中文版 | English
题名

光催化硫(VI)官能团的合成与应用研究

其他题名
PHOTOREDOX SYNTHESIS AND APPLICATION OF SULFUR(VI)-DERIVED SCAFFOLDS
姓名
姓名拼音
WANG Cong
学号
12049032
学位类型
博士
学位专业
0857 资源与环境
学科门类/专业学位类别
08 工学
导师
贾铁争
导师单位
化学系
论文答辩日期
2024-04-22
论文提交日期
2024-06-28
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

可见光催化反应是近年来有机合成化学中一个重要的新兴研究领域。得益于其独特的反应活性与机制,可见光催化反应能够比传统有机化学以更加高效、简洁、经济的反应条件完成化学转化。对于结构多变、种类丰富的含硫化合物而言,砜是一类重要的含硫(VI)药效团,而它的氮杂类似物亚砜亚胺以及二硫亚胺类化合物直到近年来才在药化领域引起重视。研究发现这两种官能团的N-芳基化或烷基化产物有重要的生物活性,而相关的合成研究较少。此外,与药物筛选、药物转运等研究密切相关的核酸适配体和DNA编码化合物库技术,均需要直接在DNA分子上引入功能有机分子,并依赖DNA兼容的化学方法。烯基砜类化合物在硫(VI)官能团中占据重要地位,但是在DNA分子中直接构建烯基砜的催化方法尚未见报道。

本论文设计了一种NH-二芳基亚砜亚胺和芳基硼酸之间的Chan-Lam偶联反应,用于制备N-芳基亚砜亚胺。该反应是光氧化还原铜催化的脱氢Chan-Lam偶联反应,利用光催化条件下金属到配体的电子转移过程(MLCT),代替了外加氧化剂的作用,实现了催化循环中Cu(I)到Cu(II)的转换。由于无需外加氧化剂,该方法对于氧化性条件敏感的官能团以及多种杂环,都具有良好的兼容性。所以在生产过程中减少物料成本的同时,也能够减少副产物的生成,从而降低废弃物后处理的繁琐程度,有效节约生产成本,并增加生产安全性。通过对机理的深入考察,本论文也发现了一种独特的脱氢自催化的反应机理,为Chan-Lam反应的经典机理提供了重要补充。

其次,本论文基于光催化氢胺化策略,设计并发展了一种以苯乙烯衍生物为烷基试剂,制备N-烷基亚砜亚胺和二硫亚胺类化合物的原子经济、绿色高效的合成方法。温和的条件和广泛的官能团兼容性,使其可以应用于多样化的亚砜亚胺和二硫亚胺骨架以及各种苯乙烯衍生物,成功实现了在氮原子上引入一级烷基、二级烷基、甚至三级烷基的重要突破。机理研究证实了光催化氢胺化的过程,并揭示了烯烃自由基阳离子中间体在转化过程中的关键作用。

本论文最后发展了一种有机光催化的硫代磺酸酯和炔烃的原子转移自由基加成(ATRA)反应,以优异的区域选择性和立体选择性成功制备出多种E-β-芳硫醇-乙烯基砜。更为重要的是,该方案可在DNA上同时修饰砜和硫醚骨架,构建烯基砜类化合物。基于此方法,本论文实现了在两种常用的核酸适配体(AS1411和Sgc8c)中标记一种氧化还原响应的变色荧光探针(ESAC),在一系列人肿瘤细胞株中进行后续成像研究,并且初步讨论了不同核酸适配体的转运效率。基于共聚焦显微镜和流式细胞术技术,本工作证明了探针标记的适配体进入细胞的过程中,大多数核酸适配体在细胞摄取后表现出绿色荧光,但一小部分留在膜外发出蓝色荧光。

其他摘要

Visible-light-induced photoredox reactions emerge as a powerful tool in organic synthesis chemistry in recent years. Due to the unique mode of reactivity and photoredox mechanisms, photoredox reactions can be completed under more efficient, convenient, and economic reaction conditions compared with the tranditional organic transformation. Organosulfur compounds are feathered with diverse structures and abundant varieties. Among them, sulfones are one of the most valuable S(VI)-derived scaffold, whereas sulfoximines and sulfondiimines as aza-analogs just receive attention as promising sulfone analogs in recent years. Further, N-arylation or alkylation products of these two functional groups have been found to have important bioactivity , but there are few related synthesis studies. In addition, aptamers and DNA-encoded compound libraries represent two modern biotechnologies, which are closely related to hit-identification and drug delivery. Nevertheless, both of the strategies predominantly rely on chemical transformations on DNA molecular, namely on-DNA reactions.Vinyl sulfones are a class of scaffolds of great value in pharmaceutical chemistry for a long time, but the methods to incorporate vinyl sulfone directly on DNA via Csp2-S bond are still underexplored.

In this dissertation, a photoredox copper-catalyzed dehydrogenative Chan-Lam coupling reaction of NH-diaryl sulfoximine with arylboronic acid has been developed. The photoredox metal-to-ligand electron transfer process was employed to replace the role of external oxidant, allowing the formation of Cu(II) from Cu(I) in the catalytic cycle. This protocol exhibits good compatibility with oxidant-sensitive functional groups and an array of heterocycles. Due to the external-oxidant-free nature, this novel protocol could reduce costs and reaction waste, achieving the purpose of saving resources and protecting the environment, and enhancing production safety in industry. Moreover, the unique dehydrogenative autocatalytic cross-nucleophile coupling mechanism provides an alternative to the classic mechanism of Chan-Lam coupling.

Leveraging the photoredox hydroamination of alkenes, an atom-economic, environmentally friendly, and efficient method to synthesize N-alkyl sulfoximines and sulfondiimines has been established. The mild conditions and broad functional group tolerance make it applicable to diverse frameworks. In particular, various alkyl substituents, spanning from primary, secondary, to tertiary alkyl groups, can be introduced onto the imine moiety. Mechanistic studies confirm the photocatalytic process and reveal the crucial role of the alkene radical cation intermediate in the catalytic cycle.

Ultimately, we have developed an atom transfer radical addition (ATRA) reaction of thiol thiosulfonate and alkynes to prepare various E-β-arylthiol-vinyl sulfones with excellent regio- and stereoselectivity. Additionally, this method can simultaneously install sulfonyl and thioether scaffolds on DNA. More importantly, a redox-responsive fluorescence probe (ESAC) can be conveniently labeled on two commonly used aptamers (AS1411 and Sgc8c). Subsequently imaging studies were performed in a series of human tumor cell lines and the fluorescence change phenomenon of the probe was further validated. The confocal microscopy and flow cytometry techniques capture the process of the probe-labeled aptamers entering the cells, in which the majority of ESAC-aptamers exhibit green fluorescence after cellular uptake, with a small fraction outside the membrane emitting blue fluorescence.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2020
学位授予年份
2024-07
参考文献列表

[1] ILARDI E A, VITAKU E, NJARDARSON J T. Data-Mining for Sulfur andFluorine: An Evaluation of Pharmaceuticals to Reveal Opportunities for DrugDesign and Discovery [J]. Journal of Medicinal Chemistry, 2013, 57(7): 2832-2842.
