[1] BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine Learning for Data-Driven Discovery in Solid Earth Geoscience[J/OL]. Science, 2019, 363(6433): eaau0323. DOI: 10.1 126/science.aau0323.
[2] ISHAK B. Geodynamics (3rd Edition), by Donald L. Turcotte: Scope: Textbook. Level: Ad-vanced Undergraduate, Postgraduate, Teacher[J/OL]. Contemporary Physics, 2017, 58(1): 108-108. DOI: 10.1080/00107514.2016.1249522.
[3] CHATTOPADHYAY A, SUBEL A, HASSANZADEH P. Data-Driven Super-Parameterization Using Deep Learning: Experimentation With Multiscale Lorenz 96 Systems and Trans-fer Learning[J/OL]. Journal of Advances in Modeling Earth Systems, 2020, 12(11): e2020MS002084. DOI: 10.1029/2020MS002084.
[4] 张明辉, 刘有山, 侯爵, 等. 近地表地震层析成像方法综述[J]. 地球物理学进展, 2019, 34 (1): 48-63.
[5] MOUSAVI S M, BEROZA G C. Deep-Learning Seismology[J/OL]. Science, 2022, 377(6607): eabm4470. DOI: 10.1126/science.abm4470.
[6] AKI K, LEE W H K. Determination of Three-Dimensional Velocity Anomalies under a Seismic Array Using First P Arrival Times from Local Earthquakes: 1. A Homogeneous Initial Model [J/OL]. Journal of Geophysical Research, 1976, 81(23): 4381-4399. DOI: 10.1029/JB081i02 3p04381.
[7] FORSYTH D W. Array Analysis of Two-Dimensional Variations in Surface Wave Phase Ve-locity and Azimuthal Anisotropy in the Presence of Multipathing Interference[Z]. 2005: 17.
[8] 徐峣. 下扬子及邻区壳幔结构及深部过程约束研究[D]. 中国地质大学 (北京), 2017.
[9] CHARVET J. The Neoproterozoic–Early Paleozoic Tectonic Evolution of the South China Block: An Overview[J/OL]. Journal of Asian Earth Sciences, 2013, 74: 198-209. DOI: 10.101 6/j.jseaes.2013.02.015.
[10] FAURE M, LEPVRIER C, NGUYEN V V, et al. The South China Block-Indochina Collision: Where, When, and How?[J/OL]. Journal of Asian Earth Sciences, 2014, 79: 260-274. DOI: 10.1016/j.jseaes.2013.09.022.
[11] SHU L, YAO J, WANG B, et al. Neoproterozoic Plate Tectonic Process and Phanerozoic Geody-namic Evolution of the South China Block[J/OL]. Earth-Science Reviews, 2021, 216: 103596. DOI: 10.1016/j.earscirev.2021.103596.
[12] 吕庆田, 孟贵祥, 严加永. 长江中下游成矿带铁 - 铜成矿系统结构的地球物理探测:综合分析[J/OL]. Earth Science Frontiers, 2020, 27(2). DOI: 13745/j.esf.sf.2020.3.1.
[13] OUYANG L, LI H, LÜ Q, et al. Crustal and Uppermost Mantle Velocity Structure and Its Relationship with the Formation of Ore Districts in the Middle–Lower Yangtze River Region [J/OL]. Earth and Planetary Science Letters, 2014, 408: 378-389. DOI: 10.1016/j.epsl.2014.10 .017.
[14] 李伦, 蔡晨, 付媛媛, 等. 多种面波层析成像方法及其在青藏高原的应用与对比[J/OL]. 地球与行星物理论评 (中英文), 2022, 54(2): 174-196. DOI: 10.19975/j.dqyxx.2022-019.
[15] GAO L, ZHANG H, GAO L, et al. High-Resolution Vs Tomography of South China by Joint Inversion of Body Wave and Surface Wave Data[J/OL]. Tectonophysics, 2022, 824: 229228. DOI: 10.1016/j.tecto.2022.229228.
[16] DMITRIENKO L V, LI S Z, CAO X Z, et al. Large-scale Morphotectonics of the Ocean-continent Transition Zone between the Western Pacific Ocean and the East Asian Continent: A Link of Deep Process to the Earth ’ s Surface System[J/OL]. Geological Journal, 2016, 51(S1): 263-285. DOI: 10.1002/gj.2845.
[17] YU S, LI S, ZHANG J, et al. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: A Review of the North Qaidam UHP Belt, NW China [J/OL]. Earth-Science Reviews, 2019, 191: 190-211. DOI: 10.1016/j.earscirev.2019.02.016.
[18] 张昌榕, 张贵宾, 江国明, 等. 下扬子及周边地区深部泊松比结构及深部动力过程约束研究[J]. 地球物理学报, 2018, 61(11): 4418-4435.
[19] ZHAI M G, SANTOSH M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview[J/OL]. Gondwana Research, 2011, 20(1): 6-25. DOI: 10.1016/j.gr.2011. 02.005.
[20] 毛建仁, 陶奎元, 邢光福, 等. 中国东南大陆边缘中新生代地幔柱活动的岩石学记录[J]. 地球学报, 1999(3): 253-258.
[21] 牟传龙, 许效松. 华南地区早古生代沉积演化与油气地质条件[J]. 沉积与特提斯地质, 2010, 30(3): 24-29.
[22] WONG J, SUN M, XING G, et al. Zircon U–Pb and Hf Isotopic Study of Mesozoic Felsic Rocks from Eastern Zhejiang, South China: Geochemical Contrast between the Yangtze and Cathaysia Blocks[J/OL]. Gondwana Research, 2011, 19(1): 244-259. DOI: 10.1016/j.gr.2010.06.004.
[23] ZHAO G. Jiangnan Orogen in South China: Developing from Divergent Double Subduction [J/OL]. Gondwana Research, 2015, 27(3): 1173-1180. DOI: 10.1016/j.gr.2014.09.004.
[24] DUAN L, MENG Q R, ZHANG C L, et al. Tracing the Position of the South China Block in Gondwana: U–Pb Ages and Hf Isotopes of Devonian Detrital Zircons[J/OL]. Gondwana Research, 2011, 19(1): 141-149. DOI: 10.1016/j.gr.2010.05.005.
[25] MAO X, WANG Q, LIU S, et al. Effective Elastic Thickness and Mechanical Anisotropy of South China and Surrounding Regions[J/OL]. Tectonophysics, 2012, 550–553: 47-56. DOI: 10.1016/j.tecto.2012.05.019.
[26] XIA Y, XU X. A Fragment of Columbia Supercontinent: Insight for Cathaysia Block Basement From Tectono-Magmatic Evolution and Mantle Heterogeneity[J/OL]. Geophysical Research Letters, 2019, 46(4): 2012-2024. DOI: 10.1029/2018GL081882.
[27] XIAN H, ZHANG S, LI H, et al. How Did South China Connect to and Separate From Gond-wana? New Paleomagnetic Constraints From the Middle Devonian Red Beds in South China [J/OL]. Geophysical Research Letters, 2019, 46(13): 7371-7378. DOI: 10.1029/2019GL0831 23.
[28] YIN C, LIN S, DAVIS D W, et al. 2.1–1.85Ga Tectonic Events in the Yangtze Block, South China: Petrological and Geochronological Evidence from the Kongling Complex and Implica-tions for the Reconstruction of Supercontinent Columbia[J/OL]. Lithos, 2013, 182–183: 200-210. DOI: 10.1016/j.lithos.2013.10.012.
[29] ZHAO G, CAWOOD P A. Precambrian Geology of China[J/OL]. Precambrian Research, 2012, 222–223: 13-54. DOI: 10.1016/j.precamres.2012.09.017.
