中文版 | English
题名

下扬子及邻区三维高分辨率岩石圈结构双平面波成像研究

其他题名
HIGH-RESOLUTION THREE-DIMENSIONAL LITHOSPHERIC STRUCTURE OF THE LOWER YANGTZE REGION INFFERD FROM TWO-PLANE SURFACE-WAVE TOMOGRAPHY
姓名
姓名拼音
WU Zixuan
学号
12132179
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
郭震
导师单位
海洋科学与工程系
论文答辩日期
2024-05-15
论文提交日期
2024-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

下扬子及其邻区位于多个构造单元的交汇处,经历了长期复杂的地质活动,具有独特、高度改造的岩石圈。刻画该区域精细的岩石圈结构是理解其形成和演化的关键,然而,该区域缺乏天然地震研究,尤其是深部资料。前人的相关研究往往专注于大尺度的区域,而下扬子地区通常位于这些研究区域的边缘,结果可用性不高。由于缺乏高分辨率地球物理数据集,研究区域的岩石圈结构缺乏精细可靠的成像结果,关于其形成和随后的演化过程存在争议。研究下扬子及其邻区的岩石圈和上地幔的结构特征有助于理解该地区晚中生代以来普遍存在的岩石圈减薄现象,剧烈的岩浆活动,以及与之相关的深部动力学机制。此外,研究区域涵盖了江浙沪等沿海重要经济城市,使本研究具有重要的经济意义。本文利用南方科技大学在上海周围布设的密集台阵记录的地震数据,结合研究区域其他单位通过固定地震台和流动地震台收集的资料。利用远震双平面波层析成像技术得到了 20 到 143 秒周期的 Rayleigh 波相速度频散曲线,同时结合了背景噪声的 8 到 30 秒短周期频散曲线,通过剪切波反演建立了下扬子及其邻区精细的岩石圈三维速度结构。
高分辨率的速度图像揭示了更多细节。下扬子岩石圈整体较薄,剪切波速较低,与华北克拉通东部的岩石圈速度结构相似。江南断裂及苏北地区岩石圈最薄,推测是岩石圈拆沉导致的薄弱带。在江南断裂两侧观测到岩浆上涌中心,沿着深断裂向苏北盆地汇聚,并侵蚀了底部岩石圈。
本文认为,下扬子岩石圈的破坏和减薄与华北克拉通东部经历了相同的地质演化,岩石圈改造可能是由太平洋板块深部俯冲及其诱导的其他机制所影响。太平洋板块平面俯冲的力学效应可能导致岩石圈整体变薄,江南断裂带减薄程度最大,可能发生过岩石圈拆沉。此后,太平洋板块后撤,在岩石圈的伸展背景下发育了苏北盆地等断陷盆地。俯冲作用重新激活了一些古老的、岩石圈尺度的缝合线或断裂带。拆沉的岩石圈掉落到软流圈,导致热地幔上涌,同时滞留板块脱水加剧了这一过程。部分熔融地幔在伸展断层系统下,受到岩石圈形态差异影响,沿着薄弱带向上迁移,影响了地表地貌,也为下扬子广泛的岩浆岩和多金属矿床的形成提供了有利条件。

其他摘要

The Lower Yangtze and its surrounding regions are situated at the convergence of multiple tectonic units, undergoing prolonged and intricate geological processes, resulting in a distinct and extensively modified lithosphere. Characterizing the detailed lithospheric structure of this area is key to unraveling its formation and evolution. However, there is a scarcity of natural earthquake studies conducted in this region, with previous research often focusing on broader scales and the lack of deep data. Previous studies often focused on large-scale areas, and the Lower Yangtze region is usually located at the edge of these large-scale areas, which lead to less availability. The absence of high-resolution geophys-ical datasets has hindered the precise and reliable imaging of the lithospheric structure in this region, prompting significant interest among researchers in unraveling its formation and subsequent evolution. Investigating the formation and evolution mechanisms of the lithosphere and upper mantle can provide insights into the deep dynamic processes since the Cenozoic. Moreover, the Lower Yangtze and its neighboring areas encompass vital economic cities along the Jiangsu and Zhejiang, underscoring the economic importance of such studies.
