[1] RAYLEIGH L. Investigation of the character of the equilibrium of an incompressible heavyfluid of variable density[J]. Proc. R. Math. Soc., 1883, 14: 170-177.
[2] TAYLOR G. The instability of liquid surfaces when accelerated in a direction perpendicular totheir planes .1[J]. R. Soc. London Proc. A, 1950, 201: 192-196.
[3] HILLEBRANDT W, NIEMEYER J C. Type Ia supernova explosion models[J]. Annu. Rev.Astron. Astrophys., 2000, 38: 191-230.
[4] BURROWS A. Supernova explosions in the Universe[J]. Nature, 2000, 403(6771): 727-733.
[5] WOOSLEY S E, WEAVER T A. The physics of supernova explosions[J]. Annu. Rev. Astron.Astrophys., 1986, 24(1): 205-253.
[6] GAMEZO V N, KHOKHLOV A M, ORAN E S, et al. Thermonuclear supernovae: Simulationsof the deflagration stage and their implications[J]. Science, 2003, 299(5603): 77-81.
[7] ARNETT D. Supernovae and nucleosynthesis: an investigation of the history of matter, fromthe big bang to the present[M]. Princeton University Press, 1996.
[8] WANG W M, NEPVEU M. A numerical study of the nonlinear Rayleigh-Taylor instability,with application to accreting X-ray sources[J]. Astron. Astrophys., 1983, 118: 267-274.
[9] ISOBE H, MIYAGOSHI T, SHIBATA K, et al. Filamentary structure on the Sun from themagnetic Rayleigh–Taylor instability[J]. Nature, 2005, 434(7032): 478-481.
[10] RUDERMAN M. Compressibility effect on the Rayleigh–Taylor instability with sheared magneticfields[J]. Solar Phys., 2017, 292(4): 47.
[11] KESKINEN M, SZUSZCZEWICZ E, OSSAKOW S, et al. Nonlinear theory and experimentalobservations of the local collisional Rayleigh-Taylor instability in a descending equatorialspread F ionosphere[J]. J. Geophys. Res., 1981, 86(A7): 5785-5792.
[12] MAHALOV A. Multiscale modeling and nested simulations of three-dimensional ionosphericplasmas: Rayleigh–Taylor turbulence and nonequilibrium layer dynamics at fine scales[J].Phys. Scr., 2014, 89(9): 098001.
[13] HOUSEMAN G A, MOLNAR P. Gravitational (Rayleigh–Taylor) instability of a layer withnon-linear viscosity and convective thinning of continental lithosphere[J]. Geophys. J. Int.,1997, 128(1): 125-150.
[14] SELIG F, WERMUND E. Families of salt domes in the Gulf coastal province[J]. Geophysics,1966, 31(4): 726-740.
[15] WILCOCK W S D, WHITEHEAD J A. The Rayleigh-Taylor instability of an embedded layerof low-viscosity fluid[J]. J. Geophys. Res., 1991, 96(B7): 12193-12200.
[16] ZHOU Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, andmixing. I[J]. Phys. Rep., 2017, 720-722: 1-136.
[17] FINN J M. Nonlinear interaction of Rayleigh–Taylor and shear instabilities[J]. Phys. Fluids B,1993, 5(2): 415-432.
[18] MORETTO L G, TSO K, COLONNA N, et al. New Rayleigh-Taylor-like surface instabilityand nuclear multifragmentation[J]. Phys. Rev. Lett., 1992, 69: 1884-1887.
[19] ATZENI S, MEYER-TER VEHN J. The physics of inertial fusion: beam plasma interaction,hydrodynamics, hot dense matter: Vol. 125[M]. Oxford University Press, 2004.
[20] NUCKOLLS J, WOOD L, THIESSEN A, et al. Laser compression of matter to super-highdensities: Thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142.
[21] LINDL J D. Inertial confinement fusion: the quest for ignition and energy gain using indirectdrive[Z]. 1998.
[22] BETTI R, HURRICANE O. Inertial-confinement fusion with lasers[J]. Nat. Phys.Physics,2016, 12(5): 435-448.
[23] PETRASSO R D. INERTIAL FUSION - Rayleigh’s CHALLENGE ENDURES[J]. Nature,1994, 367(6460): 217-218.
[24] VEYNANTE D, TROUVé A, BRAY K N C, et al. Gradient and counter-gradient scalar transportin turbulent premixed flames[J]. J. Fluid Mech., 1997, 332: 263–293.
[25] PETCHENKO A, BYCHKOV V, AKKERMAN V, et al. Violent Folding of a Flame Front in aFlame-Acoustic Resonance[J]. Phys. Rev. Lett., 2006, 97: 164501.
[26] MARMOTTANT P, VILLERMAUX E. On spray formation[J]. J. Fluid Mech., 2004, 498: 73–111.
[27] LIVESCU S, ROY R, SCHWARTZ L. Leveling of thixotropic liquids[J]. J. Non-Newton. FluidMech., 2011, 166(7): 395-403.
[28] BRITTER R E, HANNA S R. FLOW AND DISPERSION IN URBAN AREAS[J]. Annu. Rev.Fluid Mech., 2003, 35(1): 469-496.
[29] COLE R H. Underwater explosions[M]. Princeton Univ. Press, 1948.
[30] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosionbubble[J]. J. Acoust. Soc. Amer., 2002, 111(4): 1584-1601.