[30] 徐纪人, 赵志新. 苏鲁—大别造山带及其周围现代地壳应力场与构造运动区域特征[J]. 地质学报, 2006(12): 1956-1965.
[31] DAI L, LI S, LI Z H, et al. Dynamics of Exhumation and Deformation of HP-UHP Orogens in Double Subduction-Collision Systems: Numerical Modeling and Implications for the Western Dabie Orogen[J/OL]. Earth-Science Reviews, 2018, 182: 68-84. DOI: 10.1016/j.earscirev.20 18.05.005.
[32] LI S, KUSKY T M, ZHAO G, et al. Thermochronological Constraints on Two-Stage Extrusion of HP/UHP Terranes in the Dabie–Sulu Orogen, East-Central China[J/OL]. Tectonophysics, 2011, 504(1-4): 25-42. DOI: 10.1016/j.tecto.2011.01.017.
[33] MAO J, LI Z, YE H. Mesozoic Tectono-Magmatic Activities in South China: Retrospect and Prospect[J/OL]. Science China Earth Sciences, 2014, 57(12): 2853-2877. DOI: 10.1007/s114 30-014-5006-1.
[34] 胡红雷, 朱光. 苏北地区前陆变形特征与形成机制[J/OL]. 大地构造与成矿学, 2013, 37(3): 366-376. DOI: 10.16539/j.ddgzyckx.2013.03.010.
[35] SAFONOVA I. Juvenile versus Recycled Crust in the Central Asian Orogenic Belt: Implica-tions from Ocean Plate Stratigraphy, Blueschist Belts and Intra-Oceanic Arcs[J/OL]. Gondwana Research, 2017, 47: 6-27. DOI: 10.1016/j.gr.2016.09.003.
[36] JOLIVET L, FACCENNA C, BECKER T, et al. Mantle Flow and Deforming Continents: From India-Asia Convergence to Pacific Subduction[J/OL]. Tectonics, 2018, 37(9): 2887-2914. DOI: 10.1029/2018TC005036.
[37] WANG Y, WANG Y, ZHANG Y, et al. Triassic Two-Stage Intra-Continental Orogensis of the South China Block, Driven by Paleotethyan Closure and Interactions with Adjoining Blocks [J/OL]. Journal of Asian Earth Sciences, 2021, 206: 104648. DOI: 10.1016/j.jseaes.2020.1046 48.
[38] ZHANG Y, SHI D, LÜ Q, et al. The Crustal Thickness and Composition in the Eastern South China Block Constrained by Receiver Functions: Implications for the Geological Setting and Metallogenesis[J/OL]. Ore Geology Reviews, 2021, 130: 103988. DOI: 10.1016/j.oregeorev. 2021.103988.
[39] CHEN J Y, YANG J H, ZHANG J H, et al. Construction of a Highly Silicic Upper Crust in Southeastern China: Insights from the Cretaceous Intermediate-to-Felsic Rocks in Eastern Zhejiang[J/OL]. Lithos, 2021, 402–403: 106012. DOI: 10.1016/j.lithos.2021.106012.
[40] GOLDFARB R J, TAYLOR R D, COLLINS G S, et al. Phanerozoic Continental Growth and Gold Metallogeny of Asia[J/OL]. Gondwana Research, 2014, 25(1): 48-102. DOI: 10.1016/j. gr.2013.03.002.
[41] LI J, ZHANG Y, DONG S, et al. Cretaceous Tectonic Evolution of South China: A Preliminary Synthesis[J/OL]. Earth-Science Reviews, 2014, 134: 98-136. DOI: 10.1016/j.earscirev.2014.0 3.008.
[42] MAO J, TAKAHASHI Y, KEE W S, et al. Characteristics and Geodynamic Evolution of In-dosinian Magmatism in South China: A Case Study of the Guikeng Pluton[J/OL]. Lithos, 2011, 127(3-4): 535-551. DOI: 10.1016/j.lithos.2011.09.011.
[43] CHEN L. Concordant Structural Variations from the Surface to the Base of the Upper Mantle in the North China Craton and Its Tectonic Implications[J/OL]. Lithos, 2010, 120(1-2): 96-115. DOI: 10.1016/j.lithos.2009.12.007.
[44] LI S, SANTOSH M, ZHAO G, et al. Intracontinental Deformation in a Frontier of Super-Convergence: A Perspective on the Tectonic Milieu of the South China Block[J/OL]. Journal of Asian Earth Sciences, 2012, 49: 313-329. DOI: 10.1016/j.jseaes.2011.07.026.
[45] ZHANG G, GUO A, WANG Y, et al. Tectonics of South China Continent and Its Implications [J/OL]. Science China Earth Sciences, 2013, 56(11): 1804-1828. DOI: 10.1007/s11430-013-4 679-1.
[46] WANG Y, TENG J, TIAN X. Crust and Upper Mantle Structure beneath Southwest China and Its Implications for Mesozoic Multistage Gold Deposits[J/OL]. Tectonophysics, 2022, 838: 229474. DOI: 10.1016/j.tecto.2022.229474.
[47] DENG J, WANG Q. Gold Mineralization in China: Metallogenic Provinces, Deposit Types and Tectonic Framework[J/OL]. Gondwana Research, 2016, 36: 219-274. DOI: 10.1016/j.gr.201 5.10.003.
[48] YIN A. Cenozoic Tectonic Evolution of Asia: A Preliminary Synthesis[J/OL]. Tectonophysics, 2010, 488(1-4): 293-325. DOI: 10.1016/j.tecto.2009.06.002.
[49] LI Z X, LI X H. Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model[J/OL]. Geology, 2007, 35(2): 179. DOI: 10.1130/G23193A.1.
[50] Khin Zaw, MEFFRE S, LAI C K, et al. Tectonics and Metallogeny of Mainland Southeast Asia — A Review and Contribution[J/OL]. Gondwana Research, 2014, 26(1): 5-30. DOI: 10.1016/j.gr.2013.10.010.
[51] HE C, SANTOSH M, DONG S. Continental Dynamics of Eastern China: Insights from Tectonic History and Receiver Function Analysis[J/OL]. Earth-Science Reviews, 2015, 145: 9-24. DOI: 10.1016/j.earscirev.2015.02.006.
[52] Elkins-Tanton L T. Continental Magmatism Caused by Lithospheric Delamination[M/OL]. Geological Society of America, 2005. DOI: 10.1130/0-8137-2388-4.449.
[53] Holloway. North Palawan Block, Philippines–Its Relation to Asian Mainland and Role in Evo-lution of South China Sea[J/OL]. AAPG Bulletin, 1982, 66. DOI: 10.1306/03B5A7A5-16D 1-11D7-8645000102C1865D.
[54] LIU C Z, LIU Z C, WU F Y, et al. Mesozoic Accretion of Juvenile Sub-Continental Lithospheric Mantle beneath South China and Its Implications: Geochemical and Re–Os Isotopic Results from Ningyuan Mantle Xenoliths[J/OL]. Chemical Geology, 2012, 291: 186-198. DOI: 10.1 016/j.chemgeo.2011.10.006.
[55] XU S, UNSWORTH M J, HU X, et al. Magnetotelluric Evidence for Asymmetric Simple Shear Extension and Lithospheric Thinning in South China[J/OL]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 104-124. DOI: 10.1029/2018JB016505.
[56] ZHU R, ZHAO G, XIAO W, et al. Origin, Accretion, and Reworking of Continents[J/OL]. Reviews of Geophysics, 2021, 59(3): e2019RG000689. DOI: 10.1029/2019RG000689.
[57] MERCIER J, HOU M, VERGÉLY P, et al. Structural and Stratigraphical Constraints on the Kinematics History of the Southern Tan–Lu Fault Zone during the Mesozoic Anhui Province, China[J/OL]. Tectonophysics, 2007, 439(1-4): 33-66. DOI: 10.1016/j.tecto.2007.03.001.