This study utilizes seismic data recorded by a dense array deployed by Southern Uni-versity of Science and Technology around Shanghai, as well as data from fixed and mobile seismic stations in the study area. By employing teleseismic two-plane wave tomography, the research obtained Rayleigh wave dispersion curves ranging from 20 to 143 seconds. These curves, combined with short-period 8 to 30-second dispersion curves of ambient noise tomography, were inverted to develop a detailed three-dimensional shear velocity model of the lithosphere in the Lower Yangtze region and its neighboring areas. High-resolution velocity images reveal more details, showing that the Lower Yangtze lithosphere is overall thinner with lower shear wave speeds, resembling the velocity struc-ture of the lithosphere in the eastern North China Craton. The Jiangnan fault and the northern Jiangsu area have the thinnest lithosphere, which is speculated to be a weak zone caused by lithosphere delamination. Two Magma upwelling centers are clearly visible on either side of the Jiangnan fault, converging woward the Subei Basin along the deep fault and causing erosion of the lithosphere.
This study suggests that the destruction and thinning of the Lower Yangtze lithosphere underwent similar geological evolution as that of the eastern North China Craton. The modification of the lithosphere may have been influenced by the deep subduction of the Pacific plate and other mechanisms induced by it. The mechanical impact of the Pa-cific subduction may cause the overall thinning of the lithosphere, with the greatest degree of thinning near the Jiangnan fault zone, where delamination of the lithosphere may have occurred. As the Pacific Plate retreated, rift basins such as the Subei Basin formed due to lithospheric extension. Subduction has reactivated ancient, lithospheric-scale sutures or fault zones. Delamination of the lithosphere leads to an upwelling of hot material in the asthenosphere, while dehydration of stagnant plates further intensifies this phenomenon. Within the extensional fault system, molten mantle material is influenced by variations in lithospheric structure and moves upwards along weak zones, impacting surface landforms and creating conditions conducive to the development of abundant magmatic rocks and polymetallic deposits in the Lower Yangtze region.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine Learning for Data-Driven Discovery in Solid Earth Geoscience[J/OL]. Science, 2019, 363(6433): eaau0323. DOI: 10.1 126/science.aau0323.
[2] ISHAK B. Geodynamics (3rd Edition), by Donald L. Turcotte: Scope: Textbook. Level: Ad-vanced Undergraduate, Postgraduate, Teacher[J/OL]. Contemporary Physics, 2017, 58(1): 108-108. DOI: 10.1080/00107514.2016.1249522.
[3] CHATTOPADHYAY A, SUBEL A, HASSANZADEH P. Data-Driven Super-Parameterization Using Deep Learning: Experimentation With Multiscale Lorenz 96 Systems and Trans-fer Learning[J/OL]. Journal of Advances in Modeling Earth Systems, 2020, 12(11): e2020MS002084. DOI: 10.1029/2020MS002084.
[4] 张明辉, 刘有山, 侯爵, 等. 近地表地震层析成像方法综述[J]. 地球物理学进展, 2019, 34 (1): 48-63.
[5] MOUSAVI S M, BEROZA G C. Deep-Learning Seismology[J/OL]. Science, 2022, 377(6607): eabm4470. DOI: 10.1126/science.abm4470.
[6] AKI K, LEE W H K. Determination of Three-Dimensional Velocity Anomalies under a Seismic Array Using First P Arrival Times from Local Earthquakes: 1. A Homogeneous Initial Model [J/OL]. Journal of Geophysical Research, 1976, 81(23): 4381-4399. DOI: 10.1029/JB081i02 3p04381.
[7] FORSYTH D W. Array Analysis of Two-Dimensional Variations in Surface Wave Phase Ve-locity and Azimuthal Anisotropy in the Presence of Multipathing Interference[Z]. 2005: 17.
[8] 徐峣. 下扬子及邻区壳幔结构及深部过程约束研究[D]. 中国地质大学 (北京), 2017.