[31] BARNES J F, BLEWETT P J, MCQUEEN R G, et al. Taylor instability in solids[J]. J. Appl.Phys., 1974, 45(2): 727-732.
[32] PIRIZ A R, CELA J J L, CORTÁZAR O D, et al. Rayleigh-Taylor instability in elastic solids[J]. Phys. Rev. E, 2005, 72: 056313.
[33] MAIMOUNI I, GOYON J, LAC E, et al. Rayleigh-Taylor Instability in Elastoplastic Solids: ALocal Catastrophic Process[J]. Phys. Rev. Lett., 2016, 116: 154502.
[34] CHANDRASEKHAR S. The maximum mass of ideal white dwarfs[J]. Astrophys. J., 1931,74: 81.
[35] KHOKHLOV A M. Propagation of turbulent flames in supernovae[J]. Astrophys. J., 1995,449: 695.
[36] SHIGEYAMA T, NOMOTO K. Theoretical light curve of SN 1987A and mixing of hydrogenand nickel in the ejecta[J]. Astrophys. J., 1990, 360: 242-256.
[37] BETHE H A. Supernova mechanisms[J]. Rev. Modern Phys., 1990, 62(4): 801.
[38] MÜLLER B, MELSON T, HEGER A, et al. Supernova simulations from a 3D progenitormodel–Impact of perturbations and evolution of explosion properties[J]. Mon. Not. R. Astron.Soc., 2017, 472(1): 491-513.
[39] ARNETT W D, BAHCALL J N, KIRSHNER R P, et al. Supernova 1987A[J]. Annu. Rev.Astron. Astrophys., 1989, 27(1): 629-700.
[40] MCCRAY R. Supernova 1987A Revisited[J]. Annu. Rev. Astron. Astrophys., 1993, 31(1):175-216.
[41] GAWRYSZCZAK A, GUZMAN J, PLEWA T, et al. Non-spherical core collapse supernovae-III. Evolution towards homology and dependence on the numerical resolution[J]. Astron. Astrophys.,2010, 521: A38.
[42] DITTRICH T, HAMMEL B, KEANE C, et al. Diagnosis of pusher-fuel mix in indirectly drivenNova implosions[J]. Phys. Rev. Lett., 1994, 73(17): 2324.
[43] BOFFETTA G, MAZZINO A. Incompressible Rayleigh–Taylor Turbulence[J]. Annu. Rev.Fluid Mech., 2017, 49(1): 119-143.
[44] SHARP D H. An Overview of Rayleigh-Taylor instability[J]. Physica D, 1984, 12: 3-18.
[45] GAUTHIER S, LE CREURER B. Compressibility effects in Rayleigh-Taylor instabilityinducedflows[J]. Phil. Trans. R. Soc. A, 2010, 368(1916): 1681-1704.
[46] ZHOU Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, andmixing. II[J]. Phys. Rep., 2017, 723-725: 1-160.
[47] RAMAPRABHU P, DIMONTE G. Single-mode dynamics of the Rayleigh-Taylor instabilityat any density ratio[J]. Phys. Rev. E, 2005, 71: 036314.
[48] COOK A W, CABOT W, MILLER P L. The mixing transition in Rayleigh-Taylor instability[J]. J. Fluid Mech., 2004, 511: 333-362.
[49] ZHANG Y, NI W, RUAN Y, et al. Quantifying mixing of Rayleigh-Taylor turbulence[J]. Phys.Rev. Fluids, 2020, 5(10).
[50] YOUNGS D L. NUMERICAL-SIMULATION OF TURBULENT MIXING BY Rayleigh-Taylor INSTABILITY[J]. Physica D, 1984, 12(1-3): 32-44.
[51] READ K I. EXPERIMENTAL INVESTIGATION OF TURBULENT MIXING BY Rayleigh-Taylor INSTABILITY[J]. Physica D, 1984, 12(1-3): 45-58.
[52] YOUNGS D L. MODELING TURBULENT MIXING BY Rayleigh-Taylor INSTABILITY[J].Physica D, 1989, 37(1-3): 270-287.
[53] DIMONTE G, SCHNEIDER M. Turbulent Rayleigh-Taylor instability experiments with variableacceleration[J]. Phys. Rev. E, 1996, 54(4): 3740-3743.
[54] DIMONTE G, SCHNEIDER M. Density ratio dependence of Rayleigh-Taylor mixing for sustainedand impulsive acceleration histories[J]. Phys. Fluids, 2000, 12(2): 304-321.
[55] YOUNGS D L. NUMERICAL-SIMULATION OF MIXING BY Rayleigh-Taylor ANDRichtmyer-Meshkov INSTABILITIES[J]. Laser Part. Beams, 1994, 12(4): 725-750.
[56] LINDEN P F, REDONDO J M, YOUNGS D L. MOLECULAR MIXING IN Rayleigh-TaylorINSTABILITY[J]. J. Fluid Mech., 1994, 265: 97-124.
[57] CABOT W, COOK A W. Reynolds number effects on Rayleigh-Taylor instability with possibleimplications for type-Ia supernovae[J]. Nat. Phys., 2006, 2(8): 562-568.
[58] LIVESCU D, RISTORCELLI J R, PETERSEN M R, et al. New phenomena in variable-densityRayleigh-Taylor turbulence[J]. Phys. Scr., 2010, T142.
[59] LIVESCU D, WEI T, PETERSEN M R. Direct Numerical Simulations of Rayleigh-Taylorinstability[J]. J. Phys.: Conf. Ser., 2011, 318(8): 082007.