[2] SCOTT K A, NJARDARSON J T. Analysis of Us FDA-Approved DrugsContaining Sulfur Atoms [J]. Topics in Current Chemistry, 2018, 376: 5.
[3] ZHAO C, RAKESH K P, RAVIDAR L, et al. Pharmaceutical and MedicinalSignificance of Sulfur (SVI)-Containing Motifs for Drug Discovery: A CriticalReview [J]. European Journal of Medicinal Chemistry, 2019, 162: 679-734.
[4] N. FURUKAWA, F. TAKAHASHI, T. YOSHIMURA, et al. Reaction Synthesisof Sulfoximines with Diazomalonate in the Presence of Cu-Salt. A New Synthesisand Stereochemistry of Optically Active Oxosulfonium Ylids. [J]. TetrahedronLetters, 1977(18): 3633-3636.
[5] JOHNSON C R. Application of Sulfoximine in Synthesis [J]. Aldrichimica Acta,1985, 18(1): 1-11.
[6] REGGELIN M, ZUR C. Sulfoximines: Structures, Properties and SyntheticApplications [J]. Synthesis, 2000(1): 1-64.
[7] ZHENG W, CHEN X, CHEN F, et al. Syntheses and Transformations ofSulfoximines [J]. Chemical Record, 2021, 21(2): 396-416.
[8] ANDRESINI M, TOTA A, DEGENNARO L, et al. Synthesis andTransformations of Nh-Sulfoximines [J]. Chemistry - A European Journal, 2021,27(69): 17293-17321.
[9] 李雪, 王聪, 贾铁争. 砜亚胺N-芳基化的研究进展及其应用 [J]. 有机化学, 2022,42(3): 714-731.
[10] PASSIA M T, SCHOBEL J H, BOLM C. Sulfondiimines: Synthesis,Derivatisation and Application [J]. Chemical Society Reviews, 2022, 51(12):4890-4901.
[11] PALMER J T, RASNICK D, KLAUS J L, et al. Vinyl Sulfones as Mechanism-Based Cysteine Protease Inhibitors [J]. Journal of Medicinal Chemistry, 1995,38(17): 3193-3196.
[12] MEADOWS D C, GERVAY-HAGUE J. Vinyl Sulfones: Synthetic Preparationsand Medicinal Chemistry Applications [J]. Medicinal Research Reviews, 2006,26(6): 793-814.
[13] CHU X Q, GE D, CUI Y Y, et al. Desulfonylation Via Radical Process: RecentDevelopments in Organic Synthesis [J]. Chemical Reviews, 2021, 121(20):12548-12680.
[14] FALCUCCI T, RADKE M, SAHOO J K, et al. Multifunctional Silk VinylSulfone-Based Hydrogel Scaffolds for Dynamic Material-Cell Interactions [J].Biomaterials, 2023, 300: 122201.
[15] OVERKLEEFT H S, BOS P R, HEKKING B G, et al. Solid Phase Synthesis ofPeptide Vinyl Sulfone and Peptide Epoxyketone Proteasome Inhibitors [J].Tetrahedron Letters, 2000, 41(32): 6005-6009.
[16] KAM C-M, GöTZ M G, KOOT G, et al. Design and Evaluation of Inhibitors forDipeptidyl Peptidase I (Cathepsin C) [J]. Archives of Biochemistry andBiophysics, 2004, 427(2): 123-134.
[17] KORVER G E, KAM C-M, POWERS J C, et al. Dipeptide Vinyl SulfonesSuitable for Intracellular Inhibition of Dipeptidyl Peptidase I [J]. InternationalImmunopharmacology, 2001, 1(1): 21-32.
[18] WOO S Y, KIM J H, MOON M K, et al. Discovery of Vinyl Sulfones as a NovelClass of Neuroprotective Agents toward Parkinson's Disease Therapy [J]. Journalof Medicinal Chemistry, 2014, 57(4): 1473-1487.
[19] BRENNER S, LERNER R A. Encoded Combinatorial Chemistry [J]. Proceedingsof the National Academy of Sciences of the United States of America, 1992,89(12): 5381-5383.
[20] NERI D. Twenty-Five Years of DNA-Encoded Chemical Libraries [J].Chembiochem, 2017, 18(9): 827-828.
[21] FLOOD D T, KINGSTON C, VANTOUROUT J C, et al. DNA EncodedLibraries: A Visitor's Guide [J]. Israel Journal of Chemistry, 2020, 60(3-4): 268-280.
[22] GIRONDA-MARTINEZ A, DONCKELE E J, SAMAIN F, et al. DNA-EncodedChemical Libraries: A Comprehensive Review with Succesful Stories and FutureChallenges [J]. ACS Pharmacol Transl Sci, 2021, 4(4): 1265-1279.
[23] SONG M, HWANG G T. DNA-Encoded Library Screening as Core PlatformTechnology in Drug Discovery: Its Synthetic Method Development andApplications in Del Synthesis [J]. Journal of Medicinal Chemistry, 2020, 63(13):6578-6599.
[24] FITZGERALD P R, PAEGEL B M. DNA-Encoded Chemistry: Drug Discoveryfrom a Few Good Reactions [J]. Chemical Reviews, 2021, 121(12): 7155-7177.
[25] FAMULOK M, HARTIG J S, MAYER G. Functional Aptamers and Aptazymesin Biotechnology, Diagnostics, and Therapy [J]. Chemical Reviews, 2007, 107(9):3715-3743.
[26] MAYER G. The Chemical Biology of Aptamers [J]. Angewandte ChemieInternational Edition, 2009, 48(15): 2672-2689.
[27] ZHOU J, ROSSI J. Aptamers as Targeted Therapeutics: Current Potential andChallenges [J]. Nature Reviews Drug Discovery, 2017, 16(3): 181-202.
[28] HE S, DU Y, TAO H, et al. Advances in Aptamer-Mediated Targeted DeliverySystem for Cancer Treatment [J]. International Journal of BiologicalMacromolecules, 2023, 238: 124173.
[29] ROMERO N A, NICEWICZ D A. Organic Photoredox Catalysis [J]. ChemicalReviews, 2016, 116(17): 10075-10166.
[30] PITRE S P, OVERMAN L E. Strategic Use of Visible-Light Photoredox Catalysisin Natural Product Synthesis [J]. Chemical Reviews, 2021, 122(2): 1717-1751.