[9] CHARVET J. The Neoproterozoic–Early Paleozoic Tectonic Evolution of the South China Block: An Overview[J/OL]. Journal of Asian Earth Sciences, 2013, 74: 198-209. DOI: 10.101 6/j.jseaes.2013.02.015.
[10] FAURE M, LEPVRIER C, NGUYEN V V, et al. The South China Block-Indochina Collision: Where, When, and How?[J/OL]. Journal of Asian Earth Sciences, 2014, 79: 260-274. DOI: 10.1016/j.jseaes.2013.09.022.
[11] SHU L, YAO J, WANG B, et al. Neoproterozoic Plate Tectonic Process and Phanerozoic Geody-namic Evolution of the South China Block[J/OL]. Earth-Science Reviews, 2021, 216: 103596. DOI: 10.1016/j.earscirev.2021.103596.
[12] 吕庆田, 孟贵祥, 严加永. 长江中下游成矿带铁 - 铜成矿系统结构的地球物理探测:综合分析[J/OL]. Earth Science Frontiers, 2020, 27(2). DOI: 13745/j.esf.sf.2020.3.1.
[13] OUYANG L, LI H, LÜ Q, et al. Crustal and Uppermost Mantle Velocity Structure and Its Relationship with the Formation of Ore Districts in the Middle–Lower Yangtze River Region [J/OL]. Earth and Planetary Science Letters, 2014, 408: 378-389. DOI: 10.1016/j.epsl.2014.10 .017.
[14] 李伦, 蔡晨, 付媛媛, 等. 多种面波层析成像方法及其在青藏高原的应用与对比[J/OL]. 地球与行星物理论评 (中英文), 2022, 54(2): 174-196. DOI: 10.19975/j.dqyxx.2022-019.
[15] GAO L, ZHANG H, GAO L, et al. High-Resolution Vs Tomography of South China by Joint Inversion of Body Wave and Surface Wave Data[J/OL]. Tectonophysics, 2022, 824: 229228. DOI: 10.1016/j.tecto.2022.229228.
[16] DMITRIENKO L V, LI S Z, CAO X Z, et al. Large-scale Morphotectonics of the Ocean-continent Transition Zone between the Western Pacific Ocean and the East Asian Continent: A Link of Deep Process to the Earth ’ s Surface System[J/OL]. Geological Journal, 2016, 51(S1): 263-285. DOI: 10.1002/gj.2845.
[17] YU S, LI S, ZHANG J, et al. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: A Review of the North Qaidam UHP Belt, NW China [J/OL]. Earth-Science Reviews, 2019, 191: 190-211. DOI: 10.1016/j.earscirev.2019.02.016.
[18] 张昌榕, 张贵宾, 江国明, 等. 下扬子及周边地区深部泊松比结构及深部动力过程约束研究[J]. 地球物理学报, 2018, 61(11): 4418-4435.
[19] ZHAI M G, SANTOSH M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview[J/OL]. Gondwana Research, 2011, 20(1): 6-25. DOI: 10.1016/j.gr.2011. 02.005.
[20] 毛建仁, 陶奎元, 邢光福, 等. 中国东南大陆边缘中新生代地幔柱活动的岩石学记录[J]. 地球学报, 1999(3): 253-258.
[21] 牟传龙, 许效松. 华南地区早古生代沉积演化与油气地质条件[J]. 沉积与特提斯地质, 2010, 30(3): 24-29.
[22] WONG J, SUN M, XING G, et al. Zircon U–Pb and Hf Isotopic Study of Mesozoic Felsic Rocks from Eastern Zhejiang, South China: Geochemical Contrast between the Yangtze and Cathaysia Blocks[J/OL]. Gondwana Research, 2011, 19(1): 244-259. DOI: 10.1016/j.gr.2010.06.004.
[23] ZHAO G. Jiangnan Orogen in South China: Developing from Divergent Double Subduction [J/OL]. Gondwana Research, 2015, 27(3): 1173-1180. DOI: 10.1016/j.gr.2014.09.004.