[58] 常印佛, 周涛发, 范裕. 长江中下游成矿带矿产勘查-科研工作回顾和展望[J]. 岩石学报, 2017, 33(11): 3333-3352.
[59] ZHU G, NIU M, XIE C, et al. Sinistral to Normal Faulting along the Tan-Lu Fault Zone: Evidence for Geodynamic Switching of the East China Continental Margin[J/OL]. The Journal of Geology, 2010, 118(3): 277-293. DOI: 10.1086/651540.
[60] ZHOU T, FAN Y, YUAN F, et al. Geochronology of the Volcanic Rocks in the Lu-Zong Basin and Its Significance[J/OL]. Science in China Series D: Earth Sciences, 2008, 51(10): 1470-1482. DOI: 10.1007/s11430-008-0111-7.
[61] LÜ Q, SHI D, LIU Z, et al. Crustal Structure and Geodynamics of the Middle and Lower Reaches of Yangtze Metallogenic Belt and Neighboring Areas: Insights from Deep Seismic Reflection Profiling[J/OL]. Journal of Asian Earth Sciences, 2015, 114: 704-716. DOI: 10.101 6/j.jseaes.2015.03.022.
[62] ZHU G, JIANG D, ZHANG B, et al. Destruction of the Eastern North China Craton in a Backarc Setting: Evidence from Crustal Deformation Kinematics[J/OL]. Gondwana Research, 2012, 22 (1): 86-103. DOI: 10.1016/j.gr.2011.08.005.
[63] LI S, SUO Y, LI X, et al. Mesozoic Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone to Subduction of the Paleo-Pacific Plate[J/OL]. Earth-Science Re-views, 2019, 192: 91-137. DOI: 10.1016/j.earscirev.2019.03.003.
[64] ZHOU H W, CLAYTON R W. P and S Wave Travel Time Inversions for Subducting Slab under the Island Arcs of the Northwest Pacific[J/OL]. Journal of Geophysical Research: Solid Earth, 1990, 95(B5): 6829-6851. DOI: 10.1029/JB095iB05p06829.
[65] BIJWAARD H, SPAKMAN W, ENGDAHL E R. Closing the Gap between Regional and Global Travel Time Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 1998, 103 (B12): 30055-30078. DOI: 10.1029/98JB02467.
[66] FUKAO Y, WIDIYANTORO S, OBAYASHI M. Stagnant Slabs in the Upper and Lower Mantle Transition Region[J/OL]. Reviews of Geophysics, 2001, 39(3): 291-323. DOI: 10.1029/1999 RG000068.
[67] ZHAO D. Seismic Structure and Origin of Hotspots and Mantle Plumes[J/OL]. Earth and Planetary Science Letters, 2001, 192(3): 251-265. DOI: 10.1016/S0012-821X(01)00465-4.
[68] ZHAO D. Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics[J/OL]. Physics of the Earth and Planetary Interiors, 2004, 146(1-2): 3-34. DOI: 10.1016/j.pepi.2003.07.032.
[69] LU L, JIANG S, LI S, et al. Evolution of Meso-Cenozoic Subduction Zones in the Ocean-Continent Connection Zone of the Eastern South China Block: Insights from Gravity and Mag-netic Anomalies[J/OL]. Gondwana Research, 2022, 102: 151-166. DOI: 10.1016/j.gr.2020.12 .010.
[70] ZHAO F, SUO Y, LIU L, et al. Fine Lithospheric Structure Controlling Meso-Cenozoic Tectono-Magmatism in the South China Block: Inference from a Multidisciplinary Analysis [J/OL]. Earth-Science Reviews, 2023, 244: 104524. DOI: 10.1016/j.earscirev.2023.104524.
[71] WU J, SUPPE J, LU R, et al. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods[J/OL]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4670-4741. DOI: 10.1002/2016JB012923.
[72] FUKAO Y, OBAYASHI M, INOUE H, et al. Subducting Slabs Stagnant in the Mantle Transition Zone[J/OL]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4809-4822. DOI: 10.1029/91JB02749.
[73] WEI W, XU J, ZHAO D, et al. East Asia Mantle Tomography: New Insight into Plate Subduc-tion and Intraplate Volcanism[J/OL]. Journal of Asian Earth Sciences, 2012, 60: 88-103. DOI: 10.1016/j.jseaes.2012.08.001.
[74] LIU X, ZHAO D, LI S, et al. Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications[J/OL]. Earth and Planetary Science Letters, 2017, 464: 166-174. DOI: 10.1016/j.epsl.2017.02.024.
[75] LIU L, LIU L, XU Y G. Mesozoic Intraplate Tectonism of East Asia Due to Flat Subduction of a Composite Terrane Slab[J/OL]. Earth-Science Reviews, 2021, 214: 103505. DOI: 10.1016/ j.earscirev.2021.103505.
[76] HUANG J, ZHAO D. High-resolution Mantle Tomography of China and Surrounding Regions [J/OL]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9): 2005JB004066. DOI: 10.1029/2005JB004066.
[77] ZHAO D, OHTANI E. Deep Slab Subduction and Dehydration and Their Geodynamic Conse-quences: Evidence from Seismology and Mineral Physics[J/OL]. Gondwana Research, 2009, 16(3-4): 401-413. DOI: 10.1016/j.gr.2009.01.005.
[78] SETON M, MÜLLER R, ZAHIROVIC S, et al. Global Continental and Ocean Basin Re-constructions since 200Ma[J/OL]. Earth-Science Reviews, 2012, 113(3-4): 212-270. DOI: 10.1016/j.earscirev.2012.03.002.
[79] SETON M, FLAMENT N, WHITTAKER J, et al. Ridge Subduction Sparked Reorganization of the Pacific Plate-mantle System 60–50 Million Years Ago[J/OL]. Geophysical Research Letters, 2015, 42(6): 1732-1740. DOI: 10.1002/2015GL063057.
[80] MÜLLER R D, SETON M, ZAHIROVIC S, et al. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup[J/OL]. Annual Review of Earth and Plan-etary Sciences, 2016, 44(1): 107-138. DOI: 10.1146/annurev-earth-060115-012211.
[81] LIU Y, LIU L, LI Y, et al. Global Back-Arc Extension Due to Trench-Parallel Mid-Ocean Ridge Subduction[J/OL]. Earth and Planetary Science Letters, 2022, 600: 117889. DOI: 10.1016/j. epsl.2022.117889.
[82] 李三忠, 索艳慧, 周洁, 等. 华南洋陆过渡带构造演化:特提斯构造域向太平洋构造域的转换过程与机制[J]. 地质力学学报, 2022, 28(5): 683-704.
[83] SUO Y, LI S, YU S, et al. Cenozoic Tectonic Jumping and Implications for Hydrocarbon Accu-mulation in Basins in the East Asia Continental Margin[J/OL]. Journal of Asian Earth Sciences, 2014, 88: 28-40. DOI: 10.1016/j.jseaes.2014.02.019.
[84] XU X, O’REILLY S Y, GRIFFIN W, et al. Enrichment of Upper Mantle Peridotite: Petrological, Trace Element and Isotopic Evidence in Xenoliths from SE China[J/OL]. Chemical Geology, 2003, 198(3-4): 163-188. DOI: 10.1016/S0009-2541(03)00004-4.
[85] PENG D, LIU L, WANG Y. A Newly Discovered Late-Cretaceous East Asian Flat Slab Explains Its Unique Lithospheric Structure and Tectonics[J/OL]. Journal of Geophysical Research: Solid Earth, 2021, 126(10): e2021JB022103. DOI: 10.1029/2021JB022103.