[60] BURTON G C. Study of ultrahigh Atwood-number Rayleigh-Taylor mixing dynamics usingthe nonlinear large-eddy simulation method[J]. Phys. Fluids, 2011, 23(4): 045106.
[61] LIANG H, HU X, HUANG X, et al. Direct numerical simulations of multi-mode immiscibleRayleigh-Taylor instability with high Reynolds numbers[J]. Phys. Fluids, 2019, 31(11):112104.
[62] DIMONTE G. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations[J].Phys. Rev. E, 2004, 69(5).
[63] BANERJEE A, ANDREWS M J. 3D Simulations to investigate initial condition effects on thegrowth of Rayleigh-Taylor mixing[J]. Int. J. Heat Mass Transfer, 2009, 52(17-18): 3906-3917.
[64] GLIMM J, GROVE J W, LI X L, et al. A critical analysis of Rayleigh-Taylor growth rates[J].J. Comp. Phys., 2001, 169(2): 652-677.
[65] GLIMM J, SHARP D H, KAMAN T, et al. New directions for Rayleigh-Taylor mixing[J].Philos. Trans. R. Soc., A, 2013, 371(2003).
[66] RUAN Y, ZHANG Y, TIAN B, et al. Density-ratio-invariant mean-species profile of classicalRayleigh-Taylor mixing[J]. Phys. Rev. Fluids, 2020, 5: 054501.
[67] CLARK T T. A numerical study of the statistics of a two-dimensional Rayleigh-Taylor mixinglayer[J]. Phys. Fluids, 2003, 15(8): 2413-2423.
[68] COOK A W, DIMOTAKIS P E. Transition stages of Rayleigh-Taylor instability between misciblefluids[J]. J. Fluid Mech., 2001, 443: 69-99.
[69] CABOT W, ZHOU Y. Statistical measurements of scaling and anisotropy of turbulent flowsinduced by Rayleigh-Taylor instability[J]. Phys. Fluids, 2013, 25(1): 015107.
[70] YILMAZ I. Analysis of Rayleigh-Taylor instability at high Atwood numbers using fully implicit,non-dissipative, energy-conserving large eddy simulation algorithm[J]. Phys. Fluids,2020, 32(5): 054101.
[71] HILLIER A. Self-similar solutions of asymmetric Rayleigh-Taylor mixing[J]. Phys. Fluids,2020, 32(1): 015103.
[72] DIMONTE G, YOUNGS D L, DIMITS A, et al. A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration[J]. Phys. Fluids, 2004, 16(5): 1668-1693.
[73] LIVESCU D, RISTORCELLI J R, GORE R A, et al. High-Reynolds number Rayleigh-Taylorturbulence[J]. J. Turbul., 2009, 10(13): 1-32.
[74] ZHOU Y, CABOT W H, THORNBER B. Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows[J]. Phys. Plasmas, 2016, 23(5).
[75] ZHANG Y, RUAN Y, XIE H, et al. Mixed mass of classical Rayleigh-Taylor mixing at arbitrarydensity ratios[J]. Phys. Fluids, 2020, 32(1): 011702.
[76] YOUNGS D L. Three‐dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability[J]. Phys. Fluids A, 1991, 3(5): 1312-1320.
[77] YOUNGS D L. Rayleigh-Taylor mixing: direct numerical simulation and implicit large eddysimulation[J]. Phys. Scr., 2017, 92(7): 074006.
[78] DALZIEL S B, LINDEN P F, YOUNGS D L. Self-similarity and internal structure of turbulenceinduced by Rayleigh-Taylor instability[J]. J. Fluid Mech., 1999, 399: 1-48.
[79] CABOT W. Comparison of two- and three-dimensional simulations of miscible Rayleigh-Taylorinstability[J]. Phys. Fluids, 2006, 18(4): 045101.
[80] COOK A W, ZHOU Y. Energy transfer in Rayleigh-Taylor instability[J]. Phys. Rev. E, 2002,66(2).
[81] VANDERVOORT P O. The character of the equilibrium of a compressible, inviscid fluid ofvarying density[J]. Astrophys. J., 1961, 134: 699-717.
[82] BERNSTEIN I B, BOOK D L. Effect of compressibility on the Rayleigh-Taylor instability[J].Phys. Fluids, 1983, 26: 453-458.
[83] YANG Y M, ZHANG Q. General-properties of a multilayer stratified fluids system[J]. Phys.Fluids A, 1993, 5: 1167-1181.
[84] BLAKE G M. Fluid dynamic stability of double radio-sources[J]. Mon. Not. R. Astron. Soc.,1972, 156: 67-89.
[85] LI X L. Study of 3-dimensional Rayleigh-Taylor instability in compressible fluids through levelset method and parallel computation[J]. Phys. Fluids A, 1993, 5: 1904-1913.
[86] BAKER L. Compressible Rayleigh-Taylor instability[J]. Phys. Fluids, 1983, 26: 950-952.
[87] LIVESCU D. Compressibility effects on the Rayleigh-Taylor instability growth between immisciblefluids[J]. Phys. Fluids, 2004, 16: 118-127.
[88] RIBEYRE X, TIKHONCHUK V T, BOUQUET S. Response to ”Comment on ’CompressibleRayleigh-Taylor instabilities in supernova remnants’” Phys. Fluids 17, 069101 (2005)[J]. Phys.Fluids, 2005, 17: 069102.
