中文版 | English
题名

基于匹配理论的无人机辅助远程状态估计与资源分配研究

其他题名
RESEARCH ON MATCHING THEORY BASED UAV-ASSISTED REMOTE STATE ESTIMATION AND RESOURCE ALLOCATION
姓名
姓名拼音
QIN Jieyuan
学号
12132289
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
丁克蜜
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-09
论文提交日期
2024-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       信息物理系统(Cyber-physical Systems, CPS)利用智能传感器网络以及自动闭环的数据流将物理世界和网络空间集成为一个统一的实体。通过无线通信技术,CPS可以实现远程监控和远程控制。由于无人机(Unmanned Aerial Vehicle, UAV)具有良好传输视距、高移动性和快速计算等优点,因此,可以利用无人机作为通信中继并进行本地计算,从而实现有效地辅助远程状态估计。

       本文研究了基于CPS的无人机辅助远程状态估计问题。首先,本文提出了新颖的无人机辅助状态估计系统框架,该框架充分利用了无人机具有良好的通信视距以及具有灵活的计算能力等优点,实现了对系统状态估计误差协方差的最小化。其次,针对基于CPS的无人机辅助状态估计问题,本文考虑联合优化无人机资源分配与无人机路径规划,从而实现系统状态估计误差最小化;本文将复杂的最优远程状态估计问题解耦为两个子问题,分别是无人机与传感器之间的资源分配问题和无人机路径规划问题。然后,针对无人机资源分配问题,本文采用基于匹配理论的动态延迟接受算法得到无人机与传感器之间的稳定匹配;针对无人机路径规划问题,本文采用了动态规划算法获得无人机的最佳飞行路径;通过迭代优化两个子问题,得到问题的次优解。最后,理论分析证明了匹配算法得到的匹配是稳定的,并证明了无人机最优路径存在周期性;仿真分析验证了无人机最优路径的周期性以及所提出方案的可行性和有效性。

       本文针对无人机与传感器之间存在交易的资源分配问题,提出了基于匹配理论的差分隐私信道资源双向拍卖机制。不同于大多数拍卖机制,本文提出的拍卖机制充分考虑了拍卖参与者的偏好以及隐私保护。首先,本文针对基于隐私保护的拍卖机制,引入差分隐私来保护无人机与传感器拍卖过程中的出价和投标价格,从而保证拍卖的公平进行。其次,通过基于匹配理论的延迟接受算法将在拍卖中胜出的无人机与传感器根据它们的偏好进行匹配。然后,通过理论分析,本文证明了本文提出的算法得到的匹配结果是稳定的,并且实现了 $\epsilon$-差分隐私;本文证明了所提出的拍卖机制确保了买方和卖方均具有真实性并且实现了社会福利局部最大化。最后,仿真分析结果表明,本文提出的算法具有较好的经济收益和隐私保护效果。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] PIVOTO D G, DE ALMEIDA L F, DA ROSA RIGHI R, et al. Cyber-physical systems architec-tures for industrial internet of things applications in Industry 4.0: A literature review[J]. Journalof manufacturing systems, 2021, 58: 176-192.
[2] LANBO L, SHENGLI Z, JUN-HONG C. Prospects and problems of wireless communicationfor underwater sensor networks[J]. Wireless Communications and Mobile Computing, 2008, 8(08): 977-994.
[3] POPESCU D, ICHIM L, STOICAN F. Unmanned aerial vehicle systems for remote estimationof flooded areas based on complex image processing[J]. Sensors, 2017, 17(03): 446-470.
[4] 赵彦. 无人机技术在消防通信中的应用[J]. 电视技术, 2021, 45(08): 105-108.
[5] 王顺章. 基于匹配理论的无人机应急信息扩散方法研究[D]. 徐州: 中国矿业大学, 2023.
[6] 张良. 为救灾插上“翅膀”——无人机在救灾中的应用[J]. 生命与灾害, 2017(05): 23-25+22.
[7] 王久平, 孙守军, 孙卫国. 推动“十四五”规划落实提升航空应急救援能力[J]. 中国应急管理, 2022(08): 20-29.
[8] WANG T, LIU F, GUO J, et al. Dynamic SDN controller assignment in data center networks:Stable matching with transfers[C]. IEEE INFOCOM 2016-The 35th Annual IEEE InternationalConference on Computer Communications. IEEE, 2016: 1-9.