[86] ZHU K Y, LI Z X, XU X S, et al. Late Triassic Melting of a Thickened Crust in Southeastern China: Evidence for Flat-Slab Subduction of the Paleo-Pacific Plate[J/OL]. Journal of Asian Earth Sciences, 2013, 74: 265-279. DOI: 10.1016/j.jseaes.2013.01.010.
[87] SHAN B, AFONSO J C, YANG Y, et al. The Thermochemical Structure of the Lithosphere and Upper Mantle beneath South China: Results from Multiobservable Probabilistic Inversion: Thermochemical Structure of South China[J/OL]. Journal of Geophysical Research: Solid Earth, 2014, 119(11): 8417-8441. DOI: 10.1002/2014JB011412.
[88] TAO K, GRAND S P, NIU F. Seismic Structure of the Upper Mantle Beneath Eastern Asia From Full Waveform Seismic Tomography[J/OL]. Geochemistry, Geophysics, Geosystems, 2018, 19 (8): 2732-2763. DOI: 10.1029/2018GC007460.
[89] GRIFFIN W L, ANDI Z, O’REILLY S Y, et al. Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton[M/OL]//FLOWER M F J, CHUNG S L, LO C H, et al. Geo-dynamics Series: Vol. 27. Washington, D. C.: American Geophysical Union, 1998: 107-126. DOI: 10.1029/GD027p0107.
[90] ZHENG J. Comparison of Mantle-Derived Matierals from Different Spatiotemporal Settings: Implications for Destructive and Accretional Processes of the North China Craton[J/OL]. Sci-ence Bulletin, 2009, 54(19): 3397-3416. DOI: 10.1007/s11434-009-0308-y.
[91] SHAN B, ZHOU W, XIAO Y. Lithospheric Thermal and Compositional Structure of South China Jointly Inverted from Multiple Geophysical Observations[J/OL]. Science China Earth Sciences, 2021, 64(1): 148-160. DOI: 10.1007/s11430-019-9661-4.
[92] YANG X, LI Y, AFONSO J C, et al. Thermochemical State of the Upper Mantle Beneath South China From Multi-Observable Probabilistic Inversion[J/OL]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021114. DOI: 10.1029/2020JB021114.
[93] ZHENG J, LEE C T, LU J, et al. Refertilization-Driven Destabilization of Subcontinental Mantle and the Importance of Initial Lithospheric Thickness for the Fate of Continents[J/OL]. Earth and Planetary Science Letters, 2015, 409: 225-231. DOI: 10.1016/j.epsl.2014.10.042.
[94] HACKER B R, WALLIS S R, RATSCHBACHER L, et al. High-temperature Geochronol-ogy Constraints on the Tectonic History and Architecture of the Ultrahigh-pressure Dabie-Sulu Orogen[J/OL]. Tectonics, 2006, 25(5): 2005TC001937. DOI: 10.1029/2005TC001937.
[95] FAURE M, LIN W, SCHÄRER U, et al. Continental Subduction and Exhumation of UHP Rocks. Structural and Geochronological Insights from the Dabieshan (East China)[J/OL]. Lithos, 2003, 70(3-4): 213-241. DOI: 10.1016/S0024-4937(03)00100-2.
[96] XU P, LIU F, WANG Q, et al. Slab-like High Velocity Anomaly in the Uppermost Mantle beneath the Dabie-Sulu Orogen[J/OL]. Geophysical Research Letters, 2001, 28(9): 1847-1850. DOI: 10.1029/2000GL012187.
[97] XU P, LIU F, YE K, et al. Flake Tectonics in the Sulu Orogen in Eastern China as Revealed by Seismic Tomography[J/OL]. Geophysical Research Letters, 2002, 29(10). DOI: 10.1029/2001 GL014185.
[98] 朱光, 刘程, 顾承串, 等. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示[J]. 中国科学: 地球科学, 2018, 48(4): 415-435.
[99] YANG T, MORESI L, ZHAO D, et al. Cenozoic Lithospheric Deformation in Northeast Asia and the Rapidly-Aging Pacific Plate[J/OL]. Earth and Planetary Science Letters, 2018, 492: 1-11. DOI: 10.1016/j.epsl.2018.03.057.
[100] 徐师文. 大地电磁测深在下扬子及邻区的应用[J]. 海相油气地质, 1997(4): 43-52+5.
[101] OKAY A I, CELAL ŞENGÖR A M. Evidence for Intracontinental Thrust-Related Exhumation of the Ultra-High-Pressure Rocks in China[J/OL]. Geology, 1992, 20(5): 411. DOI: 10.1130/ 0091-7613(1992)020<0411:EFITRE>2.3.CO;2.
[102] ZHU G, LIU G S, NIU M L, et al. Syn-Collisional Transform Faulting of the Tan-Lu Fault Zone, East China[J/OL]. International Journal of Earth Sciences, 2009, 98(1): 135-155. DOI: 10.1007/s00531-007-0225-8.
[103] YIN A, NIE S. An Indentation Model for the North and South China Collision and the Development of the Tan-Lu and Honam Fault Systems, Eastern Asia[J/OL]. Tectonics, 1993, 12(4): 801-813. DOI: 10.1029/93TC00313.
[104] LI Z X. Collision between the North and South China Blocks: A Crustal-Detachment Modelfor Suturing in the Region East of the Tanlu Fault[J/OL]. Geology, 1994, 22(8): 739. DOI: 10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2.
[105] WANG Y. The Onset of the Tan?Lu Fault Movement in Eastern China: Constraints from Zircon(SHRIMP) and 40 Ar/ 39 Ar Dating[J/OL]. Terra Nova, 2006, 18(6): 423-431. DOI: 10.1111/j. 1365-3121.2006.00708.x.
[106] ZHAO T, ZHU G, LIN S, et al. Indentation-Induced Tearing of a Subducting Continent: Evidence from the Tan–Lu Fault Zone, East China[J/OL]. Earth-Science Reviews, 2016, 152: 14-36. DOI: 10.1016/j.earscirev.2015.11.003.
[107] 白志明, 王椿镛. 下扬子地壳 P 波速度结构: 符离集-奉贤地震测深剖面再解释[J]. 科学通报, 2006(21): 2534-2541.
[108] 郑晔, 滕吉文. 随县—马鞍山地带地壳与上地幔结构及郯庐构造带南段的某些特征[J]. 地球物理学报, 1989(6): 648-659.
[109] 张昆, 严加永, 吕庆田, 等. 宁芜火山岩盆地及邻区上地壳电性结构研究[J]. 地球物理学报, 2015, 58(12): 4505-4521.
[110] YAN J, LÜ Q, LUO F, et al. A Gravity and Magnetic Study of Lithospheric Architecture and Structures of South China with Implications for the Distribution of Plutons and Mineral Systems of the Main Metallogenic Belts[J/OL]. Journal of Asian Earth Sciences, 2021, 221: 104938. DOI: 10.1016/j.jseaes.2021.104938.
[111] MAO J, LIU P, GOLDFARB R J, et al. Cretaceous Large-Scale Metal Accumulation Triggered by Post-Subductional Large-Scale Extension, East Asia[J/OL]. Ore Geology Reviews, 2021, 136: 104270. DOI: 10.1016/j.oregeorev.2021.104270.
[112] ZHOU J, JIN C, SUO Y, et al. The Yanshanian (Mesozoic) Metallogenesis in China Linked to Crust-Mantle Interaction in the Western Pacific Margin: An Overview from the Zhejiang Province[J/OL]. Gondwana Research, 2022, 102: 95-132. DOI: 10.1016/j.gr.2020.11.003.
[113] 毛景文, 谢桂青, 郭春丽, 等. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 2008, 14(4): 510-526.
[114] HOU Z, WANG Q, ZHANG H, et al. Lithosphere Architecture Characterized by Crust–Mantle Decoupling Controls the Formation of Orogenic Gold Deposits[J/OL]. National Science Re-view, 2023, 10(3): nwac257. DOI: 10.1093/nsr/nwac257.
