyber-physical systems architec-tures for industrial internet of things applications in Industry 4.0: A literature review[J]. Journalof manufacturing systems, 2021, 58: 176-192.
[2] LANBO L, SHENGLI Z, JUN-HONG C. Prospects and problems of wireless communicationfor underwater sensor networks[J]. Wireless Communications and Mobile Computing, 2008, 8(08): 977-994.
[3] POPESCU D, ICHIM L, STOICAN F. Unmanned aerial vehicle systems for remote estimationof flooded areas based on complex image processing[J]. Sensors, 2017, 17(03): 446-470.
[4] 赵彦. 无人机技术在消防通信中的应用[J]. 电视技术, 2021, 45(08): 105-108.
[5] 王顺章. 基于匹配理论的无人机应急信息扩散方法研究[D]. 徐州: 中国矿业大学, 2023.
[6] 张良. 为救灾插上“翅膀”——无人机在救灾中的应用[J]. 生命与灾害, 2017(05): 23-25+22.
[7] 王久平, 孙守军, 孙卫国. 推动“十四五”规划落实提升航空应急救援能力[J]. 中国应急管理, 2022(08): 20-29.
[8] WANG T, LIU F, GUO J, et al. Dynamic SDN controller assignment in data center networks:Stable matching with transfers[C]. IEEE INFOCOM 2016-The 35th Annual IEEE InternationalConference on Computer Communications. IEEE, 2016: 1-9.
[9] MORELLO R, MUKHOPADHYAY S C, LIU Z, et al. Advances on Sensing Technologies forSmart Cities and Power Grids: A Review[J]. IEEE Sensors Journal, 2017, 17(23): 7596-7610.
[10] XIONG G, ZHU F, LIU X, et al. Cyber-physical-social system in intelligent transportation[J].IEEE/CAA Journal of Automatica Sinica, 2015, 2(03): 320-333.
[11] WANG H, ZHAO H, ZHANG J, et al. Survey on Unmanned Aerial Vehicle Networks: A CyberPhysical System Perspective[J]. IEEE Communications Surveys & Tutorials, 2020, 22(02):1027-1070.
[12] WEN Z, WANG Q, MA Y, et al. Remote estimates of suspended particulate matter in globallakes using machine learning models[J]. International Soil and Water Conservation Research,2024, 12(01): 200-216.
[13] BANAFAA M, PEPEOĞLU Ö, SHAYEA I, et al. A Comprehensive Survey on 5G-and-BeyondNetworks with UAVs: Applications, Emerging Technologies, Regulatory Aspects, ResearchTrends and Challenges[J]. IEEE Access, 2024, 12: 7786-7826.
[14] AFRAZ N, RUFFINI M. A distributed bilateral resource market mechanism for future telecom-munications networks[C]. 2019 IEEE Globecom Workshops (GC Wkshps). IEEE, 2019: 1-6.
[15] GODA D R, VADIYALA V R, YERRAM S R, et al. Dynamic Programming Approaches forResource Allocation in Project Scheduling: Maximizing Efficiency under Time and BudgetConstraints[J]. ABC Journal of Advanced Research, 2023, 12(01): 1-16.
[16] ZHANG Y, LEE C, NIYATO D, et al. Auction approaches for resource allocation in wirelesssystems: A survey[J]. IEEE Communications surveys & tutorials, 2012, 15(03): 1020-1041.
[17] DWORK C. Differential privacy[C]. International colloquium on automata, languages, andprogramming. Springer, 2006: 1-12.
[18] PANG G, LIU W, LI Y, et al. DRL-based resource allocation in remote state estimation[J]. IEEETransactions on Wireless Communications, 2022, 22(07): 4434-4448.
[19] YANG H, HUANG M, LI Y, et al. Joint power allocation for remote state estimation with SWIPT[J]. IEEE Transactions on Signal Processing, 2022, 70: 1434-1447.
[20] WANG J, REN X, MO Y, et al. Whittle index policy for dynamic multichannel allocation inremote state estimation[J]. IEEE Transactions on Automatic Control, 2019, 65(02): 591-603.
[21] PANG G, LIU W, LI Y, et al. Deep reinforcement learning for radio resource allocation inNOMA-based remote state estimation[C]. GLOBECOM 2022-2022 IEEE Global Communica-tions Conference. IEEE, 2022: 3059-3064.
[22] XING W, ZHAO X, LIU L. Optimal Denial-of-Service Attack Power Allocation Strategy forRemote State Estimation in CPSs With Two-hop Networks[J]. IEEE Transactions on GreenCommunications and Networking, 2023, 7(04): 1597-1606.
[23] SHI L, CHENG P, CHEN J. Optimal periodic sensor scheduling with limited resources[J]. IEEETransactions on Automatic Control, 2011, 56(09): 2190-2195.