[31] SCHNERMANN M J, OVERMAN L E. A Concise Synthesis of (−) ‐Aplyviolene Facilitated by a Strategic Tertiary Radical Conjugate Addition [J].Angewandte Chemie International Edition, 2012, 51(38): 9576-9580.
[32] ZHANG W, ZHANG Z, TANG J-C, et al. Total Synthesis of (+)-Haperforin G [J].Journal of the American Chemical Society, 2020, 142(46): 19487-19492.
[33] HE L, WANG X, WU X, et al. Asymmetric Total Synthesis of (+)-Strychnine [J].Organic Letters, 2018, 21(1): 252-255.
[34] CHAN A Y, PERRY I B, BISSONNETTE N B, et al. Metallaphotoredox: TheMerger of Photoredox and Transition Metal Catalysis [J]. Chemical Reviews,2021, 122(2): 1485-1542.
[35] CHEUNG K P S, SARKAR S, GEVORGYAN V. Visible Light-InducedTransition Metal Catalysis [J]. Chemical Reviews, 2021, 122(2): 1543-1625.
[36] REISER O. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes [J].Accounts of Chemical Research, 2016, 49(9): 1990-1996.
[37] HOSSAIN A, BHATTACHARYYA A, REISER O. Copper’s Rapid Ascent inVisible-Light Photoredox Catalysis [J]. Science, 2019, 364: 6439.
[38] 田 宇, 刘心元. 苯酚助力可见光诱导铜催化下氨基酸衍生物的不对称脱氨芳基化反应 [J]. 有机化学, 2023, 43(12): 4303-4304.
[39] CREUTZ S E, LOTITO, K.J., FU, G.C., AND PETERS, J.C. PhotoinducedUllmann C–N Coupling: Demonstrating the Viability of a Radical Pathway. [J].Science, 2012(338): 647-651.
[40] SAGADEVAN A, HWANG K C. Photo‐Induced Sonogashira C C CouplingReaction Catalyzed by Simple Copper(I) Chloride Salt at Room Temperature [J].Advanced Synthesis & Catalysis, 2012, 354(18): 3421-3427.
[41] KOCHI J K. Photolyses of Metal Compounds: Cupric Chloride in Organic Media[J]. Journal of the American Chemical Society, 1962, 84(11): 2121-2127.
[42] ABDERRAZAK Y, BHATTACHARYYA A, REISER O. Visible ‐ Light ‐Induced Homolysis of Earth ‐ Abundant Metal ‐ Substrate Complexes: AComplementary Activation Strategy in Photoredox Catalysis [J]. AngewandteChemie International Edition, 2021, 60(39): 21100-21115.
[43] HOSSAIN A, VIDYASAGAR A, EICHINGER C, et al. Visible ‐ Light ‐Accelerated Copper(II) ‐ Catalyzed Regio ‐ and Chemoselective Oxo ‐Azidation of Vinyl Arenes [J]. Angewandte Chemie International Edition, 2018,57(27): 8288-8292.
[44] LI Y, ZHOU K, WEN Z, et al. Copper(II)-Catalyzed Asymmetric PhotoredoxReactions: Enantioselective Alkylation of Imines Driven by Visible Light [J].Journal of the American Chemical Society, 2018, 140(46): 15850-15858.
[45] LIAN P, LONG W, LI J, et al. Visible‐Light‐Induced Vicinal Dichlorination ofAlkenes through Lmct Excitation of Cucl2 [J]. Angewandte Chemie InternationalEdition, 2020, 59(52): 23603-23608.
[46] TREACY S M, ROVIS T. Copper Catalyzed C(Sp3)–H Bond Alkylation ViaPhotoinduced Ligand-to-Metal Charge Transfer [J]. Journal of the AmericanChemical Society, 2021, 143(7): 2729-2735.
[47] LEI W-L, WANG T, FENG K-W, et al. Visible-Light-Driven Synthesis of 4-Alkyl/Aryl-2-Aminothiazoles Promoted by in Situ Generated CopperPhotocatalyst [J]. ACS Catalysis, 2017, 7(11): 7941-7945.
[48] 贾雪锋, 仝向娟. 铜(II)配合物催化 Chan-Lam 偶联反应研究进展 [J]. 有机化学,2022, 42(9): 2640-2658.
[49] YOO W J, TSUKAMOTO T, KOBAYASHI S. Visible-Light-Mediated Chan-Lam Coupling Reactions of Aryl Boronic Acids and Aniline Derivatives [J].Angew Chem Int Ed Engl, 2015, 54(22): 6587-6590.
[50] HARDOUIN DUPARC V, BANO G L, SCHAPER F. Chan–Evans–LamCouplings with Copper Iminoarylsulfonate Complexes: Scope and Mechanism [J].ACS Catalysis, 2018, 8(8): 7308-7325.
[51] GANLEY J M, MURRAY P R D, KNOWLES R R. Photocatalytic Generation ofAminium Radical Cations for C-N Bond Formation [J]. ACS Catalysis, 2020,10(20): 11712-11738.
[52] MUSACCHIO A J, LAINHART B C, ZHANG X, et al. Catalytic IntermolecularHydroaminations of Unactivated Olefins with Secondary Alkyl Amines [J].Science, 2017, 355(6326): 727-730.
[53] QIN Y, ZHU Q, SUN R, et al. Mechanistic Investigation and Optimization ofPhotoredox Anti-Markovnikov Hydroamination [J]. Journal of the AmericanChemical Society, 2021, 143(27): 10232-10242.
[54] MARGREY K A, NICEWICZ D A. A General Approach to Catalytic AlkeneAnti-Markovnikov Hydrofunctionalization Reactions Via Acridinium PhotoredoxCatalysis [J]. Accounts of Chemical Research, 2016, 49(9): 1997-2006.
[55] NGUYEN T M, NICEWICZ D A. Anti-Markovnikov Hydroamination of AlkenesCatalyzed by an Organic Photoredox System [J]. Journal of the AmericanChemical Society, 2013, 135(26): 9588-9591.
[56] NGUYEN T M, MANOHAR N, NICEWICZ D A. Anti-MarkovnikovHydroamination of Alkenes Catalyzed by a Two-Component Organic PhotoredoxSystem: Direct Access to Phenethylamine Derivatives [J]. Angewandte ChemieInternational Edition, 2014, 53(24): 6198-6201.
[57] LI H, CHENG Z, TUNG C-H, et al. Atom Transfer Radical Addition to Alkynesand Enynes: A Versatile Gold/Photoredox Approach to Thio-FunctionalizedVinylsulfones [J]. ACS Catalysis, 2018, 8(9): 8237-8243.
[58] SONG T, LI H, WEI F, et al. Gold/Photoredox-Cocatalyzed Atom TransferThiosulfonylation of Alkynes: Stereoselective Synthesis of Vinylsulfones [J].Tetrahedron Letters, 2019, 60(13): 916-919.