[115] 严加永, 吕庆田, 孟贵祥, 等. 基于重磁多尺度边缘检测的长江中下游成矿带构造格架研究[J]. 地质学报, 2011, 85(5): 900-914.
[116] DEFANT M J, DRUMMOND M S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere[J/OL]. Nature, 1990, 347(6294): 662-665. DOI: 10.1038/3476 62a0.
[117] YANG Y Z, LONG Q, SIEBEL W, et al. Paleo-Pacific Subduction in the Interior of Eastern China: Evidence from Adakitic Rocks in the Edong-Jiurui District[J/OL]. The Journal of Geology, 2014, 122(1): 77-97. DOI: 10.1086/674423.
[118] ZHOU X, LI W. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas[J/OL]. Tectonophysics, 2000, 326(3-4): 269-287. DOI: 10.1016/S0040-1951(00)00120-7.
[119] GUTSCHER M A, MAURY R, EISSEN J P, et al. Can Slab Melting Be Caused by Flat Subduction?[J/OL]. Geology, 2000, 28(6): 535-538. DOI: 10.1130/0091-7613(2000)28<535: CSMBCB>2.0.CO;2.
[120] LI J W, ZHAO X F, ZHOU M F, et al. Origin of the Tongshankou Porphyry–Skarn Cu–Mo Deposit, Eastern Yangtze Craton, Eastern China: Geochronological, Geochemical, and Sr–Nd– Hf Isotopic Constraints[J/OL]. Mineralium Deposita, 2008, 43(3): 315-336. DOI: 10.1007/s0 0126-007-0161-3.
[121] 李三忠, 臧艺博, 王鹏程, 等. 华南中生代构造转换和古太平洋俯冲启动[J/OL]. 地学前缘, 2017, 24(4): 213-225. DOI: 10.13745/j.esf.yx.2017-4-13.
[122] 王金星. 下扬子地区地幔流应力场和大陆裂谷的探讨[J]. 石油物探, 1986(1): 98-105.
[123] 王良书. 下扬子江苏地区 P_n 残差与上地幔波速各向异性[J]. 地球物理学报, 1990(2): 174-185.
[124] LI H, SONG X, LÜ Q, et al. Seismic Imaging of Lithosphere Structure and Upper Mantle Deformation Beneath East-Central China and Their Tectonic Implications[J/OL]. Journal of Geophysical Research: Solid Earth, 2018, 123(4): 2856-2870. DOI: 10.1002/2017JB014992.
[125] SODOUDI F, YUAN X, LIU Q, et al. Lithospheric Thickness beneath the Dabie Shan, Central Eastern China from S Receiver Functions[J/OL]. Geophysical Journal International, 2006, 166 (3): 1363-1367. DOI: 10.1111/j.1365-246X.2006.03080.x.
[126] 王俊菲. 用远震接收函数研究下扬子地区地壳结构[J]. 国际地震动态, 2012(6): 74.
[127] CHEN J, PAN L, LI Z, et al. Continental Reworking in the Eastern South China Block and Its Adjacent Areas Revealed by F-J Multimodal Ambient Noise Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2022, 127(11): e2022JB024776. DOI: 10.1029/2022JB02 4776.
[128] SHAN B, XIONG X, ZHAO K F, et al. Crustal and Upper Mantle Structure of South China from Rayleigh Wave Tomography[J/OL]. Geophysical Journal International, 2016: ggw477. DOI: 10.1093/gji/ggw477.
[129] HE C, SANTOSH M. Crustal Evolution and Metallogeny in Relation to Mantle Dynamics: A Perspective from P-Wave Tomography of the South China Block[J/OL]. Lithos, 2016, 263: 3-14. DOI: 10.1016/j.lithos.2016.06.021.
[130] 曲平, 陈永顺, 于勇, 等. 华南地区上地幔 P 波三维速度结构和动力学意义: 来自有限频层析成像的证据[J]. 地球物理学报, 2020, 63(08): 2954-2969.
[131] 朱介寿, 曹家敏, 蔡学林, 等. 东亚及西太平洋边缘海高分辨率面波层析成像[J]. 地球物理学报, 2002(5): 646-664+756-757.
[132] 朱介寿, 宣瑞卿, 刘魁, 等. 用瑞利面波研究东亚及西太平洋地壳上地幔三维结构[J]. 物探化探计算技术, 2005(3): 185-193+179.
[133] HE C, DONG S, SANTOSH M, et al. Seismic Evidence for a Geosuture between the Yangtze and Cathaysia Blocks, South China[J/OL]. Scientific Reports, 2013, 3(1): 2200. DOI: 10.103 8/srep02200.
[134] SANTOSH M. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction[J/OL]. Precambrian Research, 2010, 178(1-4): 149-167. DOI: 10.1016/j.precamres.2010.02.003.
[135] 郑洪伟, 李廷栋. 长江中下游成矿带岩石圈深部结构的远震 P 波层析成像[J]. 地球物理学进展, 2013, 28(5): 2283-2293.
[136] SUN W, KENNETT B. Uppermost Mantle P Wavespeed Structure beneath Eastern China and Its Surroundings[J/OL]. Tectonophysics, 2016, 683: 12-26. DOI: 10.1016/j.tecto.2016.06.011.
[137] LI C, VAN DER HILST R D, TOKSÖZ M N. Constraining P-Wave Velocity Variations in the Upper Mantle beneath Southeast Asia[J/OL]. Physics of the Earth and Planetary Interiors, 2006, 154(2): 180-195. DOI: 10.1016/j.pepi.2005.09.008.
[138] ZHAO D, HASEGAWA A, KANAMORI H. Deep Structure of Japan Subduction Zone as Derived from Local, Regional, and Teleseismic Events[J/OL]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 22313-22329. DOI: 10.1029/94JB01149.
[139] 江国明, 张贵宾, 吕庆田, 等. 长江中下游地区成矿深部动力学机制: 远震层析成像证据[J].岩石学报, 2014, 30(4): 907-917.
[140] XU X, O’REILLY S Y, GRIFFIN W, et al. Genesis of Young Lithospheric Mantle in South-eastern China: An LAM–ICPMS Trace Element Study[J/OL]. Journal of Petrology, 2000, 41 (1): 111-148. DOI: 10.1093/petrology/41.1.111.
[141] LIU C Z, WU F Y, SUN J, et al. The Xinchang Peridotite Xenoliths Reveal Mantle Replacement and Accretion in Southeastern China[J/OL]. Lithos, 2012, 150: 171-187. DOI: 10.1016/j.lith os.2012.03.019.
[142] ZHANG A, GUO Z, DAI H, et al. Thermochemical Structure and Melting Distribution of the Upper Mantle Beneath Intraplate Volcanic Areas in Eastern South China Block[J/OL]. Journal of Geophysical Research: Solid Earth, 2023, 128(12): e2023JB027320. DOI: 10.1029/2023JB 027320.
[143] YANG X, LI H, LI Y, et al. Seismic Anisotropy beneath Eastern China from Shear Wave Splitting[J/OL]. Geophysical Journal International, 2019, 218(3): 1642-1651. DOI: 10.1093/ gji/ggz242.
[144] TANG Q, SUN W, YOSHIZAWA K, et al. Anomalous Radial Anisotropy and Its Implications for Upper Mantle Dynamics Beneath South China From Multimode Surface Wave Tomography [J/OL]. Journal of Geophysical Research: Solid Earth, 2022, 127(8). DOI: 10.1029/2021JB02 3485.
[145] SHI D, LÜ Q, XU W, et al. Crustal Structure beneath the Middle–Lower Yangtze Metallogenic Belt in East China: Constraints from Passive Source Seismic Experiment on the Mesozoic Intra-Continental Mineralization[J/OL]. Tectonophysics, 2013, 606: 48-59. DOI: 10.1016/j.tecto.20 13.01.012.