[89] XUE C, YE W. Destabilizing effect of compressibility on Rayleigh-Taylor instability for fluidswith fixed density profile[J]. Phys. Plasmas, 2010, 17: 042705.
[90] LAFAY M A, LE CREURER B, GAUTHIER S. Compressibility effects on the Rayleigh-Taylorinstability between miscible fluids[J]. Europhys. Lett., 2007, 79: 64002.
[91] RECKINGER S J, LIVESCU D, VASILYEV O V. Comprehensive numerical methodology fordirect numerical simulations of compressible Rayleigh-Taylor instability[J]. J. Comp. Phys.,2016, 313: 181-208.
[92] LUO T, WANG J, XIE C, et al. Effects of compressibility and Atwood number on the singlemodeRayleigh-Taylor instability[J]. Phys. Fluids, 2020, 32(1): 012110.
[93] FU C, ZHAO Z, XU X, et al. Nonlinear saturation of bubble evolution in a two-dimensionalsingle-mode stratified compressible Rayleigh-Taylor instability[J]. Phys. Rev. Fluids, 2022, 7:023902.
[94] FU C, ZHAO Z, WANG P, et al. Bubble re-acceleration behaviours in compressible Rayleigh-Taylor instability with isothermal stratification[J]. J. Fluid Mech., 2023, 954: A16.
[95] WIELAND S A, RECKINGER S J, HAMLINGTON P E, et al. Effects of background stratificationon the compressible Rayleigh Taylor instability[C]//47th AIAA Fluid Dynamics Conference.2017: 3974.
[96] WIELAND S A, HAMLINGTON P E, RECKINGER S J, et al. Effects of isothermal stratificationstrength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability[J]. Phys. Rev. Fluids, 2019, 4: 093905.
[97] GEORGE E, GLIMM J. Self-similarity of Rayleigh-Taylor mixing rates[J]. Phys. Fluids, 2005,17(5): 054101.
[98] JIN H, LIU X F, LU T, et al. Rayleigh-Taylor mixing rates for compressible flow[J]. Phys.Fluids, 2005, 17(2): 024104.
[99] GAUTHIER S. Compressibility effects in Rayleigh-Taylor flows: influence of the stratification[J]. Phys. Scr., 2013, T155: 014012.
[100] GAUTHIER S. Compressible Rayleigh-Taylor turbulent mixing layer between Newtonian misciblefluids[J]. J. Fluid Mech., 2017, 830: 211-256.
[101] MELLADO J P, SARKAR S, ZHOU Y. Large-eddy simulation of Rayleigh-Taylor turbulencewith compressible miscible fluids[J]. Phys. Fluids, 2005, 17(7): 076101.
[102] OLSON B J, COOK A W. Rayleigh-Taylor shock waves[J]. Phys. Fluids, 2007, 19: 128108.
[103] SCHNEIDER N, GAUTHIER S. Asymptotic analysis of Rayleigh-Taylor flow for Newtonianmiscible fluids[J]. J. Eng. Math., 2015, 92(1): 55-71.
[104] SCHNEIDER N, GAUTHIER S. Vorticity and mixing in Rayleigh-Taylor Boussinesq turbulence[J]. J. Fluid Mech., 2016, 802: 395-436.
[105] ZHAO D, BETTI R, ALUIE H. Scale interactions and anisotropy in Rayleigh-Taylor turbulence[J]. J. Fluid Mech., 2022, 930: A29.
[106] ZHAO Z, LIU N, LU X. Kinetic energy and enstrophy transfer in compressible Rayleigh-Taylorturbulence[J]. J. Fluid Mech., 2020, 904: A37.
[107] ZHANG Y, HE Z, XIE H, et al. Methodology for determining coefficients of turbulent mixingmodel[J]. J. Fluid Mech., 2020, 905: A26.
[108] XIAO M, ZHANG Y, TIAN B. Modeling of turbulent mixing with an improved K–L model[J]. Phys. Fluids, 2020, 32(9): 092104.
[109] XIAO M, ZHANG Y, TIAN B. A K–L model with improved realizability for turbulent mixing[J]. Phys. Fluids, 2021, 33(2): 022104.
[110] SCHILLING O. Self-similar Reynolds-averaged mechanical–scalar turbulence models forRayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz instability-induced mixing inthe small Atwood number limit[J]. Phys. Fluids, 2021, 33(8): 085129.
[111] MORGAN B E. Large-eddy simulation and Reynolds-averaged Navier-Stokes modeling ofthree Rayleigh-Taylor mixing configurations with gravity reversal[J]. Phys. Rev. E, 2022, 106:025101.
[112] KOKKINAKIS I W, DRIKAKIS D, YOUNGS D L. Two-equation and multi-fluid turbulencemodels for Richtmyer–Meshkov mixing[J]. Phys. Fluids, 2020, 32(7): 074102.
[113] ANDREWS M J. Accurate computation of convective transport in transient two-phase flow[J].International Journal for Numerical Methods in Fluids, 1995, 21(3): 205-222.
[114] DIMONTE G, RAMAPRABHU P, ANDREWS M. Rayleigh-Taylor instability with complexacceleration history[J]. Phys. Rev. E, 2007, 76: 046313.
[115] YOUNGS D L. The density ratio dependence of self-similar Rayleigh-Taylor mixing[J]. Philos.Trans. R. Soc., A, 2013, 371(2003).