[24] DUAN L, MENG Q R, ZHANG C L, et al. Tracing the Position of the South China Block in Gondwana: U–Pb Ages and Hf Isotopes of Devonian Detrital Zircons[J/OL]. Gondwana Research, 2011, 19(1): 141-149. DOI: 10.1016/j.gr.2010.05.005.
[25] MAO X, WANG Q, LIU S, et al. Effective Elastic Thickness and Mechanical Anisotropy of South China and Surrounding Regions[J/OL]. Tectonophysics, 2012, 550–553: 47-56. DOI: 10.1016/j.tecto.2012.05.019.
[26] XIA Y, XU X. A Fragment of Columbia Supercontinent: Insight for Cathaysia Block Basement From Tectono-Magmatic Evolution and Mantle Heterogeneity[J/OL]. Geophysical Research Letters, 2019, 46(4): 2012-2024. DOI: 10.1029/2018GL081882.
[27] XIAN H, ZHANG S, LI H, et al. How Did South China Connect to and Separate From Gond-wana? New Paleomagnetic Constraints From the Middle Devonian Red Beds in South China [J/OL]. Geophysical Research Letters, 2019, 46(13): 7371-7378. DOI: 10.1029/2019GL0831 23.
[28] YIN C, LIN S, DAVIS D W, et al. 2.1–1.85Ga Tectonic Events in the Yangtze Block, South China: Petrological and Geochronological Evidence from the Kongling Complex and Implica-tions for the Reconstruction of Supercontinent Columbia[J/OL]. Lithos, 2013, 182–183: 200-210. DOI: 10.1016/j.lithos.2013.10.012.
[29] ZHAO G, CAWOOD P A. Precambrian Geology of China[J/OL]. Precambrian Research, 2012, 222–223: 13-54. DOI: 10.1016/j.precamres.2012.09.017.
[30] 徐纪人, 赵志新. 苏鲁—大别造山带及其周围现代地壳应力场与构造运动区域特征[J]. 地质学报, 2006(12): 1956-1965.
[31] DAI L, LI S, LI Z H, et al. Dynamics of Exhumation and Deformation of HP-UHP Orogens in Double Subduction-Collision Systems: Numerical Modeling and Implications for the Western Dabie Orogen[J/OL]. Earth-Science Reviews, 2018, 182: 68-84. DOI: 10.1016/j.earscirev.20 18.05.005.
[32] LI S, KUSKY T M, ZHAO G, et al. Thermochronological Constraints on Two-Stage Extrusion of HP/UHP Terranes in the Dabie–Sulu Orogen, East-Central China[J/OL]. Tectonophysics, 2011, 504(1-4): 25-42. DOI: 10.1016/j.tecto.2011.01.017.
[33] MAO J, LI Z, YE H. Mesozoic Tectono-Magmatic Activities in South China: Retrospect and Prospect[J/OL]. Science China Earth Sciences, 2014, 57(12): 2853-2877. DOI: 10.1007/s114 30-014-5006-1.
[34] 胡红雷, 朱光. 苏北地区前陆变形特征与形成机制[J/OL]. 大地构造与成矿学, 2013, 37(3): 366-376. DOI: 10.16539/j.ddgzyckx.2013.03.010.
[35] SAFONOVA I. Juvenile versus Recycled Crust in the Central Asian Orogenic Belt: Implica-tions from Ocean Plate Stratigraphy, Blueschist Belts and Intra-Oceanic Arcs[J/OL]. Gondwana Research, 2017, 47: 6-27. DOI: 10.1016/j.gr.2016.09.003.
[36] JOLIVET L, FACCENNA C, BECKER T, et al. Mantle Flow and Deforming Continents: From India-Asia Convergence to Pacific Subduction[J/OL]. Tectonics, 2018, 37(9): 2887-2914. DOI: 10.1029/2018TC005036.