[146] 陈毓川, 王登红, 徐志刚, 等. 华南区域成矿和中生代岩浆成矿规律概要[J/OL]. 大地构造与成矿学, 2014, 38(2): 219-229. DOI: 10.16539/j.ddgzyckx.2014.02.002.
[147] 朱光, 刘国生, 牛漫兰, 等. 郯庐断裂带的平移运动与成因[J]. 地质通报, 2003(3): 200-207.
[148] 黄耘, 李清河, 孙业君, 等. 江苏及邻区地壳上地幔结构研究[J]. 西北地震学报, 2006(4): 369-376.
[149] WIELANDT E. Propagation and Structural Interpretation of Non-Plane Waves[J/OL]. Geophysical Journal International, 1993, 113(1): 45-53. DOI: 10.1111/j.1365-246X.1993.tb02527 .x.
[150] LASKE G. Global Observation of Off-Great-Circle Propagation of Long-Period Surface Waves [J/OL]. Geophysical Journal International, 1995, 123(1): 245-259. DOI: 10.1111/j.1365-246 X.1995.tb06673.x.
[151] FRIEDERICH W, WIELANDT E. Interpretation of Seismic Surface Waves in Regional Networks: Joint Estimation of Wavefield Geometry and Local Phase Velocity. Method and Numerical Tests[J/OL]. Geophysical Journal International, 1995, 120(3): 731-744. DOI: 10.1111/j.1365-246X.1995.tb01849.x.
[152] 徐小明, 史大年, 李信富. 有限频层析成像方法研究进展[J]. 地球物理学进展, 2009, 24(2): 432-438.
[153] JORDI C, SCHMELZBACH C, GREENHALGH S. Frequency-Dependent Traveltime Tomography Using Fat Rays: Application to near-Surface Seismic Imaging[J/OL]. Journal of Applied Geophysics, 2016, 131: 202-213. DOI: 10.1016/j.jappgeo.2016.06.002.
[154] MARQUERING H, DAHLEN F A, NOLET G. Three-Dimensional Sensitivity Kernels for Finite-Frequency Traveltimes: The Banana-doughnut Paradox[Z]. 1999.
[155] DAHLEN F A, HUNG S H, NOLET G. Fréchet Kernels for Finite-Frequency Traveltimes—I. Theory[J/OL]. Geophysical Journal International, 2000, 141(1): 157-174. DOI: 10.1046/j.13 65-246X.2000.00070.x.
[156] ZHOU Y, DAHLEN F A, NOLET G. Three-Dimensional Sensitivity Kernels for Surface Wave Observables[J/OL]. Geophysical Journal International, 2004, 158(1): 142-168. DOI: 10.1111/ j.1365-246X.2004.02324.x.
[157] YANG Y, FORSYTH D W. Regional Tomographic Inversion of the Amplitude and Phase of Rayleigh Waves with 2-D Sensitivity Kernels[J/OL]. Geophysical Journal International, 2006, 166(3): 1148-1160. DOI: 10.1111/j.1365-246X.2006.02972.x.
[158] LI A. Shear Wave Model of Southern Africa from Regional Rayleigh Wave Tomography with 2-D Sensitivity Kernels: Shear Wave Model of Southern Africa[J/OL]. Geophysical Journal International, 2011, 185(2): 832-844. DOI: 10.1111/j.1365-246X.2011.04971.x.
[159] RAMEY C. Bash Reference Manual[J]. Network Theory Limited, 1998, 15.
[160] DAVIS I J, WEXLER M, Cheng Zhang, et al. Bash2py: A Bash to Python Translator[C/OL]// 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER). Montreal, QC, Canada: IEEE, 2015: 508-511. DOI: 10.1109/SANER.2015.70818 66.
[161] AYER V M, MIGUEZ S, TOBY B H. Why Scientists Should Learn to Program in Python[J/OL]. Powder Diffraction, 2014, 29(S2): S48-S64. DOI: 10.1017/S0885715614000931.
[162] PERKEL J M. Why Scientists Are Turning to Rust[J/OL]. Nature, 2020, 588(7836): 185-186. DOI: 10.1038/d41586-020-03382-2.
[163] YANG Y. Application of Teleseismic Long-Period Surface Waves from Ambient Noise in Regional Surface Wave Tomography: A Case Study in Western USA[J/OL]. Geophysical Journal International, 2014, 198(3): 1644-1652. DOI: 10.1093/gji/ggu234.
[164] EKSTRÖM G. A Global Model of Love and Rayleigh Surface Wave Dispersion and Anisotropy, 25-250 s: Global Dispersion Model GDM52[J/OL]. Geophysical Journal International, 2011, 187(3): 1668-1686. DOI: 10.1111/j.1365-246X.2011.05225.x.
[165] TARANTOLA A, VALETTE B. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion[J/OL]. Reviews of Geophysics, 1982, 20(2): 219. DOI: 10.1029/RG 020i002p00219.
[166] YANG Y, FORSYTH D W. Rayleigh Wave Phase Velocities, Small-Scale Convection, and Azimuthal Anisotropy beneath Southern California[J/OL]. Journal of Geophysical Research, 2006, 111(B7): B07306. DOI: 10.1029/2005JB004180.
[167] YANG Y, LI A, RITZWOLLER M H. Crustal and Uppermost Mantle Structure in Southern Africa Revealed from Ambient Noise and Teleseismic Tomography[J/OL]. Geophysical Journal International, 2008, 174(1): 235-248. DOI: 10.1111/j.1365-246X.2008.03779.x.
[168] AFONSO J C, FULLEA J, GRIFFIN W L, et al. 3-D Multiobservable Probabilistic Inversion for the Compositional and Thermal Structure of the Lithosphere and Upper Mantle. I: A Priori Petrological Information and Geophysical Observables[J/OL]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2586-2617. DOI: 10.1002/jgrb.50124.
[169] MOSEGAARD K, TARANTOLA A. Monte Carlo Sampling of Solutions to Inverse Problems [J/OL]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12431-12447. DOI: 10.1029/94JB03097.
[170] SHEN W, RITZWOLLER M H, Schulte-Pelkum V, et al. Joint Inversion of Surface Wave Dispersion and Receiver Functions: A Bayesian Monte-Carlo Approach[J/OL]. Geophysical Journal International, 2013, 192(2): 807-836. DOI: 10.1093/gji/ggs050.
[171] XIE J, RITZWOLLER M H, SHEN W, et al. Crustal Radial Anisotropy across Eastern Tibet and the Western Yangtze Craton[J/OL]. Journal of Geophysical Research: Solid Earth, 2013, 118(8): 4226-4252. DOI: 10.1002/jgrb.50296.
[172] KANAMORI H, ANDERSON D L. Importance of Physical Dispersion in Surface Wave and Free Oscillation Problems: Review[J/OL]. Reviews of Geophysics, 1977, 15(1): 105-112. DOI: 10.1029/RG015i001p00105.
[173] DZIEWONSKI A M. Preliminary Reference Earth Model[J/OL]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356. DOI: 10.1016/0031-9201(81)90046-7.
[174] 刘昊岚. 接收函数和背景噪声联合反演下扬子地区精细岩石圈结构[D]. 南方科技大学, 2023.
[175] BROCHER T M. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust[J/OL]. Bulletin of the Seismological Society of America, 2005, 95(6): 2081-2092. DOI: 10.1785/0120050077.
[176] CHRISTENSEN N I, MOONEY W D. Seismic Velocity Structure and Composition of the Continental Crust: A Global View[J/OL]. Journal of Geophysical Research: Solid Earth, 1995, 100(B6): 9761-9788. DOI: 10.1029/95JB00259.