[116] WILLIAMS R J R. Rayleigh-Taylor mixing between density stratified layers[J]. J. Fluid Mech.,2017, 810: 584–602.
[117] COOK A W. Artificial fluid properties for large-eddy simulation of compressible turbulentmixing[J]. Phys. Fluids, 2007, 19(5): 055103.
[118] COOK A W. Enthalpy diffusion in multicomponent flows[J]. Phys. Fluids, 2009, 21: 055109.
[119] MORGAN B E, BLACK W J. Parametric investigation of the transition to turbulence inRayleigh–Taylor mixing[J]. Physica D: Nonlinear Phenomena, 2020, 402: 132223.
[120] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocitygradient tensor[J]. Flow, turbulence and Combustion, 1999, 62(3): 183-200.
[121] M. A, PULLIN D I. A vortex-based subgrid stress model for large-eddy simulation[J]. Phys.Fluids, 1997, 9(8): 2443-2454.
[122] VOELKL T, PULLIN D I, CHAN D C. A physical-space version of the stretched-vortexsubgrid-stress model for large-eddy simulation[J]. Phys. Fluids, 2000, 12(7): 1810-1825.
[123] PULLIN D I. A vortex-based model for the subgrid flux of a passive scalar[J]. Phys. Fluids,2000, 12(9): 2311-2319.
[124] MATTNER T, PULLIN D, DIMOTAKIS P. Large-eddy simulations of Rayleigh-Taylor instabilitybetween miscible fluids[C]//Proceedings of the 9th International Workshop on the Physicsof Compressible Turbulent Mixing, Cambridge, UK (ed. SB Dalziel). 2004: 428-437.
[125] ZHOU H, LI X, QI H, et al. Subgrid-scale model for large-eddy simulation of transition andturbulence in compressible flows[J]. Phys. Fluids, 2019, 31(12): 125118.
[126] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annu. Rev. Fluid Mech., 2020, 52: 477-508.
[127] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annu.Rev. Fluid Mech., 2019, 51: 357-377.
[128] LIU B, TANG J, HUANG H, et al. Deep learning methods for super-resolution reconstructionof turbulent flows[J]. Phys. Fluids, 2020, 32(2): 025105.
[129] VIGNON C, RABAULT J, VINUESA R. Recent advances in applying deep reinforcementlearning for flow control: Perspectives and future directions[J]. Phys. Fluids, 2023, 35(3):031301.
[130] ZUO K, YE Z, ZHANG W, et al. Fast aerodynamics prediction of laminar airfoils based ondeep attention network[J]. Phys. Fluids, 2023, 35(3): 037127.
[131] MAULIK R, SAN O, RASHEED A, et al. Data-driven deconvolution for large eddy simulationsof Kraichnan turbulence[J]. Phys. Fluids, 2018, 30(12): 125109.
[132] YUAN Z, WANG Y, XIE C, et al. Dynamic iterative approximate deconvolution models forlarge-eddy simulation of turbulence[J]. Phys. Fluids, 2021, 33(8): 085125.
[133] WANG X, WANG J, LI H, et al. Kinetic energy transfer in compressible homogeneousanisotropic turbulence[J]. Phys. Rev. Fluids, 2021, 6: 064601.
[134] BECK A D, FLAD D G, MUNZ C D. Deep neural networks for data-driven turbulence models[A]. 2018.
[135] XIE C, WANG J, LI K, et al. Artificial neural network approach to large-eddy simulation ofcompressible isotropic turbulence[J]. Phys. Rev. E, 2019, 99: 053113.
[136] WANG Z, LUO K, LI D, et al. Investigations of data-driven closure for subgrid-scale stress inlarge-eddy simulation[J]. Phys. Fluids, 2018, 30(12): 125101.
[137] SARGHINI F, DE FELICE G, SANTINI S. Neural networks based subgrid scale modeling inlarge eddy simulations[J]. Comput Fluids, 2003, 32(1): 97-108.
[138] GAMAHARA M, HATTORI Y. Searching for turbulence models by artificial neural network[J]. Phys. Rev. Fluid, 2017, 2(5): 054604.
[139] ZHOU Z, HE G, WANG S, et al. Subgrid-scale model for large-eddy simulation of isotropicturbulent flows using an artificial neural network[J]. Comput Fluids, 2019, 195: 104319.
[140] LI H, ZHAO Y, WANG J, et al. Data-driven model development for large-eddy simulation ofturbulence using gene-expression programing[J]. Phys. Fluids, 2021, 33(12): 125127.
[141] GUAN Y, CHATTOPADHYAY A, SUBEL A, et al. Stable a posteriori LES of 2D turbulenceusing convolutional neural networks: Backscattering analysis and generalization to higher Revia transfer learning[J]. J. Comput. Phys., 2022, 458: 111090.
[142] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling usingdeep neural networks with embedded invariance[J]. J. Fluid Mech., 2016, 807: 155-166.
[143] TABE JAMAAT G, HATTORI Y. A priori assessment of nonlocal data-driven wall modelingin large eddy simulation[J]. Phys. Fluids, 2023, 35(5): 055117.
[144] XIE C, WANG J, E W. Modeling subgrid-scale forces by spatial artificial neural networks inlarge eddy simulation of turbulence[J]. Phys. Rev. Fluids, 2020, 5: 054606.
[145] XIE C, YUAN Z, WANG J. Artificial neural network-based nonlinear algebraic models forlarge eddy simulation of turbulence[J]. Phys. Fluids, 2020, 32(11): 115101.