[59] PENG Z, YIN H, ZHANG H, et al. Regio- and Stereoselective Photoredox-Catalyzed Atom Transfer Radical Addition of Thiosulfonates to Aryl Alkynes [J].Organic Letters, 2020, 22(15): 5885-5889.
[60] GADDE K, MAMPUYS P, GUIDETTI A, et al. Thiosulfonylation of UnactivatedAlkenes with Visible-Light Organic Photocatalysis [J]. ACS Catalysis, 2020,10(15): 8765-8779.
[61] LU S, WANG Z, GAO X, et al. 1,2-Difunctionalization of Acetylene Enabled byLight [J]. Angewandte Chemie International Edition, 2023, 62(16): e202300268.
[62] SIEMEISTER G, LUCKING U, WENGNER A M, et al. Bay 1000394, a NovelCyclin-Dependent Kinase Inhibitor, with Potent Antitumor Activity in Mono- andin Combination Treatment Upon Oral Application [J]. Molecular CancerTherapeutics, 2012, 11(10): 2265-2273.
[63] KONDALARAO K, SAU S, SAHOO A K. Sulfoximine Assisted C–H Activationand Annulation Via Vinylene Transfer: Access to Unsubstituted Benzothiazines[J]. Molecules, 2023, 28(13): 5014.
[64] JUNAID Q M, KUMAR SINGH D, GANESAN V, et al. C2 ‐SymmetricBissulfoximine‐Based Metal Complexes: Synthesis, Characterization and TheirElectrocatalytic Activity in Oxygen Reduction Reaction [J]. Chemistry-An AsianJournal, 2022, 17(12): e202200160.
[65] MANNING J M, MOORE S, ROWE W B, et al. Identification of L-MethionineS-Sulfoximine as the Diastereoisomer of L-Methionine Sr-Sulfoximine ThatInhibits Glutamine Synthetase [J]. Biochemistry, 1969, 8(6): 2681-2685.
[66] RICHMAN P G, ORLOWSKI M, MEISTER A. Inhibition of L-GlutamylcysteineSynthetase by L-Methionine-S-Sulfoximine [J]. Journal of Biological Chemistry,1973, 248(19): 6684-6690.
[67] ZHU Y, LOSO M R, WATSON G B, et al. Discovery and Characterization ofSulfoxaflor, a Novel Insecticide Targeting Sap-Feeding Pests [J]. Journal ofAgricultural and Food Chemistry, 2011, 59(7): 2950-2957.
[68] BOLM C, HILDEBRAND J P. Palladium-Catalyzed Carbon-Nitrogen BondFormation: A Novel, Catalytic Approach Towards N-Arylated Sulfoximines [J].Tetrahedron Letters, 1998, 39(32): 5731-5734.
[69] BOLM C, HILDEBRAND J P. Palladium-Catalyzed N-Arylation of Sulfoximineswith Aryl Bromides and Aryl Iodides [J]. Journal of Organic Chemistry, 2000,65(1): 169-175.
[70] HARMATA M, HONG X. Palladium-Catalyzed Cross-Coupling Reaction of aSulfoximine with Aryl Dichlorides under Microwave Irradiation [J]. Synlett, 2007,2007(6): 0969-0973.
[71] YONGPRUKSA N, CALKINS N L, HARMATA M. Efficient Palladium-Catalyzed N-Arylation of a Sulfoximine with Aryl Chlorides [J]. ChemicalCommunication, 2011, 47(27): 7665-7667.
[72] YANG Q, CHOY P Y, ZHAO Q, et al. Palladium-Catalyzed N-Arylation ofSulfoximines with Aryl Sulfonates [J]. Journal of Organic Chemistry, 2018,83(18): 11369-11376.
[73] CHO G Y, REMY P, JANSSON J, et al. Copper-Mediated Cross-CouplingReactions of N-Unsubstituted Sulfoximines and Aryl Halides [J]. Organic Letters,2004, 6(19): 3293-3296.
[74] SEDELMEIER J, BOLM C. Efficient Copper-Catalyzed N-Arylation ofSulfoximines with Aryl Iodides and Aryl Bromides [J]. Journal of OrganicChemistry, 2005, 70(17): 6904-6906.
[75] MIYASAKA M, HIRANO K, SATOH T, et al. Copper-Catalyzed DirectSulfoximination of Azoles and Polyfluoroarenes under Ambient Conditions [J].Organic Letters, 2011, 13(3): 359-361.
[76] WANG L, PRIEBBENOW D L, DONG W, et al. N-Arylations of Sulfoximineswith 2-Arylpyridines by Copper-Mediated Dual N-H/C-H Activation [J]. OrganicLetters, 2014, 16(10): 2661-2663.
[77] GRANDHI G S, DANA S, MANDAL A, et al. Copper-Catalyzed 8-Aminoquinoline-Directed Oxidative C-H/N-H Coupling for N-Arylation ofSulfoximines [J]. Organic Letters, 2020, 22(7): 2606-2610.
[78] MOESSNER C, BOLM C. Cu(OAc)2-Catalyzed N-Arylations of Sulfoximineswith Aryl Boronic Acids [J]. Organic Letters, 2005, 7(13): 2667-2669.
[79] GUPTA S, BARANWAL S, MUNIYAPPAN N, et al. Copper-Catalyzed NArylationof Sulfoximines with Arylboronic Acids under Mild Conditions [J].Synthesis, 2019, 51(10): 2171-2182.
[80] VADDULA B, LEAZER J, VARMA R S. Copper-Catalyzed Ultrasound-Expedited N-Arylation of Sulfoximines Using Diaryliodonium Salts [J].Advanced Synthesis & Catalysis, 2012, 354(6): 986-990.
[81] KIM J, OK J, KIM S, et al. Mild Copper-TBAF-Catalyzed N-Arylation ofSulfoximines with Aryl Siloxanes [J]. Organic Letters, 2014, 16(17): 4602-4605.
[82] ZHU H, TENG F, PAN C D, et al. Radical N-Arylation/Alkylation ofSulfoximines [J]. Tetrahedron Letters, 2016, 57(22): 2372-2374.
[83] HANDE S, MFUH A, THRONER S, et al. Photoredox Mediated C-N CrossCoupling of Sulfoximines with Aryl Iodides [J]. Tetrahedron Letters, 2019, 60(41):151100.
[84] WIMMER A, KONIG B. N-Arylation of NH-Sulfoximines Via Dual NickelPhotocatalysis [J]. Organic Letters, 2019, 21(8): 2740-2744.
[85] LIU D, LIU Z R, MA C, et al. Nickel-Catalyzed N-Arylation of NH-Sulfoximineswith Aryl Halides Via Paired Electrolysis [J]. Angewandte Chemie InternationalEdition, 2021, 60(17): 9444-9449.