[9] MORELLO R, MUKHOPADHYAY S C, LIU Z, et al. Advances on Sensing Technologies forSmart Cities and Power Grids: A Review[J]. IEEE Sensors Journal, 2017, 17(23): 7596-7610.
[10] XIONG G, ZHU F, LIU X, et al. Cyber-physical-social system in intelligent transportation[J].IEEE/CAA Journal of Automatica Sinica, 2015, 2(03): 320-333.
[11] WANG H, ZHAO H, ZHANG J, et al. Survey on Unmanned Aerial Vehicle Networks: A CyberPhysical System Perspective[J]. IEEE Communications Surveys & Tutorials, 2020, 22(02):1027-1070.
[12] WEN Z, WANG Q, MA Y, et al. Remote estimates of suspended particulate matter in globallakes using machine learning models[J]. International Soil and Water Conservation Research,2024, 12(01): 200-216.
[13] BANAFAA M, PEPEOĞLU Ö, SHAYEA I, et al. A Comprehensive Survey on 5G-and-BeyondNetworks with UAVs: Applications, Emerging Technologies, Regulatory Aspects, ResearchTrends and Challenges[J]. IEEE Access, 2024, 12: 7786-7826.
[14] AFRAZ N, RUFFINI M. A distributed bilateral resource market mechanism for future telecom-munications networks[C]. 2019 IEEE Globecom Workshops (GC Wkshps). IEEE, 2019: 1-6.
[15] GODA D R, VADIYALA V R, YERRAM S R, et al. Dynamic Programming Approaches forResource Allocation in Project Scheduling: Maximizing Efficiency under Time and BudgetConstraints[J]. ABC Journal of Advanced Research, 2023, 12(01): 1-16.
[16] ZHANG Y, LEE C, NIYATO D, et al. Auction approaches for resource allocation in wirelesssystems: A survey[J]. IEEE Communications surveys & tutorials, 2012, 15(03): 1020-1041.
[17] DWORK C. Differential privacy[C]. International colloquium on automata, languages, andprogramming. Springer, 2006: 1-12.
[18] PANG G, LIU W, LI Y, et al. DRL-based resource allocation in remote state estimation[J]. IEEETransactions on Wireless Communications, 2022, 22(07): 4434-4448.
[19] YANG H, HUANG M, LI Y, et al. Joint power allocation for remote state estimation with SWIPT[J]. IEEE Transactions on Signal Processing, 2022, 70: 1434-1447.
[20] WANG J, REN X, MO Y, et al. Whittle index policy for dynamic multichannel allocation inremote state estimation[J]. IEEE Transactions on Automatic Control, 2019, 65(02): 591-603.
[21] PANG G, LIU W, LI Y, et al. Deep reinforcement learning for radio resource allocation inNOMA-based remote state estimation[C]. GLOBECOM 2022-2022 IEEE Global Communica-tions Conference. IEEE, 2022: 3059-3064.
[22] XING W, ZHAO X, LIU L. Optimal Denial-of-Service Attack Power Allocation Strategy forRemote State Estimation in CPSs With Two-hop Networks[J]. IEEE Transactions on GreenCommunications and Networking, 2023, 7(04): 1597-1606.
[23] SHI L, CHENG P, CHEN J. Optimal periodic sensor scheduling with limited resources[J]. IEEETransactions on Automatic Control, 2011, 56(09): 2190-2195.
[24] ZHAO L, ZHANG W, HU J, et al. On the optimal solutions of the infinite-horizon linear sensorscheduling problem[J]. IEEE Transactions on Automatic Control, 2014, 59(10): 2825-2830.
[25] DING K, LI Y, QUEVEDO D E, et al. A multi-channel transmission schedule for remote stateestimation under DoS attacks[J]. Automatica, 2017, 78: 194-201.
[26] HMEDI H, CARROLL J, ARAPOSTATHIS A. Optimal sensor scheduling under intermittentobservations subject to network dynamics[J]. IEEE Transactions on Automatic Control, 2022,68(03): 1399-1414.
[27] ZHONG Y, TANG J, YANG N, et al. Event-triggered Sensor Scheduling for Remote StateEstimation with Error-Detecting Code[J]. IEEE Control Systems Letters, 2023, 7: 2377-2382.
[28] KHALEDIAN N, KHAMFOROOSH K, AKRAMINEJAD R, et al. An energy-efficient anddeadline-aware workflow scheduling algorithm in the fog and cloud environment[J]. computing,2024, 106(01): 109-137.