[146] XIE C, WANG J, LI H, et al. An approximate second-order closure model for large-eddy simulationof compressible isotropic turbulence[J]. Commun Comput Phys, 2020, 27(3): 775-808.
[147] BECK A, FLAD D, MUNZ C D. Deep neural networks for data-driven LES closure models[J].J. Comput. Phys., 2019, 398: 108910.
[148] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. nature, 2015, 521(7553): 436-444.
[149] LUSCH B, KUTZ J N, BRUNTON S L. Deep learning for universal linear embeddings ofnonlinear dynamics[J]. Nat. Commun., 2018, 9(1): 4950.
[150] SIRIGNANO J, SPILIOPOULOS K. DGM: A deep learning algorithm for solving partial differentialequations[J]. J. Comput. Phys., 2018, 375: 1339-1364.
[151] TANG H, LI L, GROSSBERG M, et al. An exploratory study on machine learning to couplenumerical solutions of partial differential equations[J]. Commun Nonlinear Sci Numer Simul,2021, 97: 105729.
[152] KOVACHKI N, LI Z, LIU B, et al. Neural Operator: Learning Maps Between Function SpacesWith Applications to PDEs[J]. J Mach Learn Res, 2023, 24(89): 1-97.
[153] GOSWAMI S, KONTOLATI K, SHIELDS M D, et al. Deep transfer learning for partial differentialequations under conditional shift with DeepONet[A]. 2022.
[154] CAI S, MAO Z, WANG Z, et al. Physics-informed neural networks (PINNs) for fluid mechanics:A review[J]. Acta Mech Sin, 2021, 37(12): 1727-1738.
[155] WANG R, KASHINATH K, MUSTAFA M, et al. Towards physics-informed deep learning forturbulent flow prediction[C]//Proceedings of the 26th ACM SIGKDD International Conferenceon Knowledge Discovery & Data Mining. 2020: 1457-1466.
[156] LANTHALER S, MISHRA S, KARNIADAKIS G E. Error estimates for deeponets: A deeplearning framework in infinite dimensions[J]. Trans. Math. Appl., 2022, 6(1): tnac001.
[157] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J].Nat. Rev. Phys., 2021, 3(6): 422-440.
[158] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics informed deep learning (part i):Data-driven solutions of nonlinear partial differential equations[A]. 2017.
[159] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: Adeep learning framework for solving forward and inverse problems involving nonlinear partialdifferential equations[J]. J. Comput. Phys., 2019, 378: 686-707.
[160] XU H, ZHANG W, WANG Y. Explore missing flow dynamics by physics-informed deep learning:The parameterized governing systems[J]. Phys. Fluids, 2021, 33(9): 095116.
[161] JIN X, CAI S, LI H, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networksfor the incompressible Navier-Stokes equations[J]. J. Comput. Phys., 2021, 426: 109951.
[162] WU K, XIU D. Data-driven deep learning of partial differential equations in modal space[J]. J.Comput. Phys., 2020, 408: 109307.
[163] XU H, ZHANG D, ZENG J. Deep-learning of parametric partial differential equations fromsparse and noisy data[J]. Phys. Fluids, 2021, 33(3): 037132.
[164] LU L, MENG X, CAI S, et al. A comprehensive and fair comparison of two neural operators(with practical extensions) based on fair data[J]. Comput Methods Appl Mech Eng, 2022, 393:114778.
[165] OOMMEN V, SHUKLA K, GOSWAMI S, et al. Learning two-phase microstructure evolutionusing neural operators and autoencoder architectures[J]. NPJ Comput. Mater., 2022, 8(1): 190.
[166] LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametricpartial differential equations[A]. 2020.
[167] CHEN J, VIQUERAT J, HACHEM E. U-net architectures for fast prediction of incompressiblelaminar flows[A]. 2019.
[168] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[169] MENG D, ZHU Y, WANG J, et al. Fast flow prediction of airfoil dynamic stall based on Fourierneural operator[J]. Phys. Fluids, 2023, 35(11): 115126.
[170] LI Z, PENG W, YUAN Z, et al. Fourier neural operator approach to large eddy simulation ofthree-dimensional turbulence[J]. Theor. App. Mech. Lett., 2022, 12(6): 100389.
[171] PENG W, YUAN Z, WANG J. Attention-enhanced neural network models for turbulence simulation[J]. Phys. Fluids, 2022, 34(2): 025111.
[172] PENG W, YUAN Z, LI Z, et al. Linear attention coupled Fourier neural operator for simulationof three-dimensional turbulence[J]. Phys. Fluids, 2023, 35(1): 015106.
[173] WEN G, LI Z, AZIZZADENESHELI K, et al. U-FNO—An enhanced Fourier neural operatorbaseddeep-learning model for multiphase flow[J]. Adv Water Resour, 2022, 163: 104180.
[174] YOU H, ZHANG Q, ROSS C J, et al. Learning deep implicit Fourier neural operators (IFNOs)with applications to heterogeneous material modeling[J]. Comput Methods Appl Mech Eng,2022, 398: 115296.
[175] LI Z, PENG W, YUAN Z, et al. Long-term predictions of turbulence by implicit U-Net enhancedFourier neural operator[J]. Phys. Fluids, 2023, 35(7): 075145.
[176] GUIBAS J, MARDANI M, LI Z, et al. Adaptive Fourier neural operators: Efficient tokenmixers for transformers[A]. 2021.