[24] ZHAO L, ZHANG W, HU J, et al. On the optimal solutions of the infinite-horizon linear sensorscheduling problem[J]. IEEE Transactions on Automatic Control, 2014, 59(10): 2825-2830.
[25] DING K, LI Y, QUEVEDO D E, et al. A multi-channel transmission schedule for remote stateestimation under DoS attacks[J]. Automatica, 2017, 78: 194-201.
[26] HMEDI H, CARROLL J, ARAPOSTATHIS A. Optimal sensor scheduling under intermittentobservations subject to network dynamics[J]. IEEE Transactions on Automatic Control, 2022,68(03): 1399-1414.
[27] ZHONG Y, TANG J, YANG N, et al. Event-triggered Sensor Scheduling for Remote StateEstimation with Error-Detecting Code[J]. IEEE Control Systems Letters, 2023, 7: 2377-2382.
[28] KHALEDIAN N, KHAMFOROOSH K, AKRAMINEJAD R, et al. An energy-efficient anddeadline-aware workflow scheduling algorithm in the fog and cloud environment[J]. computing,2024, 106(01): 109-137.
[29] ZHANG Z, LIU Y, HUANG J, et al. Channel characterization and modeling for 6G UAV-assistedemergency communications in complicated mountainous scenarios[J]. Sensors, 2023, 23(11):4998-5016.
[30] SUDHAKAR S, VIJAYAKUMAR V, KUMAR C S, et al. Unmanned Aerial Vehicle (UAV)based Forest Fire Detection and monitoring for reducing false alarms in forest-fires[J]. ComputerCommunications, 2020, 149: 1-16.
[31] BOUACHIR O, ALOQAILY M, AL RIDHAWI I, et al. UAV-assisted vehicular communicationfor densely crowded environments[C]. NOMS 2020-2020 IEEE/IFIP Network Operations andManagement Symposium. IEEE, 2020: 1-4.
[32] LYU J, ZENG Y, ZHANG R, et al. Placement optimization of UAV-mounted mobile basestations[J]. IEEE Communications Letters, 2016, 21(03): 604-607.
[33] LI B, JIANG Y, SUN J, et al. Development and testing of a two-UAV communication relaysystem[J]. Sensors, 2016, 16(10): 1696-1717.
[34] MENG K, WU Q, XU J, et al. UAV-enabled integrated sensing and communication: Opportu-nities and challenges[J]. IEEE Wireless Communications, 2023: 1-9.
[35] LI M, CHENG N, GAO J, et al. Energy-efficient UAV-assisted mobile edge computing: Re-source allocation and trajectory optimization[J]. IEEE Transactions on Vehicular Technology,2020, 69(03): 3424-3438.
[36] SUN Y, XU D, NG D W K, et al. Optimal 3D-trajectory design and resource allocation forsolar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019,67(06): 4281-4298.
[37] LI R, WEI Z, YANG L, et al. Joint trajectory and resource allocation design for UAV commu-nication systems[C]. 2018 IEEE Globecom Workshops (GC Wkshps). IEEE, 2018: 1-6.
[38] LIU B, WAN Y, ZHOU F, et al. Resource allocation and trajectory design for MISO UAV-assisted MEC networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(05): 4933-4948.
[39] GONG Y, DUAN B, FANG S, et al. Remote estimation of rapeseed yield with unmanned aerialvehicle (UAV) imaging and spectral mixture analysis[J]. Plant methods, 2018, 14: 1-14.
[40] DUAN B, FANG S, WANG S, et al. Remote estimation of rice yield with unmanned aerial ve-hicle (UAV) data and spectral mixture analysis[J]. Frontiers in plant science, 2019, 10: 427491-427505.
[41] GALE D, SHAPLEY L S. College admissions and the stability of marriage[J]. The AmericanMathematical Monthly, 1962, 69(01): 9-15.
[42] BURDETT K, VISHWANATH T. Balanced matching and labor market equilibrium[J]. Journalof Political Economy, 1988, 96(05): 1048-1065.
[43] JOVANOVIC B. Matching, turnover, and unemployment[J]. Journal of political Economy,1984, 92(01): 108-122.
[44] ROTH A E. The college admissions problem is not equivalent to the marriage problem[J].Journal of economic Theory, 1985, 36(02): 277-288.
[45] ERDIL A, ERGIN H. Two-sided matching with indifferences[J]. Journal of Economic Theory,2017, 171: 268-292.
[46] GU Y, SAAD W, BENNIS M, et al. Matching theory for future wireless networks: Fundamentalsand applications[J]. IEEE Communications Magazine, 2015, 53(05): 52-59.
[47] MEHTA A, et al. Online matching and ad allocation[J]. Foundations and Trends® in TheoreticalComputer Science, 2013, 8(04): 265-368.