[29] ZHANG Z, LIU Y, HUANG J, et al. Channel characterization and modeling for 6G UAV-assistedemergency communications in complicated mountainous scenarios[J]. Sensors, 2023, 23(11):4998-5016.
[30] SUDHAKAR S, VIJAYAKUMAR V, KUMAR C S, et al. Unmanned Aerial Vehicle (UAV)based Forest Fire Detection and monitoring for reducing false alarms in forest-fires[J]. ComputerCommunications, 2020, 149: 1-16.
[31] BOUACHIR O, ALOQAILY M, AL RIDHAWI I, et al. UAV-assisted vehicular communicationfor densely crowded environments[C]. NOMS 2020-2020 IEEE/IFIP Network Operations andManagement Symposium. IEEE, 2020: 1-4.
[32] LYU J, ZENG Y, ZHANG R, et al. Placement optimization of UAV-mounted mobile basestations[J]. IEEE Communications Letters, 2016, 21(03): 604-607.
[33] LI B, JIANG Y, SUN J, et al. Development and testing of a two-UAV communication relaysystem[J]. Sensors, 2016, 16(10): 1696-1717.
[34] MENG K, WU Q, XU J, et al. UAV-enabled integrated sensing and communication: Opportu-nities and challenges[J]. IEEE Wireless Communications, 2023: 1-9.
[35] LI M, CHENG N, GAO J, et al. Energy-efficient UAV-assisted mobile edge computing: Re-source allocation and trajectory optimization[J]. IEEE Transactions on Vehicular Technology,2020, 69(03): 3424-3438.
[36] SUN Y, XU D, NG D W K, et al. Optimal 3D-trajectory design and resource allocation forsolar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019,67(06): 4281-4298.
[37] LI R, WEI Z, YANG L, et al. Joint trajectory and resource allocation design for UAV commu-nication systems[C]. 2018 IEEE Globecom Workshops (GC Wkshps). IEEE, 2018: 1-6.
[38] LIU B, WAN Y, ZHOU F, et al. Resource allocation and trajectory design for MISO UAV-assisted MEC networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(05): 4933-4948.
[39] GONG Y, DUAN B, FANG S, et al. Remote estimation of rapeseed yield with unmanned aerialvehicle (UAV) imaging and spectral mixture analysis[J]. Plant methods, 2018, 14: 1-14.
[40] DUAN B, FANG S, WANG S, et al. Remote estimation of rice yield with unmanned aerial ve-hicle (UAV) data and spectral mixture analysis[J]. Frontiers in plant science, 2019, 10: 427491-427505.
[41] GALE D, SHAPLEY L S. College admissions and the stability of marriage[J]. The AmericanMathematical Monthly, 1962, 69(01): 9-15.
[42] BURDETT K, VISHWANATH T. Balanced matching and labor market equilibrium[J]. Journalof Political Economy, 1988, 96(05): 1048-1065.
[43] JOVANOVIC B. Matching, turnover, and unemployment[J]. Journal of political Economy,1984, 92(01): 108-122.
[44] ROTH A E. The college admissions problem is not equivalent to the marriage problem[J].Journal of economic Theory, 1985, 36(02): 277-288.
[45] ERDIL A, ERGIN H. Two-sided matching with indifferences[J]. Journal of Economic Theory,2017, 171: 268-292.
[46] GU Y, SAAD W, BENNIS M, et al. Matching theory for future wireless networks: Fundamentalsand applications[J]. IEEE Communications Magazine, 2015, 53(05): 52-59.
[47] MEHTA A, et al. Online matching and ad allocation[J]. Foundations and Trends® in TheoreticalComputer Science, 2013, 8(04): 265-368.
[48] DING T, SCHOTTER A. Matching and chatting: An experimental study of the impact ofnetwork communication on school-matching mechanisms[J]. Games and Economic Behavior,2017, 103: 94-115.
[49] BAYAT S, LI Y, SONG L, et al. Matching theory: Applications in wireless communications[J].IEEE Signal Processing Magazine, 2016, 33(06): 103-122.
[50] KAZMI S A, TRAN N H, SAAD W, et al. Mode selection and resource allocation in device-to-device communications: A matching game approach[J]. IEEE Transactions on Mobile Com-puting, 2017, 16(11): 3126-3141.