[177] GAO Z, LIU Q, HESTHAVEN J S, et al. Non-intrusive reduced order modeling of convectiondominated flows using artificial neural networks with application to Rayleigh–Taylor instability[J]. Commun. Comput. Phys, 2021, 30: 97-123.
[178] RUNDI Q, JINGZHU W, RENFANG H, et al. THE APPLICATION OF MODIFIEDPHYSICS-INFORMED NEURAL NETWORKS IN RAYLEIGH-TAYLOR INSTABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2224-2234.
[179] SINGH A P, DURAISAMY K, MORGAN B E. Data-Augmented Modeling of Transition toTurbulence in Rayleigh-Taylor Mixing Layers[R]. Lawrence Livermore National Lab.(LLNL),Livermore, CA (United States), 2019.
[180] XIAO M J, YU T C, ZHANG Y S, et al. Physics-informed neural networks for the Reynolds-Averaged Navier–Stokes modeling of Rayleigh–Taylor turbulent mixing[J]. Computers & Fluids,2023, 266: 106025.
[181] XIE H, ZHAO Y, ZHANG Y. Data-driven nonlinear KL turbulent mixing model via geneexpression programming method[J]. Acta Mechanica Sinica, 2023, 39(2): 322315.
[182] LUO T, WANG Y, YUAN Z, et al. Large-eddy simulations of compressible Rayleigh–Taylorturbulence with miscible fluids using spatial gradient model[J]. Phys. Fluids, 2023, 35(10):105131.
[183] LUO T, WANG J. Effects of Atwood number and stratification parameter on compressiblemulti-mode Rayleigh-Taylor instability[J]. Phys. Fluids, 2021, 33(11): 115111.
[184] LELE S K. Compact finite-difference schemes with spectral-like resolution[J]. J. Comp. Phys.,1992, 103: 16-42.
[185] WANG J, WANG L P, XIAO Z, et al. A hybrid numerical simulation of isotropic compressibleturbulence[J]. J. Comp. Phys., 2010, 229: 5257-5279.
[186] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturingschemes[J]. J. Comp. Phys., 1988, 77: 439-471.
[187] WEI T, LIVESCU D. Late-time quadratic growth in single-mode Rayleigh-Taylor instability[J]. Phys. Rev. E, 2012, 86: 046405.
[188] ALUIE H. Scale decomposition in compressible turbulence[J]. Physica D: Nonlinear Phenomena,2013, 247(1): 54-65.
[189] WANG J, WAN M, CHEN S, et al. Kinetic energy transfer in compressible isotropic turbulence[J]. J. Fluid Mech., 2018, 841: 581-613.
[190] ZHAO D, ALUIE H. Inviscid criterion for decomposing scales[J]. Phys. Rev. Fluids, 2018, 3:054603.
[191] BIN Y, XIAO M, SHI Y, et al. A new idea to predict reshocked Richtmyer–Meshkov mixing:constrained large-eddy simulation[J]. J. Fluid Mech., 2021, 918: R1.
[192] ZHOU H, FENG Q, HAO P, et al. Large eddy simulation of Rayleigh-Taylor mixing based onhelicity model[J]. International Journal of Modern Physics C, 2021, 32(04): 2150053.
[193] XIE C, WANG J, LI H, et al. A modified optimal LES model for highly compressible isotropicturbulence[J]. Phys. Fluids, 2018, 30(6): 065108.
[194] P. MARTIN M, PIOMELLI U, CANDLER G V. Subgrid-scale models for compressible largeeddysimulations[J]. Theoretical and Computational Fluid Dynamics, 2000, 13(5): 361-376.
[195] CLARK R A, FERZIGER J H, REYNOLDS W C. Evaluation of subgrid-scale models usingan accurately simulated turbulent flow[J]. J. Fluid Mech., 1979, 91(1): 1-16.
[196] CARATI D, WINCKELMANS G S, JEANMART H. On the modelling of the subgrid-scale andfiltered-scale stress tensors in large-eddy simulation[J]. J. Fluid Mech., 2001, 441: 119-138.
[197] CHAI X, MAHESH K. Dynamic-equation model for large-eddy simulation of compressibleflows[J]. J. Fluid Mech., 2012, 699: 385–413.
[198] WANG Y, YUAN Z, XIE C, et al. Artificial neural network-based spatial gradient models forlarge-eddy simulation of turbulence[J]. AIP Advances, 2021, 11(5): 055216.
[199] WANG Y, YUAN Z, XIE C, et al. A dynamic spatial gradient model for the subgrid closure inlarge-eddy simulation of turbulence[J]. Phys. Fluids, 2021, 33(7): 075119.
[200] WANG Y, YUAN Z, WANG X, et al. Constant-coefficient spatial gradient models for the subgridscale closure in large-eddy simulation of turbulence[J]. Phys. Fluids, 2022, 34(9): 095108.
[201] SMAGORINSKY J. General circulation experiments with the primitive equations, i. the basicexperiment.[J]. Mon. Weath. Rev., 1963, 91: 99-164.
[202] MOIN P, SQUIRES K, CABOT W, et al. A dynamic subgrid‐scale model for compressibleturbulence and scalar transport[J]. Phys. Fluids A, 1991, 3(11): 2746-2757.
[203] LILLY D K. A proposed modification of the Germano subgrid‐scale closure method[J]. Phys.Fluids A, 1992, 4(3): 633-635.