[37] WANG Y, WANG Y, ZHANG Y, et al. Triassic Two-Stage Intra-Continental Orogensis of the South China Block, Driven by Paleotethyan Closure and Interactions with Adjoining Blocks [J/OL]. Journal of Asian Earth Sciences, 2021, 206: 104648. DOI: 10.1016/j.jseaes.2020.1046 48.
[38] ZHANG Y, SHI D, LÜ Q, et al. The Crustal Thickness and Composition in the Eastern South China Block Constrained by Receiver Functions: Implications for the Geological Setting and Metallogenesis[J/OL]. Ore Geology Reviews, 2021, 130: 103988. DOI: 10.1016/j.oregeorev. 2021.103988.
[39] CHEN J Y, YANG J H, ZHANG J H, et al. Construction of a Highly Silicic Upper Crust in Southeastern China: Insights from the Cretaceous Intermediate-to-Felsic Rocks in Eastern Zhejiang[J/OL]. Lithos, 2021, 402–403: 106012. DOI: 10.1016/j.lithos.2021.106012.
[40] GOLDFARB R J, TAYLOR R D, COLLINS G S, et al. Phanerozoic Continental Growth and Gold Metallogeny of Asia[J/OL]. Gondwana Research, 2014, 25(1): 48-102. DOI: 10.1016/j. gr.2013.03.002.
[41] LI J, ZHANG Y, DONG S, et al. Cretaceous Tectonic Evolution of South China: A Preliminary Synthesis[J/OL]. Earth-Science Reviews, 2014, 134: 98-136. DOI: 10.1016/j.earscirev.2014.0 3.008.
[42] MAO J, TAKAHASHI Y, KEE W S, et al. Characteristics and Geodynamic Evolution of In-dosinian Magmatism in South China: A Case Study of the Guikeng Pluton[J/OL]. Lithos, 2011, 127(3-4): 535-551. DOI: 10.1016/j.lithos.2011.09.011.
[43] CHEN L. Concordant Structural Variations from the Surface to the Base of the Upper Mantle in the North China Craton and Its Tectonic Implications[J/OL]. Lithos, 2010, 120(1-2): 96-115. DOI: 10.1016/j.lithos.2009.12.007.
[44] LI S, SANTOSH M, ZHAO G, et al. Intracontinental Deformation in a Frontier of Super-Convergence: A Perspective on the Tectonic Milieu of the South China Block[J/OL]. Journal of Asian Earth Sciences, 2012, 49: 313-329. DOI: 10.1016/j.jseaes.2011.07.026.
[45] ZHANG G, GUO A, WANG Y, et al. Tectonics of South China Continent and Its Implications [J/OL]. Science China Earth Sciences, 2013, 56(11): 1804-1828. DOI: 10.1007/s11430-013-4 679-1.
[46] WANG Y, TENG J, TIAN X. Crust and Upper Mantle Structure beneath Southwest China and Its Implications for Mesozoic Multistage Gold Deposits[J/OL]. Tectonophysics, 2022, 838: 229474. DOI: 10.1016/j.tecto.2022.229474.
[47] DENG J, WANG Q. Gold Mineralization in China: Metallogenic Provinces, Deposit Types and Tectonic Framework[J/OL]. Gondwana Research, 2016, 36: 219-274. DOI: 10.1016/j.gr.201 5.10.003.
[48] YIN A. Cenozoic Tectonic Evolution of Asia: A Preliminary Synthesis[J/OL]. Tectonophysics, 2010, 488(1-4): 293-325. DOI: 10.1016/j.tecto.2009.06.002.
[49] LI Z X, LI X H. Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model[J/OL]. Geology, 2007, 35(2): 179. DOI: 10.1130/G23193A.1.
[50] Khin Zaw, MEFFRE S, LAI C K, et al. Tectonics and Metallogeny of Mainland Southeast Asia — A Review and Contribution[J/OL]. Gondwana Research, 2014, 26(1): 5-30. DOI: 10.1016/j.gr.2013.10.010.
[51] HE C, SANTOSH M, DONG S. Continental Dynamics of Eastern China: Insights from Tectonic History and Receiver Function Analysis[J/OL]. Earth-Science Reviews, 2015, 145: 9-24. DOI: 10.1016/j.earscirev.2015.02.006.