[86] CORREA A, BOLM C. Iron-Catalyzed C-N Cross-Coupling of Sulfoximines withAryl Iodides [J]. Advanced Synthesis & Catalysis, 2008, 350(3): 391-394.
[87] WIMMER A, KONIG B. Visible-Light-Mediated Photoredox-Catalyzed NArylationof NH-Sulfoximines with Electron-Rich Arenes [J]. AdvancedSynthesis & Catalysis, 2018, 360(17): 3277-3285.
[88] AITHAGANI S K, DARA S, MUNAGALA G, et al. Metal-Free Approach for theSynthesis of N-Aryl Sulfoximines Via Aryne Intermediate [J]. Organic Letters,2015, 17(22): 5547-5549.
[89] MEIER R, HOG D, LäMMERMANN H, et al. Late-Stage Sulfoximidation ofElectron-Rich Arenes by Photoredox Catalysis [J]. Synlett, 2018, 29(20): 2679-2684.
[90] WILLIAMS T R, BOOMS R E, CRAM D J. Three New Organosulfur Reactionsand the First Example of a Monoligostatic Stereochemical Cycle [J]. Journal ofthe American Chemical Society, 1971, 93(26): 7338-7340.
[91] SCHMIDBAUR H, KAMMEL G. Einfache Und Ergiebige DarstellungsmethodenFü r N‐Alkylierte Sulfoximide (Alkylimino‐Oxo‐Dialkyl‐Sulfurane) [J].Chemische Berichte, 1971, 104(10): 3234-3240.
[92] RAGUSE B, RIDLEY D D. The N-Alkylation of Sulfoximines [J]. AustralianJournal of Chemistry, 1986, 39(10): 1655-1659.
[93] JOHNSON C R, LAVERGNE O M. Alkylation of Sulfoximine and RelatedCompounds at the Imino Nitrogen under Phase-Transfer Conditions [J]. TheJournal of Organic Chemistry, 1993, 58(7): 1922-1923.
[94] HENDRIKS C M M, BOHMANN R A, BOHLEM M, et al. N-Alkylations of NHSulfoximinesand NH-Sulfondiimines with Alkyl Halides Mediated by PotassiumHydroxide in Dimethyl Sulfoxide [J]. Advanced Synthesis & Catalysis, 2014,356(8): 1847-1852.
[95] ZHANG D, WANG H, CHENG H, et al. An Iodine-Mediated Hofmann-Löffler-Freytag Reaction of Sulfoximines Leading to Dihydroisothiazole Oxides [J].Advanced Synthesis & Catalysis, 2017, 359(24): 4274-4277.
[96] WANG C, TU Y, MA D, et al. Photocatalytic Synthesis of Difluoroacetoxy-Containing Sulfoximines [J]. Organic Letters, 2021, 23(17): 6891-6894.
[97] WANG H, ZHANG D, BOLM C. Photocatalytic Additions of 1-Sulfoximidoyl-1,2-Benziodoxoles to Styrenes [J]. Chemistry - A European Journal, 2018, 24(56):14942-14945.
[98] WANG C, TU Y, MA D, et al. Photocatalytic Fluoro Sulfoximidations ofStyrenes [J]. Angewandte Chemie International Edition, 2020, 59(33): 14134-14137.
[99] WANG H, ZHANG D, BOLM C. Sulfoximidations of Benzylic C-H Bonds byPhotocatalysis [J]. Angewandte Chemie International Edition, 2018, 57(20):5863-5866.
[100] CHENG Y, DONG W, WANG L, et al. Iron-Catalyzed Hetero-Cross-Dehydrogenative Coupling Reactions of Sulfoximines with Diarylmethanes: ANew Route to N-Alkylated Sulfoximines [J]. Organic Letters, 2014, 16(7): 2000-2002.
[101] TENG F, CHENG J, YU J T. Copper-Catalyzed N-Methylation/Ethylation ofSulfoximines [J]. Organic & Biomolecular Chemistry, 2015, 13(39): 9934-9937.
[102] TENG F, SUN S, JIANG Y, et al. Copper-Catalyzed Oxidative C(Sp3)-H/N-HCoupling of Sulfoximines and Amides with Simple Alkanes Via a Radical Process[J]. Chemical Communications, 2015, 51(27): 5902-5905.
[103] GUPTA S, CHAUDHARY P, MUNIYAPPAN N, et al. Copper Promoted NAlkylationof Sulfoximines with Alkylboronic Acid under Mild Conditions [J].Organic & Biomolecular Chemistry, 2017, 15(40): 8493-8498.
[104] ZHANG Y F, DONG X Y, CHENG J T, et al. Enantioconvergent Cu-CatalyzedRadical C-N Coupling of Racemic Secondary Alkyl Halides to Access Alpha-Chiral Primary Amines [J]. Journal of the American Chemical Society, 2021,143(37): 15413-15419.
[105] CHENG X Y, ZHANG Y F, WANG J H, et al. A Counterion/Ligand-TunedChemo- and Enantioselective Copper-Catalyzed Intermolecular Radical 1,2-Carboamination of Alkenes [J]. Journal of the American Chemical Society, 2022,144(39): 18081-18089.
[106] TENG F, CHENG J, BOLM C. Silver-Mediated N-Trifluoromethylation ofSulfoximines [J]. Organic Letters, 2015, 17(12): 3166-3169.
[107] MA D, KONG D, WU P, et al. Introduction of Lipophilic Side Chains to Nh-Sulfoximines by Palladium Catalysis under Blue Light Irradiation [J]. OrganicLetters, 2022, 24(11): 2238-2241.
[108] FRINGS M, BOLM C, BLUM A, et al. Sulfoximines from a Medicinal Chemist'sPerspective: Physicochemical and in Vitro Parameters Relevant for DrugDiscovery [J]. European Journal of Medicinal Chemistry, 2017, 126(126): 225-245.
[109] HAAKE M, GEORG G, FODE H, et al. Spasmolytically Active N-(Aminoalkyl)Sulfur Dimides [J]. Pharm Ztg, 1983, 128: 1529.
[110] GNAMM C, OOST T. Preparation of Substituted Pyridones and Pyrazinones asInhibitors of Neutrophil Elastase Activity [P]. US20150239875A1, 2015.
[111] APPEL R, KOHNKE J. Notiz Über Die Synthese Von N-Alkyl-S.S-Dimethyl-Sulfodiimiden [J]. Chemische Berichte, 1971, 104: 2023-2024.
[112] FURUKAWA N, AKUTAGAWA K, OAE S. Convenient Preparation andSpectroscopic Studies of Sulfoximines and Sulfonediimines:N-Chlorosulfilimineas Key Intermediate [J]. Phosphorus and Sulfur and the Related Elements, 1984,20(1): 1-14.