[204] GARNIER E, ADAMS N, SAGAUT P. Large eddy simulation for compressible flows[M].Springer Science & Business Media, 2009.
[205] BARDINA J, FERZIGER J H, REYNOLDS W C. Improved Subgrid Scale Models for LargeEddy Simulation.[J]. Aiaa paper, 1980, p: 10.
[206] SPEZIALE C G, ERLEBACHER G, ZANG T A, et al. The subgrid-scale modeling of compressibleturbulence.[J]. Phys. Fluids, 1988, 31: 940-942.
[207] LIU S, MENEVEAU C, KATZ J. On the properties of similarity subgridscale models as deducedfrom measurements in a turbulent jet.[J]. J. Fluid Mech., 1994, 275: 83-119.
[208] SHI Y P, XIAO Z L, CHEN S Y. Constrained subgrid-scale stress model for large eddy simulation.[J]. Phys. Fluids, 2008, 20: 011701.
[209] RASHID M M, PITTIE T, CHAKRABORTY S, et al. Learning the stress-strain fields in digitalcomposites using Fourier neural operator[J]. Iscience, 2022, 25(11): 105452.
[210] PATHAK J, SUBRAMANIAN S, HARRINGTON P, et al. Fourcastnet: A global data-drivenhigh-resolution weather model using adaptive Fourier neural operators[A]. 2022.
[211] LI Z, HUANG D Z, LIU B, et al. Fourier neural operator with learned deformations for pdeson general geometries[A]. 2022.
[212] VAPNIK V N. An overview of statistical learning theory[J]. IEEE Trans Neural Netw, 1999,10(5): 988-999.
[213] LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Neural operator: Graph kernel networkfor partial differential equations[A]. 2020.
[214] ZHOU Q. Temporal evolution and scaling of mixing in two-dimensional Rayleigh-Taylor turbulence[J]. Phys. Fluids, 2013, 25(8): 085107.
[215] QIU X, LIU Y, ZHOU Q. Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence[J]. Phys. Rev. E, 2014, 90: 043012.
[216] ZHOU Y, CLARK T T, CLARK D S, et al. Turbulent mixing and transition criteria of flowsinduced by hydrodynamic instabilities[J]. Phys. Plasmas, 2019, 26(8): 080901.
[217] SHIMONY A, MALAMUD G, SHVARTS D. Density Ratio and Entrainment Effects onAsymptotic Rayleigh-Taylor Instability[J]. J. Fluids Eng., 2018, 140(5): 050906.
[218] WANG J, GOTOH T, WATANABE T. Spectra and statistics in compressible isotropic turbulence[J]. Phys. Rev. Fluids, 2017, 2: 013403.
[219] WANG J, SHI Y, WANG L, et al. Effect of compressibility on the small-scale structures inisotropic turbulence[J]. J. Fluid Mech., 2012, 713: 588–631.
[220] ZHOU Y, CABOT H. Time-dependent study of anisotropy in Rayleigh-Taylor instability inducedturbulent flows with a variety of density ratios[J]. Phys. Fluids, 2019, 31(8): 084106.
[221] LAWRIE A G W, DALZIEL S B. Rayleigh–Taylor mixing in an otherwise stable stratification[J]. J. Fluid Mech., 2011, 688: 507–527.
[222] DAVIES WYKES M, DALZIEL S. Efficient mixing in stratified flows: experimental study ofa Rayleigh-Taylor unstable interface within an otherwise stable stratification[J]. J. Fluid Mech.,2014, 756: 1027–1057.
[223] ALUIE H. Compressible Turbulence: The Cascade and its Locality[J]. Phys. Rev. Lett., 2011,106: 174502.
[224] WANG J, YANG Y, SHI Y, et al. Cascade of Kinetic Energy in Three-Dimensional CompressibleTurbulence[J]. Phys. Rev. Lett., 2013, 110: 214505.
[225] LUO T, WANG J. Mixing and energy transfer in compressible Rayleigh-Taylor turbulence forinitial isothermal stratification[J]. Phys. Rev. Fluids, 2022, 7: 104608.
[226] GOTOH T, FUKAYAMA D. Pressure Spectrum in Homogeneous Turbulence[J]. Phys. Lett.,2001, 86: 3775-3778.
[227] WANG J, GOTOH T, WATANABE T. Spectra and statistics in compressible isotropic turbulence[J]. Phys. Rev. Fluids, 2017, 2: 013403.
[228] CHEN S, WANG J, LI H, et al. Spectra and Mach number scaling in compressible homogeneousshear turbulence[J]. Fluids, 2018, 30(6): 065109.
[229] FAUCHET G, BERTOGLIO J P. Régimes pseudo-son et acoustique en turbulence compressible[J]. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics-Physics-Astronomy,1999, 327(7): 673-678.
[230] SHAO L, BERTOGLIO J. Large-eddy simulations of weakly compressible isotropic turbulence[C]//Advances in Turbulence VI: Proceedings of the Sixth European Turbulence Conference,held in Lausanne, Switzerland, 2–5 July 1996. Springer, 1996: 287-290.
[231] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[232] BOFFETTA G, MAZZINO A, MUSACCHIO S, et al. Rayleigh-Taylor instability in a viscoelasticbinary fluid[J]. J. Fluid Mech., 2010, 643: 127-136.
[233] WANG Y, LI Z, YUAN Z, et al. Prediction of turbulent channel flow using Fourier neuraloperator-based machine-learning strategy[A]. 2024.
修改评论