[52] Elkins-Tanton L T. Continental Magmatism Caused by Lithospheric Delamination[M/OL]. Geological Society of America, 2005. DOI: 10.1130/0-8137-2388-4.449.
[53] Holloway. North Palawan Block, Philippines–Its Relation to Asian Mainland and Role in Evo-lution of South China Sea[J/OL]. AAPG Bulletin, 1982, 66. DOI: 10.1306/03B5A7A5-16D 1-11D7-8645000102C1865D.
[54] LIU C Z, LIU Z C, WU F Y, et al. Mesozoic Accretion of Juvenile Sub-Continental Lithospheric Mantle beneath South China and Its Implications: Geochemical and Re–Os Isotopic Results from Ningyuan Mantle Xenoliths[J/OL]. Chemical Geology, 2012, 291: 186-198. DOI: 10.1 016/j.chemgeo.2011.10.006.
[55] XU S, UNSWORTH M J, HU X, et al. Magnetotelluric Evidence for Asymmetric Simple Shear Extension and Lithospheric Thinning in South China[J/OL]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 104-124. DOI: 10.1029/2018JB016505.
[56] ZHU R, ZHAO G, XIAO W, et al. Origin, Accretion, and Reworking of Continents[J/OL]. Reviews of Geophysics, 2021, 59(3): e2019RG000689. DOI: 10.1029/2019RG000689.
[57] MERCIER J, HOU M, VERGÉLY P, et al. Structural and Stratigraphical Constraints on the Kinematics History of the Southern Tan–Lu Fault Zone during the Mesozoic Anhui Province, China[J/OL]. Tectonophysics, 2007, 439(1-4): 33-66. DOI: 10.1016/j.tecto.2007.03.001.
[58] 常印佛, 周涛发, 范裕. 长江中下游成矿带矿产勘查-科研工作回顾和展望[J]. 岩石学报, 2017, 33(11): 3333-3352.
[59] ZHU G, NIU M, XIE C, et al. Sinistral to Normal Faulting along the Tan-Lu Fault Zone: Evidence for Geodynamic Switching of the East China Continental Margin[J/OL]. The Journal of Geology, 2010, 118(3): 277-293. DOI: 10.1086/651540.
[60] ZHOU T, FAN Y, YUAN F, et al. Geochronology of the Volcanic Rocks in the Lu-Zong Basin and Its Significance[J/OL]. Science in China Series D: Earth Sciences, 2008, 51(10): 1470-1482. DOI: 10.1007/s11430-008-0111-7.
[61] LÜ Q, SHI D, LIU Z, et al. Crustal Structure and Geodynamics of the Middle and Lower Reaches of Yangtze Metallogenic Belt and Neighboring Areas: Insights from Deep Seismic Reflection Profiling[J/OL]. Journal of Asian Earth Sciences, 2015, 114: 704-716. DOI: 10.101 6/j.jseaes.2015.03.022.
[62] ZHU G, JIANG D, ZHANG B, et al. Destruction of the Eastern North China Craton in a Backarc Setting: Evidence from Crustal Deformation Kinematics[J/OL]. Gondwana Research, 2012, 22 (1): 86-103. DOI: 10.1016/j.gr.2011.08.005.
[63] LI S, SUO Y, LI X, et al. Mesozoic Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone to Subduction of the Paleo-Pacific Plate[J/OL]. Earth-Science Re-views, 2019, 192: 91-137. DOI: 10.1016/j.earscirev.2019.03.003.
[64] ZHOU H W, CLAYTON R W. P and S Wave Travel Time Inversions for Subducting Slab under the Island Arcs of the Northwest Pacific[J/OL]. Journal of Geophysical Research: Solid Earth, 1990, 95(B5): 6829-6851. DOI: 10.1029/JB095iB05p06829.
[65] BIJWAARD H, SPAKMAN W, ENGDAHL E R. Closing the Gap between Regional and Global Travel Time Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 1998, 103 (B12): 30055-30078. DOI: 10.1029/98JB02467.