[177] SHEN W, RITZWOLLER M H, Schulte-Pelkum V. A 3-D Model of the Crust and Upper-most Mantle beneath the Central and Western US by Joint Inversion of Receiver Functions and Surface Wave Dispersion: A 3-D MODEL OF WESTERN/CENTRAL US[J/OL]. Journal of Geophysical Research: Solid Earth, 2013, 118(1): 262-276. DOI: 10.1029/2012JB009602.
[178] GUO Z, GAO X. Azimuthally Anisotropic Seismic Ambient Noise Tomography of South China Block[J/OL]. Tectonophysics, 2022, 823: 229187. DOI: 10.1016/j.tecto.2021.229187.
[179] HE C, SANTOSH M. Mantle Upwelling Beneath the Cathaysia Block, South China[J/OL]. Tectonics, 2021, 40(4): e2020TC006447. DOI: 10.1029/2020TC006447.
[180] WANG Y, FAN W, ZHANG G, et al. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies[J/OL]. Gondwana Research, 2013, 23(4): 1273-1305. DOI: 10.1016/j.gr.2012.02.019.
[181] ZHANG H, ZHENG J, LU J, et al. Composition and Evolution of the Lithospheric Mantle beneath the Interior of the South China Block: Insights from Trace Elements and Water Contents of Peridotite Xenoliths[J/OL]. Contributions to Mineralogy and Petrology, 2018, 173(7): 53. DOI: 10.1007/s00410-018-1476-z.
[182] ZHAO Z F, GAO P, ZHENG Y F. The Source of Mesozoic Granitoids in South China: Integrated Geochemical Constraints from the Taoshan Batholith in the Nanling Range[J/OL]. Chemical Geology, 2015, 395: 11-26. DOI: 10.1016/j.chemgeo.2014.11.028.
[183] WANG M, SHEN Z K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. DOI: 10.1029/2019JB018774.
[184] 许忠淮. 东亚地区现今构造应力图的编制[J]. 地震学报, 2001(5): 492-501.
[185] LI T, JIANG M, ZHAO L, et al. Continental Fragments in the South China Block: Constraints From Crustal Radial Anisotropy[J/OL]. Journal of Geophysical Research: Solid Earth, 2023, 128(10): e2023JB026998. DOI: 10.1029/2023JB026998.
[186] LI T, JIANG M, ZHAO L, et al. Wedge Tectonics in South China: Constraints from New Seismic Data[J/OL]. Science Bulletin, 2022, 67(14): 1496-1507. DOI: 10.1016/j.scib.2022.05 .007.
[187] SONG P, ZHANG X, LIU Y, et al. Moho Imaging Based on Receiver Function Analysis with Teleseismic Wavefield Reconstruction: Application to South China[J/OL]. Tectonophysics, 2017, 718: 118-131. DOI: 10.1016/j.tecto.2017.05.031.
[188] GUO L, GAO R, SHI L, et al. Crustal Thickness and Poisson’s Ratios of South China Revealed from Joint Inversion of Receiver Function and Gravity Data[J/OL]. Earth and Planetary Science Letters, 2019, 510: 142-152. DOI: 10.1016/j.epsl.2018.12.039.
[189] YANG X, LUO Y, ZHAO K. 3D Crustal and Upper Mantle Model of East-Central China From a Joint Inversion of Surface and Body Waves and Its Tectonic Implications[J/OL]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022667. DOI: 10.1029/2021JB02 2667.
[190] LI J, DONG S, CAWOOD P A, et al. An Andean-Type Retro-Arc Foreland System beneath Northwest South China Revealed by SINOPROBE Profiling[J/OL]. Earth and Planetary Sci-ence Letters, 2018, 490: 170-179. DOI: 10.1016/j.epsl.2018.03.008.
[191] RYCHERT C A, SHEARER P M. A Global View of the Lithosphere-Asthenosphere Boundary [J/OL]. Science, 2009, 324(5926): 495-498. DOI: 10.1126/science.1169754.
[192] EATON D W, DARBYSHIRE F, EVANS R L, et al. The Elusive Lithosphere–Asthenosphere Boundary (LAB) beneath Cratons[J/OL]. Lithos, 2009, 109(1-2): 1-22. DOI: 10.1016/j.lithos .2008.05.009.
[193] HU S, WANG J. Heat Flow, Deep Temperature and Thermal Structure across the Orogenic Belts in Southeast China[J]. Journal of Geodynamics, 2000.
[194] ZHOU L, XIE J, SHEN W, et al. The Structure of the Crust and Uppermost Mantle beneath South China from Ambient Noise and Earthquake Tomography: Crust and Uppermost Mantle beneath S China[J/OL]. Geophysical Journal International, 2012, 189(3): 1565-1583. DOI: 10.1111/j.1365-246X.2012.05423.x.
[195] LI Q, GAO R, WU F T, et al. Seismic Structure in the Southeastern China Using Teleseismic Receiver Functions[J/OL]. Tectonophysics, 2013, 606: 24-35. DOI: 10.1016/j.tecto.2013.06. 033.
[196] PRIESTLEY K, DEBAYLE E, MCKENZIE D, et al. Upper Mantle Structure of Eastern Asia from Multimode Surface Waveform Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2006, 111(B10): 2005JB004082. DOI: 10.1029/2005JB004082.
[197] 张耀阳, 陈凌, 艾印双, 等. 利用 S 波接收函数研究华南块体的岩石圈结构[J]. 地球物理学报, 2018, 61(1): 138-149.
[198] DENG Y, LI J, PENG T, et al. Lithospheric Structure in the Cathaysia Block (South China) and Its Implication for the Late Mesozoic Magmatism[J/OL]. Physics of the Earth and Planetary Interiors, 2019, 291: 24-34. DOI: 10.1016/j.pepi.2019.04.003.
[199] CHEN L, CHENG C, WEI Z. Seismic Evidence for Significant Lateral Variations in Lithospheric Thickness beneath the Central and Western North China Craton[J/OL]. Earth and Plan-etary Science Letters, 2009, 286(1-2): 171-183. DOI: 10.1016/j.epsl.2009.06.022.
[200] HUANG H, TOSI N, CHANG S J, et al. Receiver Function Imaging of the Mantle Transition Zone beneath the S Outh C Hina B Lock[J/OL]. Geochemistry, Geophysics, Geosystems, 2015, 16(10): 3666-3678. DOI: 10.1002/2015GC005978.
[201] ZHENG T Y, ZHAO L, HE Y M, et al. Seismic Imaging of Crustal Reworking and Lithospheric Modification in Eastern China[J/OL]. Geophysical Journal International, 2014, 196(2): 656-670. DOI: 10.1093/gji/ggt420.
[202] ROSENBAUM G, WEINBERG R F, Regenauer-Lieb K. The Geodynamics of Lithospheric Extension[J/OL]. Tectonophysics, 2008, 458(1-4): 1-8. DOI: 10.1016/j.tecto.2008.07.016.
[203] KOPTEV A, CALAIS E, BUROV E, et al. Dual Continental Rift Systems Generated by Plume–Lithosphere Interaction[J/OL]. Nature Geoscience, 2015, 8(5): 388-392. DOI: 10.1038/ngeo 2401.
[204] WERNICKE B, BURCHFIEL B. Modes of Extensional Tectonics[J/OL]. Journal of Structural Geology, 1982, 4(2): 105-115. DOI: 10.1016/0191-8141(82)90021-9.
[205] CORTI G, BONINI M, CONTICELLI S, et al. Analogue Modelling of Continental Extension: A Review Focused on the Relations between the Patterns of Deformation and the Presence of Magma[J/OL]. Earth-Science Reviews, 2003, 63(3-4): 169-247. DOI: 10.1016/S0012-825 2(03)00035-7.