[51] SAMI M, DAIGLE J N. User association and power control for UAV-enabled cellular networks[J]. IEEE Wireless Communications Letters, 2019, 9(03): 267-270.
[52] LHAZMIR S, OUALHAJ O A, KOBBANE A, et al. Matching game with no-regret learning forIoT energy-efficient associations with UAV[J]. IEEE Transactions on Green Communicationsand Networking, 2020, 4(04): 973-981.
[53] MAO X, ZHANG B, CHEN Y, et al. Matching game based resource allocation for 5G H-CRAN networks with device-to-device communication[C]. 2017 IEEE 28th annual internationalsymposium on personal, indoor, and mobile radio communications (PIMRC). IEEE, 2017: 1-6.
[54] MENG Y, ZHANG Z, HUANG Y, et al. Resource allocation for energy harvesting-aided device-to-device communications: a matching game approach[J]. IEEE Access, 2019, 7: 175594-175605.
[55] 邓旭, 朱立东. 多用户场景下卫星网络匹配博弈资源分配策略[J]. 无线电通信技术, 2019,45(06): 615-621.
[56] 张靓. 基于匹配博弈的认知无线电频谱分配技术研究[D]. 哈尔滨:哈尔滨工程大学, 2010.
[57] WEI X, ZHANG G, HAN Z. Satellite-controlled UAV-assisted IoT Information Collection withDeep Reinforcement Learning and Device Matching[C]. 2022 7th International Conference onIntelligent Computing and Signal Processing (ICSP). IEEE, 2022: 1254-1259.
[58] ZHANG C, SHANG T, FEI S, et al. A Target Allocation Algorithm Based on Matching Gamefor UAV Swarm[C]. 2022 China Automation Congress (CAC). IEEE, 2022: 282-287.
[59] ZHANG Q, WANG H, FENG Z, et al. Many-to-many matching-theory-based dynamic band-width allocation for UAVs[J]. IEEE Internet of Things Journal, 2021, 8(12): 9995-10009.
[60] KAZMI S A, NDIKUMANA A, MANZOOR A, et al. Distributed radio slice allocation inwireless network virtualization: Matching theory meets auctions[J]. IEEE Access, 2020, 8:73494-73507.
[61] YANG S. A task offloading solution for internet of vehicles using combination auction matchingmodel based on mobile edge computing[J]. IEEE Access, 2020, 8: 53261-53273.
[62] HUANG Q, GUI Y, WU F, et al. A general privacy-preserving auction mechanism for secondaryspectrum markets[J]. IEEE/ACM Transactions on Networking, 2015, 24(03): 1881-1893.
[63] ZHANG S, GUO Y, WANG B. A privacy protection scheme for bidding users of peer-to-peerelectricity call auction trading in microgrids[J]. IEEE Systems Journal, 2023, 17(02): 3316-3327.
[64] YU S, WEI Z, SUN G, et al. A double auction mechanism for virtual power plants based onblockchain sharding consensus and privacy preservation[J]. Journal of Cleaner Production,2024, 436: 140285-140305.
[65] ANDERSON B D, MOORE J B. Optimal filtering: volume 12[M]. Courier Corporation, 2012:235-236.
[66] SHI L, ZHANG H. Scheduling Two Gauss–Markov Systems: An Optimal Solution for RemoteState Estimation Under Bandwidth Constraint[J]. IEEE Transactions on Signal Processing,2012, 60(04): 2038-2042.
[67] PUTERMAN M L. Markov decision processes: discrete stochastic dynamic programming[M].John Wiley & Sons, 2014.
[68] HAN D, WU J, ZHANG H, et al. Optimal sensor scheduling for multiple linear dynamicalsystems[J]. Automatica, 2017, 75: 260-270.
[69] YATES R D, SUN Y, BROWN D R, et al. Age of Information: An Introduction and Survey[J].IEEE Journal on Selected Areas in Communications, 2021, 39(05): 1183-1210.
[70] WU S, DING K, CHENG P, et al. Optimal Scheduling of Multiple Sensors Over Lossy andBandwidth Limited Channels[J]. IEEE Transactions on Control of Network Systems, 2020, 7(03): 1188-1200.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP29
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/770852
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
覃洁媛. 基于匹配理论的无人机辅助远程状态估计与资源分配研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132289-覃洁媛-系统设计与智能(5378KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[覃洁媛]的文章
百度学术
百度学术中相似的文章
[覃洁媛]的文章
必应学术
必应学术中相似的文章
[覃洁媛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。