[48] DING T, SCHOTTER A. Matching and chatting: An experimental study of the impact ofnetwork communication on school-matching mechanisms[J]. Games and Economic Behavior,2017, 103: 94-115.
[49] BAYAT S, LI Y, SONG L, et al. Matching theory: Applications in wireless communications[J].IEEE Signal Processing Magazine, 2016, 33(06): 103-122.
[50] KAZMI S A, TRAN N H, SAAD W, et al. Mode selection and resource allocation in device-to-device communications: A matching game approach[J]. IEEE Transactions on Mobile Com-puting, 2017, 16(11): 3126-3141.
[51] SAMI M, DAIGLE J N. User association and power control for UAV-enabled cellular networks[J]. IEEE Wireless Communications Letters, 2019, 9(03): 267-270.
[52] LHAZMIR S, OUALHAJ O A, KOBBANE A, et al. Matching game with no-regret learning forIoT energy-efficient associations with UAV[J]. IEEE Transactions on Green Communicationsand Networking, 2020, 4(04): 973-981.
[53] MAO X, ZHANG B, CHEN Y, et al. Matching game based resource allocation for 5G H-CRAN networks with device-to-device communication[C]. 2017 IEEE 28th annual internationalsymposium on personal, indoor, and mobile radio communications (PIMRC). IEEE, 2017: 1-6.
[54] MENG Y, ZHANG Z, HUANG Y, et al. Resource allocation for energy harvesting-aided device-to-device communications: a matching game approach[J]. IEEE Access, 2019, 7: 175594-175605.
[55] 邓旭, 朱立东. 多用户场景下卫星网络匹配博弈资源分配策略[J]. 无线电通信技术, 2019,45(06): 615-621.
[56] 张靓. 基于匹配博弈的认知无线电频谱分配技术研究[D]. 哈尔滨:哈尔滨工程大学, 2010.
[57] WEI X, ZHANG G, HAN Z. Satellite-controlled UAV-assisted IoT Information Collection withDeep Reinforcement Learning and Device Matching[C]. 2022 7th International Conference onIntelligent Computing and Signal Processing (ICSP). IEEE, 2022: 1254-1259.
[58] ZHANG C, SHANG T, FEI S, et al. A Target Allocation Algorithm Based on Matching Gamefor UAV Swarm[C]. 2022 China Automation Congress (CAC). IEEE, 2022: 282-287.
[59] ZHANG Q, WANG H, FENG Z, et al. Many-to-many matching-theory-based dynamic band-width allocation for UAVs[J]. IEEE Internet of Things Journal, 2021, 8(12): 9995-10009.
[60] KAZMI S A, NDIKUMANA A, MANZOOR A, et al. Distributed radio slice allocation inwireless network virtualization: Matching theory meets auctions[J]. IEEE Access, 2020, 8:73494-73507.
[61] YANG S. A task offloading solution for internet of vehicles using combination auction matchingmodel based on mobile edge computing[J]. IEEE Access, 2020, 8: 53261-53273.
[62] HUANG Q, GUI Y, WU F, et al. A general privacy-preserving auction mechanism for secondaryspectrum markets[J]. IEEE/ACM Transactions on Networking, 2015, 24(03): 1881-1893.
[63] ZHANG S, GUO Y, WANG B. A privacy protection scheme for bidding users of peer-to-peerelectricity call auction trading in microgrids[J]. IEEE Systems Journal, 2023, 17(02): 3316-3327.
[64] YU S, WEI Z, SUN G, et al. A double auction mechanism for virtual power plants based onblockchain sharding consensus and privacy preservation[J]. Journal of Cleaner Production,2024, 436: 140285-140305.
[65] ANDERSON B D, MOORE J B. Optimal filtering: volume 12[M]. Courier Corporation, 2012:235-236.
[66] SHI L, ZHANG H. Scheduling Two Gauss–Markov Systems: An Optimal Solution for RemoteState Estimation Under Bandwidth Constraint[J]. IEEE Transactions on Signal Processing,2012, 60(04): 2038-2042.
[67] PUTERMAN M L. Markov decision processes: discrete stochastic dynamic programming[M].John Wiley & Sons, 2014.
[68] HAN D, WU J, ZHANG H, et al. Optimal sensor scheduling for multiple linear dynamicalsystems[J]. Automatica, 2017, 75: 260-270.
[69] YATES R D, SUN Y, BROWN D R, et al. Age of Information: An Introduction and Survey[J].IEEE Journal on Selected Areas in Communications, 2021, 39(05): 1183-1210.
[70] WU S, DING K, CHENG P, et al. Optimal Scheduling of Multiple Sensors Over Lossy andBandwidth Limited Channels[J]. IEEE Transactions on Control of Network Systems, 2020, 7(03): 1188-1200.
修改评论