[206] ZIEGLER P A, CLOETINGH S. Dynamic Processes Controlling Evolution of Rifted Basins [J/OL]. Earth-Science Reviews, 2004, 64(1-2): 1-50. DOI: 10.1016/S0012-8252(03)00041-2.
[207] CLOETINGH S, BUROV E, MATENCO L, et al. The Moho in Extensional Tectonic Settings: Insights from Thermo-Mechanical Models[J/OL]. Tectonophysics, 2013, 609: 558-604. DOI: 10.1016/j.tecto.2013.06.010.
[208] LI C, WANG Z, LÜ Q, et al. Mesozoic Tectonic Evolution of the Eastern South China Block: A Review on the Synthesis of the Regional Deformation and Magmatism[J/OL]. Ore Geology Reviews, 2021, 131: 104028. DOI: 10.1016/j.oregeorev.2021.104028.
[209] LI J, DONG S, CAWOOD P A, et al. Cretaceous Long-Distance Lithospheric Extension and Surface Response in South China[J/OL]. Earth-Science Reviews, 2023, 243: 104496. DOI: 10.1016/j.earscirev.2023.104496.
[210] LI C, VAN DER HILST R D. Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2010, 115(B7): 2009JB006882. DOI: 10.1029/2009JB006882.
[211] GUO F, WU Y, ZHANG B, et al. Magmatic Responses to Cretaceous Subduction and Tearing of the Paleo-Pacific Plate in SE China: An Overview[J/OL]. Earth-Science Reviews, 2021, 212: 103448. DOI: 10.1016/j.earscirev.2020.103448.
[212] ZHANG H, LÜ Q T, WANG X L, et al. Seismically Imaged Lithospheric Delamination and Its Controls on the Mesozoic Magmatic Province in South China[J/OL]. Nature Communications, 2023, 14(1): 2718. DOI: 10.1038/s41467-023-37855-5.
[213] REN J, TAMAKI K, LI S, et al. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas[J/OL]. Tectonophysics, 2002, 344(3-4): 175-205. DOI: 10.1016/S0040-1951(01)00271-2.
[214] SUO Y, LI S, CAO X, et al. Mesozoic-Cenozoic Basin Inversion and Geodynamics in East China: A Review[J/OL]. Earth-Science Reviews, 2020, 210: 103357. DOI: 10.1016/j.earscire v.2020.103357.
[215] 徐嘉炜, 朱光. 中国东部郯庐断裂带构造模式讨论[J]. 华北地质矿产杂志, 1995(2): 121-134.
[216] GILDER S A, KELLER G R, LUO M, et al. Eastern Asia and the Western Pacific Timing and Spatial Distribution of Rifting in China[J/OL]. Tectonophysics, 1991, 197(2): 225-243. DOI: 10.1016/0040-1951(91)90043-R.
[217] LIU L, PENG D, LIU L, et al. East Asian Lithospheric Evolution Dictated by Multistage Mesozoic Flat-Slab Subduction[J/OL]. Earth-Science Reviews, 2021, 217: 103621. DOI: 10.1016/j.earscirev.2021.103621.
[218] ZOU H, ZINDLER A, XU X, et al. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance [J/OL]. Chemical Geology, 2000, 171(1-2): 33-47. DOI: 10.1016/S0009-2541(00)00243-6.
[219] SUN P, NIU Y, GUO P, et al. Elemental and Sr–Nd–Pb Isotope Geochemistry of the Cenozoic Basalts in Southeast China: Insights into Their Mantle Sources and Melting Processes[J/OL]. Lithos, 2017, 272–273: 16-30. DOI: 10.1016/j.lithos.2016.12.005.
[220] ZHANG Y, YAO H, XU M, et al. Upper Mantle Shear Wave Velocity Structure of Southeastern China: Seismic Evidence for Magma Activities in the Late Mesozoic to the Cenozoic[J/OL]. Geochemistry, Geophysics, Geosystems, 2020, 21(8). DOI: 10.1029/2020GC009103.
[221] BURKE K, TORSVIK T H. Derivation of Large Igneous Provinces of the Past 200 Million Years from Long-Term Heterogeneities in the Deep Mantle[J/OL]. Earth and Planetary Science Letters, 2004, 227(3-4): 531-538. DOI: 10.1016/j.epsl.2004.09.015.
[222] PHILLIPS E H, SIMS K W, Blichert-Toft J, et al. The Nature and Evolution of Mantle Up-welling at Ross Island, Antarctica, with Implications for the Source of HIMU Lavas[J/OL]. Earth and Planetary Science Letters, 2018, 498: 38-53. DOI: 10.1016/j.epsl.2018.05.049.
[223] PILIDOU S, PRIESTLEY K, DEBAYLE E, et al. Rayleigh Wave Tomography in the North Atlantic: High Resolution Images of the Iceland, Azores and Eifel Mantle Plumes[J/OL]. Lithos, 2005, 79(3-4): 453-474. DOI: 10.1016/j.lithos.2004.09.012.
[224] SHAW A M, HAURI E H, BEHN M D, et al. Long-Term Preservation of Slab Signatures in the Mantle Inferred from Hydrogen Isotopes[J/OL]. Nature Geoscience, 2012, 5(3): 224-228. DOI: 10.1038/ngeo1406.
[225] CHEN Y J, PEI S. Tomographic Structure of East Asia: II. Stagnant Slab above 660 Km Discontinuity and Its Geodynamic Implications[J/OL]. Earthquake Science, 2010, 23(6): 613-626. DOI: 10.1007/s11589-010-0760-4.
[226] UYEDA S, KANAMORI H. Back-arc Opening and the Mode of Subduction[J/OL]. Journal of Geophysical Research: Solid Earth, 1979, 84(B3): 1049-1061. DOI: 10.1029/JB084iB03p01 049.
[227] STERNAI P, JOLIVET L, MENANT A, et al. Driving the Upper Plate Surface Deformation by Slab Rollback and Mantle Flow[J/OL]. Earth and Planetary Science Letters, 2014, 405: 110-118. DOI: 10.1016/j.epsl.2014.08.023.
[228] MAGNI V. The Effects of Back-Arc Spreading on Arc Magmatism[J/OL]. Earth and Planetary Science Letters, 2019, 519: 141-151. DOI: 10.1016/j.epsl.2019.05.009.
[229] CURRIE C. The Thermal Effects of Steady-State Slab-Driven Mantle Flow above a Subducting Plate: The Cascadia Subduction Zone and Backarc[J/OL]. Earth and Planetary Science Letters, 2004, 223(1-2): 35-48. DOI: 10.1016/j.epsl.2004.04.020.
[230] GREEN D H, FALLOON T J. Mantle-Derived Magmas: Intraplate, Hot-Spots and Mid-Ocean Ridges[J/OL]. Science Bulletin, 2015, 60(22): 1873-1900. DOI: 10.1007/s11434-015-0920-y.
[231] NIU Y. Geological Understanding of Plate Tectonics: Basic Concepts, Illustrations, Examples and New Perspectives[J/OL]. Global Tectonics and Metallogeny, 2018, 10(1): 23-46. DOI: 10.1127/gtm/2014/0009.
[232] 张昌榕. 中国中东部非均匀网格远震层析成像方法及应用研究[D]. 中国地质大学 (北京), 2017.
[233] 吕庆田, 董树文, 史大年, 等. 长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测 (SinoProbe) 综述[J]. 岩石学报, 2014, 30(4): 889-906.
[234] ZHAO L, ZHENG T, LU G. Distinct Upper Mantle Deformation of Cratons in Response to Subduction: Constraints from SKS Wave Splitting Measurements in Eastern China[J/OL]. Gond-wana Research, 2013, 23(1): 39-53. DOI: 10.1016/j.gr.2012.04.007.
修改评论