[113] YOSHIMURA T, ISHIKAWA H, FUJIE T, et al. Convenient Preparation of NMonosubstitutedS,S-Diarylsulfodiimides Using Fluoro-Λ6-Sulfanenitriles [J].Synthesis, 2008, 2008(12): 1835-1840.
[114] CANDY M, GUYON C, MERSMANN S, et al. Synthesis of Sulfondiimines byN-Chlorosuccinimide-Mediated Oxidative Imination of Sulfiliminium Salts [J].Angewandte Chemie International Edition, 2012, 51(18): 4440-4443.
[115] ZHANG Z X, DAVIES T Q, WILLIS M C. Modular Sulfondiimine SynthesisUsing a Stable Sulfinylamine Reagent [J]. Journal of the American ChemicalSociety, 2019, 141(33): 13022-13027.
[116] APPEL R, ROSS B. Über Die Reaktion Von S.S‐Dimethyl‐Sulfodiimin MitKaliumamid in Flüssigem Ammoniak [J]. Chemische Berichte, 1969, 102(3):1020-1027.
[117] XU Z, SU S, LI X, et al. A Facile and Mild Alkylation Protocol of NH-DiphenylSulfondiimines [J]. Synlett, 2023, 34(05): 429-432.
[118]FRANZINI R M, RANDOLPH C. Chemical Space of DNA-Encoded Libraries [J].Journal of Medicinal Chemistry, 2016, 59(14): 6629-6644.
[119] DICKSON P, KODADEK T. Chemical Composition of DNA-Encoded Libraries,Past Present and Future [J]. Organic & Biomolecular Chemistry, 2019, 17(19):4676-4688.
[120] BACK T G. Design and Synthesis of Some Biologically Interesting Natural andUnnatural Products Based on Organosulfur and Selenium Chemistry [J]. CanadianJournal of Chemistry, 2009, 87(12): 1657-1674.
[121] BENO B R, YEUNG K S, BARTBERGER M D, et al. A Survey of the Role ofNoncovalent Sulfur Interactions in Drug Design [J]. Journal of MedicinalChemistry, 2015, 58(11): 4383-4438.
[122] 赵 飞, 王 江, 丁 晓, et al. 磺酰基在药物分子设计中的应用 [J]. 有机化学, 2016,36(3): 490-501.
[123] WANG N, SAIDHAREDDY P, JIANG X. Construction of Sulfur-ContainingMoieties in the Total Synthesis of Natural Products [J]. Natural Product Reports,2020, 37(2): 246-275.
[124] FLOOD D T, ZHANG X, FU X, et al. Rass-Enabled S/P-C and S-N BondFormation for Del Synthesis [J]. Angewandte Chemie International Edition, 2020,59(19): 7377-7383.
[125] JI Y, DAI D, LUO H, et al. C-S Coupling of DNA-Conjugated Aryl Iodides forDNA-Encoded Chemical Library Synthesis [J]. Bioconjugate Chemistry, 2021,32(4): 685-689.
[126] YANG P, WANG X, LI B, et al. Streamlined Construction of PeptideMacrocycles Via Palladium-Catalyzed Intramolecular S-Arylation in Solution andon DNA [J]. Chemical science, 2021, 12(16): 5804-5810.
[127] LI X, LIU C, GAO Y, et al. DNA-Compatible Combinatorial Synthesis ofFunctionalized 2-Thiobenzazole Scaffolds [J]. Chemical Communications, 2023,59(62): 9489-9492.
[128] MALONE M L, PAEGEL B M. What Is a "DNA-Compatible" Reaction? [J].ACS Comb Sci, 2016, 18(4): 182-187.
[129] REICHERT U. Implementing the Guideline on the Specification Limits forResidues of Metal Catalysts or Metal Reagents [M]. Germany: University of Bonn,2009.
[130] MAGANO J, DUNETZ J R. Transition Metal-Catalyzed Couplings in ProcessChemistry [M]. Germany: Wiley-VCH, 2014.
[131] WANG D-Y, WEN X, XIONG C-D, et al. Non-Transition Metal-MediatedDiverse Aryl-Heteroatom Bond Formation of Arylammonium Salts [J]. iScience,2019, 15: 307-315.
[132] LIN B, LU W, CHEN Z-Y, et al. Enhancing the Potential of Miniature-ScaleDNA-Compatible Radical Reactions Via an Electron Donor-Acceptor Complexand a Reversible Adsorption to Solid Support Strategy [J]. Organic Letters, 2021,23(19): 7381-7385.
[133] ZHANG Y, XIA S, SHI W-X, et al. Radical C-H Sulfonation of Arenes: ItsApplications on Bioactive and DNA-Encoded Molecules [J]. Organic Letters,2022, 24(43): 7961-7966.
[134] YANG S, ZHAO G, GAO Y, et al. In-Solution Direct Oxidative Coupling for theIntegration of Sulfur/Selenium into DNA-Encoded Chemical Libraries [J].Chemical science, 2022, 13(9): 2604-2613.
[135] GAO Y, SUN Y, FANG X, et al. Development of on-DNA Vinyl SulfoneSynthesis for DNA-Encoded Chemical Libraries [J]. Organic Chemistry Frontiers,2022, 9(17): 4542-4548.
[136] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. B.01.[CP]. Wallingford, CT; 2016.
[137] VYDROV O A, SCUSERIA G E. Assessment of a Long-Range Corrected HybridFunctional [J]. Journal of Chemical Physics, 2006, 125(23): 234109.
[138] ZHAO Y, TRUHLAR D G. A New Local Density Functional for Main-GroupThermochemistry, Transition Metal Bonding, Thermochemical Kinetics, andNoncovalent Interactions [J]. Journal of Chemical Physics, 2006, 125(19): 194101.
[139] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density [J]. Phys Rev BCondens Matter, 1988, 37(2): 785-789.
[140] LEGAULT C Y CYLview, 1.0b [CP]. Université de Sherbrooke, Canada, 2009,http://www.cylview.org.
[141]LUCKING U. Sulfoximines: A Neglected Opportunity in Medicinal Chemistry [J].Angewandte Chemie International Edition, 2013, 52(36): 9399-9408.
[142] FRINGS M, BOLM C, BLUM A, et al. Sulfoximines from a Medicinal Chemist'sPerspective: Physicochemical and in Vitro Parameters Relevant for DrugDiscovery [J]. European Journal of Medicinal Chemistry, 2017, 126: 225-245.
[143] SCHAFER S, WIRTH T. A Versatile and Highly Reactive PolyfluorinatedHypervalent Iodine(III) Compound [J]. Angewandte Chemie International Edition,2010, 49(15): 2786-2789.