[66] FUKAO Y, WIDIYANTORO S, OBAYASHI M. Stagnant Slabs in the Upper and Lower Mantle Transition Region[J/OL]. Reviews of Geophysics, 2001, 39(3): 291-323. DOI: 10.1029/1999 RG000068.
[67] ZHAO D. Seismic Structure and Origin of Hotspots and Mantle Plumes[J/OL]. Earth and Planetary Science Letters, 2001, 192(3): 251-265. DOI: 10.1016/S0012-821X(01)00465-4.
[68] ZHAO D. Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics[J/OL]. Physics of the Earth and Planetary Interiors, 2004, 146(1-2): 3-34. DOI: 10.1016/j.pepi.2003.07.032.
[69] LU L, JIANG S, LI S, et al. Evolution of Meso-Cenozoic Subduction Zones in the Ocean-Continent Connection Zone of the Eastern South China Block: Insights from Gravity and Mag-netic Anomalies[J/OL]. Gondwana Research, 2022, 102: 151-166. DOI: 10.1016/j.gr.2020.12 .010.
[70] ZHAO F, SUO Y, LIU L, et al. Fine Lithospheric Structure Controlling Meso-Cenozoic Tectono-Magmatism in the South China Block: Inference from a Multidisciplinary Analysis [J/OL]. Earth-Science Reviews, 2023, 244: 104524. DOI: 10.1016/j.earscirev.2023.104524.
[71] WU J, SUPPE J, LU R, et al. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods[J/OL]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4670-4741. DOI: 10.1002/2016JB012923.
[72] FUKAO Y, OBAYASHI M, INOUE H, et al. Subducting Slabs Stagnant in the Mantle Transition Zone[J/OL]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4809-4822. DOI: 10.1029/91JB02749.
[73] WEI W, XU J, ZHAO D, et al. East Asia Mantle Tomography: New Insight into Plate Subduc-tion and Intraplate Volcanism[J/OL]. Journal of Asian Earth Sciences, 2012, 60: 88-103. DOI: 10.1016/j.jseaes.2012.08.001.
[74] LIU X, ZHAO D, LI S, et al. Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications[J/OL]. Earth and Planetary Science Letters, 2017, 464: 166-174. DOI: 10.1016/j.epsl.2017.02.024.
[75] LIU L, LIU L, XU Y G. Mesozoic Intraplate Tectonism of East Asia Due to Flat Subduction of a Composite Terrane Slab[J/OL]. Earth-Science Reviews, 2021, 214: 103505. DOI: 10.1016/ j.earscirev.2021.103505.
[76] HUANG J, ZHAO D. High-resolution Mantle Tomography of China and Surrounding Regions [J/OL]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9): 2005JB004066. DOI: 10.1029/2005JB004066.
[77] ZHAO D, OHTANI E. Deep Slab Subduction and Dehydration and Their Geodynamic Conse-quences: Evidence from Seismology and Mineral Physics[J/OL]. Gondwana Research, 2009, 16(3-4): 401-413. DOI: 10.1016/j.gr.2009.01.005.
[78] SETON M, MÜLLER R, ZAHIROVIC S, et al. Global Continental and Ocean Basin Re-constructions since 200Ma[J/OL]. Earth-Science Reviews, 2012, 113(3-4): 212-270. DOI: 10.1016/j.earscirev.2012.03.002.
[79] SETON M, FLAMENT N, WHITTAKER J, et al. Ridge Subduction Sparked Reorganization of the Pacific Plate-mantle System 60–50 Million Years Ago[J/OL]. Geophysical Research Letters, 2015, 42(6): 1732-1740. DOI: 10.1002/2015GL063057.
[80] MÜLLER R D, SETON M, ZAHIROVIC S, et al. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup[J/OL]. Annual Review of Earth and Plan-etary Sciences, 2016, 44(1): 107-138. DOI: 10.1146/annurev-earth-060115-012211.