[144] TOTA A, ZENZOLA M, CHAWNER S J, et al. Synthesis of Nh-Sulfoximinesfrom Sulfides by Chemoselective One-Pot N- and O-Transfers [J]. ChemicalCommunications, 2016, 53(2): 348-351.
[145] BACHON A-K, STEINKAMP A-D, BOLM C. N-Arylated Sulfoximines asCross-Coupling Building Blocks [J]. Advanced Synthesis & Catalysis, 2018,360(6): 1088-1093.
[146] GAO B, LI S, WU P, et al. Sufex Chemistry of Thionyl Tetrafluoride (SOF4 )with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides,Sulfoximines, Sulfonimidamides, and Sulfonimidates [J]. Angewandte ChemieInternational Edition, 2018, 57(7): 1939-1943.
[147] KUMAR M, RASTOGI A, RAZIULLAH, et al. Cu(II)-Catalyzed, Site SelectiveSulfoximination to Indole and Indolines Via Dual C–H/N–H Activation [J].Organic Letters, 2022, 24(48): 8729-8734.
[148] MALIK M, KUMAR D, LOTANA H, et al. Design, Synthesis and AnticancerActivity of N-Aryl Indolylsulfoximines: Identification of Potent and SelectiveAnticancer Agents [J]. Bioorganic & Medicinal Chemistry, 2023, 93: 117459.
[149] WEST M J, FYFE J W B, VANTOUROUT J C, et al. Mechanistic Developmentand Recent Applications of the Chan-Lam Amination [J]. Chemical Reviews,2019, 119(24): 12491-12523.
[150] VANTOUROUT J C, MIRAS H N, ISIDRO-LLOBET A, et al. SpectroscopicStudies of the Chan-Lam Amination: A Mechanism-Inspired Solution to BoronicEster Reactivity [J]. Journal of the American Chemical Society, 2017, 139(13):4769-4779.
[151] VANTOUROUT J C, LI L, BENDITO-MOLL E, et al. Mechanistic InsightEnables Practical, Scalable, Room Temperature Chan–Lam N-Arylation of NArylSulfonamides [J]. ACS Catalysis, 2018, 8(10): 9560-9566.
[152] KING A E, BRUNOLD T C, STAHL S S. Mechanistic Study of Copper-Catalyzed Aerobic Oxidative Coupling of Arylboronic Esters and Methanol:Insights into an Organometallic Oxidase Reaction [J]. Journal of the AmericanChemical Society, 2009, 131(14): 5044-5045.
[153] ZIEGLER D T, CHOI J, MUNOZ-MOLINA J M, et al. A Versatile Approach toUllmann C-N Couplings at Room Temperature: New Families of Nucleophilesand Electrophiles for Photoinduced, Copper-Catalyzed Processes [J]. Journal ofthe American Chemical Society, 2013, 135(35): 13107-13112.
[154] BISSEMBER A C, LUNDGREN R J, CREUTZ S E, et al. Transition-Metal-Catalyzed Alkylations of Amines with Alkyl Halides: Photoinduced, Copper-Catalyzed Couplings of Carbazoles [J]. Angewandte Chemie International Edition,2013, 52(19): 5129-5133.
[155] KAINZ Q M, MATIER C D, BARTOSZEWICZ A, et al. Asymmetric Copper-Catalyzed C-N Cross-Couplings Induced by Visible Light [J]. Science, 2016,351(6274): 681-684.
[156] ZHAO W, WURZ R P, PETERS J C, et al. Photoinduced, Copper-CatalyzedDecarboxylative C-N Coupling to Generate Protected Amines: An Alternative tothe Curtius Rearrangement [J]. Journal of the American Chemical Society, 2017,139(35): 12153-12156.
[157] AHN J M, RATANI T S, HANNOUN K I, et al. Photoinduced, Copper-CatalyzedAlkylation of Amines: A Mechanistic Study of the Cross-Coupling of Carbazolewith Alkyl Bromides [J]. Journal of the American Chemical Society, 2017,139(36): 12716-12723.
[158] HUANG Y, WEN Q, JIANG J H, et al. A Novel Electrochemical ImmunosensorBased on Hydrogen Evolution Inhibition by Enzymatic Copper Deposition onPlatinum Nanoparticle-Modified Electrode [J]. Biosensors & Bioelectronics, 2008,24(4): 600-605.
[159] KOCA A. Copper Phthalocyanine Complex as Electrocatalyst for HydrogenEvolution Reaction [J]. Electrochemistry Communications, 2009, 11(4): 838-841.
[160]OKAMURA H, BOLM C. Sulfoximines: Synthesis and Catalytic Applications [J].Chemistry Letters, 2004, 33(5): 482-487.
[161] OTOCKA S, KWIATKOWSKA M, MADALINSKA L, et al. ChiralOrganosulfur Ligands/Catalysts with a Stereogenic Sulfur Atom: Applications inAsymmetric Synthesis [J]. Chemical Reviews, 2017, 117(5): 4147-4181.
[162] VANTOUROUT J C, MIRAS, H. N., ISIDRO-LLOBET, A., SPROULES, S. &WATSON, A. J. B. Spectroscopic Studies of the Chan-Lam Amination: AMechanism-Inspired Solution to Boronic Ester Reactivity. [J]. Journal of theAmerican Chemical Society, 2017, 139(13): 4769-4779.
[163] CHENG G J, ZHONG, X. M., WU, Y. D. & ZHANG, X. MechanisticUnderstanding of Catalysis by Combining Mass Spectrometry and Computation.[J]. Chemical Communications, 2019, 55(85): 12749-12764.
[164] KING A E, RYLAND B L, BRUNOLD T C, et al. Kinetic and SpectroscopicStudies of Aerobic Copper(II)-Catalyzed Methoxylation of Arylboronic Estersand Insights into Aryl Transmetalation to Copper(II) [J]. Organometallics, 2012,31(22): 7948-7957.
[165] DIMUCCI I M, LUKENS J T, CHATTERJEE S, et al. The Myth of D8Copper(III) [J]. Journal of the American Chemical Society, 2019, 141(46): 18508-18520.
[166] DANG H, COX N, LALIC G. Copper-Catalyzed Reduction of Alkyl Triflates andIodides: An Efficient Method for the Deoxygenation of Primary and SecondaryAlcohols [J]. Angewandte Chemie International Edition, 2014, 53(3): 752-756.
[167] LI Z, FRINGS M, YU H, et al. Organocatalytic Asymmetric Allylic Alkylationsof Sulfoximines [J]. Organic Letters, 2018, 20(23): 7367-7370.
[168] MORE S G, RUPANAWAR B D, SURYAVANSHI G. Metal-Free, Acid-Catalyzed 1,6-Conjugate Addition of NH-Sulfoximines to Para-Quinone Methides:Accessing to Diarylmethine Imino Sulfanone [J]. Journal of Organic Chemistry,2021, 86(15): 10129-10139.
[169] CHEN H, CHEN L, HE Z, et al. Blue Light-Promoted Radical Sulfoximido-Chalcogenization of Aliphatic and Aromatic Alkenes [J]. Green Chemistry, 2021,23(7): 2624-2627.
[170] NATARAJAN K, IRFANA JESIN C P, ANTONY HARITHA MERCY A, et al.A Metal-Free Petasis Reaction Towards the Synthesis of N-(Alpha-Substituted)Alkyl Sulfoximines/Sulfonimidamides [J]. Organic & BiomolecularChemistry, 2021, 19(32): 7061-7065.
[171] HOMMELSHEIM R, NUNEZ PONCE H M, TRUONG K N, et al. 2-Sulfoximidoyl Acetic Acids from Multicomponent Petasis Reactions and TheirUse as Building Blocks in Syntheses of Sulfoximine Benzodiazepine Analogues[J]. Organic Letters, 2021, 23(9): 3415-3420.
[172] KONG X, TIAN Y, CHEN X, et al. Electrochemical Oxidative C(Sp3)-H/N-HCoupling of Diarylmethanes with Sulfoximines or Benzophenone Imine [J].Journal of Organic Chemistry, 2021, 86(19): 13610-13617.
[173] BOLM C, HACKENBERGER C P R, SIMIC O, et al. Cheminform Abstract: AMild Synthetic Procedure for the Preparation of N-Alkylated Sulfoximines [J].Synthesis, 2002: 879-887.
[174] WANG H, FRINGS M, BOLM C. Halocyclizations of Unsaturated Sulfoximines[J]. Organic Letters, 2016, 18(10): 2431-2434.
[175] BOULARD E, ZIBULSKI V, OERTEL L, et al. Increasing Complexity: APractical Synthetic Approach to Three-Dimensional, Cyclic Sulfoximines andFirst Insights into Their in Vitro Properties [J]. Chemistry - A European Journal,2020, 26(19): 4378-4388.
[176] NATARAJAN K, SHARMA S, IRFANA JESIN C P, et al. One-Pot Synthesis ofAlpha-Sulfoximinophosphonate Via Kabachnik-Fields Reaction [J]. Organic &Biomolecular Chemistry, 2022, 20(35): 7036-7039.
[177] ZENG D, MA Y, DENG W-P, et al. Divergent Sulfur(VI) Fluoride ExchangeLinkage of Sulfonimidoyl Fluorides and Alkynes [J]. Nature Synthesis, 2022, 1(6):455-463.
[178] ZENG D, MA Y, DENG W P, et al. The Linkage of Sulfonimidoyl Fluorides andUnactivated Alkenes Via Hydrosulfonimidoylation [J]. Angewandte ChemieInternational Edition, 2022, 61(44): e202207100.
[179] LUCKING U. Neglected Sulfur( Ⅵ ) Pharmacophores in Drug Discovery:Exploration of Novel Chemical Space by the Interplay of Drug Design andMethod Development [J]. Organic Chemistry Frontiers, 2019, 6(8): 1319-1324.
[180] LIANG Q, WALSH P J, JIA T. Copper-Catalyzed IntermolecularDifunctionalization of Styrenes with Thiosulfonates and Arylboronic Acids Via aRadical Relay Pathway [J]. ACS Catalysis, 2019, 10(4): 2633-2639.
[181] CISMESIA M A, YOON T P. Characterizing Chain Processes in Visible LightPhotoredox Catalysis [J]. Chemical Science, 2015, 6(10): 5426-5434.
[182] EL KHATIB M, SERAFIM R A, MOLANDER G A. Alpha-Arylation/Heteroarylation of Chiral Alpha-Aminomethyltrifluoroborates bySynergistic Iridium Photoredox/Nickel Cross-Coupling Catalysis [J]. AngewandteChemie International Edition, 2016, 55(1): 254-258.
[183] ROMERO N A, NICEWICZ D A. Mechanistic Insight into the PhotoredoxCatalysis of Anti-Markovnikov Alkene Hydrofunctionalization Reactions [J].Journal of the American Chemical Society, 2014, 136(49): 17024-17035.
[184] LüCKING U, JAUTELAT R, KRUGER M, et al. The Lab Oddity Prevails:Discovery of Pan-CDK Inhibitor (R)-S-Cyclopropyl-S-(4-{
[4-{[(1r,2r)-2-Hydroxy-1-Methylpropyl]Oxy}-5-(Trifluorome Thyl)Pyrimidin-2-Yl]Amino}Phenyl)Sulfoximide (Bay 1000394) for the Treatment of Cancer [J].ChemMedChem, 2013, 8(7): 1067-1085.
[185] EHRICH E, DALLOB A, DELEPELEIRE I, et al. Characterization of Rofecoxibas a Cyclooxygenase-2 Isoform Inhibitor and Demonstration of Analgesia in theDental Pain Model [J]. Clinical Pharmacology & Therapeutics, 1999, 65(3): 336-347.
[186] LI X, CHEN H, XUAN Q, et al. Biomimetic Carbene Cascades Enabled ImineDerivative Migration from Carbene-Bearing Thiocarbamates [J]. Organic Letters,2021, 23(9): 3518-3523.
[187] 王盈盈, 李晓敏, 蔡雅慧, et al. DNA 编码分子库液相筛选方法的新进展 [J]. 高等学校化学学报, 2023, 44(3): 22020438.
[188] 高子珩, 邹譞, 周宜, et al. 荧光核酸适配体:核酸酶学分析新机遇 [J]. 生物化学与生物物理进展, 2023, 50(5): 1042-1068.
[189] 马佳敏, 李姣兄, 孟千森, 曾祥华. 炔烃的自由基砜基化反应研究进展[J]. 有机化学, 2023, 43(6): 2040-2052.
[190] 宇世伟, 陈兆华, 陈 淇, et al. 硫代磺酸酯的合成与应用研究进展 [J]. 有机化学,2022, 42(8): 2322-2330.
[191] LIU H, LI G, PENG Z, et al. Tagging Peptides with a Redox ResponsiveFluorescent Probe Enabled by Photoredox Difunctionalization ofPhenylacetylenes with Sulfinates and Disulfides [J]. JACS Au, 2022, 2(12): 2821-2829.

所在学位评定分委会
化学
国内图书分类号
O622.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/771880
专题理学院_化学系
推荐引用方式
GB/T 7714
王聪. 光催化硫(VI)官能团的合成与应用研究[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12049032-王聪-化学系.pdf(14574KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王聪]的文章
百度学术
百度学术中相似的文章
[王聪]的文章
必应学术
必应学术中相似的文章
[王聪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。