[81] LIU Y, LIU L, LI Y, et al. Global Back-Arc Extension Due to Trench-Parallel Mid-Ocean Ridge Subduction[J/OL]. Earth and Planetary Science Letters, 2022, 600: 117889. DOI: 10.1016/j. epsl.2022.117889.
[82] 李三忠, 索艳慧, 周洁, 等. 华南洋陆过渡带构造演化:特提斯构造域向太平洋构造域的转换过程与机制[J]. 地质力学学报, 2022, 28(5): 683-704.
[83] SUO Y, LI S, YU S, et al. Cenozoic Tectonic Jumping and Implications for Hydrocarbon Accu-mulation in Basins in the East Asia Continental Margin[J/OL]. Journal of Asian Earth Sciences, 2014, 88: 28-40. DOI: 10.1016/j.jseaes.2014.02.019.
[84] XU X, O’REILLY S Y, GRIFFIN W, et al. Enrichment of Upper Mantle Peridotite: Petrological, Trace Element and Isotopic Evidence in Xenoliths from SE China[J/OL]. Chemical Geology, 2003, 198(3-4): 163-188. DOI: 10.1016/S0009-2541(03)00004-4.
[85] PENG D, LIU L, WANG Y. A Newly Discovered Late-Cretaceous East Asian Flat Slab Explains Its Unique Lithospheric Structure and Tectonics[J/OL]. Journal of Geophysical Research: Solid Earth, 2021, 126(10): e2021JB022103. DOI: 10.1029/2021JB022103.
[86] ZHU K Y, LI Z X, XU X S, et al. Late Triassic Melting of a Thickened Crust in Southeastern China: Evidence for Flat-Slab Subduction of the Paleo-Pacific Plate[J/OL]. Journal of Asian Earth Sciences, 2013, 74: 265-279. DOI: 10.1016/j.jseaes.2013.01.010.
[87] SHAN B, AFONSO J C, YANG Y, et al. The Thermochemical Structure of the Lithosphere and Upper Mantle beneath South China: Results from Multiobservable Probabilistic Inversion: Thermochemical Structure of South China[J/OL]. Journal of Geophysical Research: Solid Earth, 2014, 119(11): 8417-8441. DOI: 10.1002/2014JB011412.
[88] TAO K, GRAND S P, NIU F. Seismic Structure of the Upper Mantle Beneath Eastern Asia From Full Waveform Seismic Tomography[J/OL]. Geochemistry, Geophysics, Geosystems, 2018, 19 (8): 2732-2763. DOI: 10.1029/2018GC007460.
[89] GRIFFIN W L, ANDI Z, O’REILLY S Y, et al. Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton[M/OL]//FLOWER M F J, CHUNG S L, LO C H, et al. Geo-dynamics Series: Vol. 27. Washington, D. C.: American Geophysical Union, 1998: 107-126. DOI: 10.1029/GD027p0107.
[90] ZHENG J. Comparison of Mantle-Derived Matierals from Different Spatiotemporal Settings: Implications for Destructive and Accretional Processes of the North China Craton[J/OL]. Sci-ence Bulletin, 2009, 54(19): 3397-3416. DOI: 10.1007/s11434-009-0308-y.
[91] SHAN B, ZHOU W, XIAO Y. Lithospheric Thermal and Compositional Structure of South China Jointly Inverted from Multiple Geophysical Observations[J/OL]. Science China Earth Sciences, 2021, 64(1): 148-160. DOI: 10.1007/s11430-019-9661-4.
[92] YANG X, LI Y, AFONSO J C, et al. Thermochemical State of the Upper Mantle Beneath South China From Multi-Observable Probabilistic Inversion[J/OL]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021114. DOI: 10.1029/2020JB021114.
[93] ZHENG J, LEE C T, LU J, et al. Refertilization-Driven Destabilization of Subcontinental Mantle and the Importance of Initial Lithospheric Thickness for the Fate of Continents[J/OL]. Earth and Planetary Science Letters, 2015, 409: 225-231. DOI: 10.1016/j.epsl.2014.10.042.
[94] HACKER B R, WALLIS S R, RATSCHBACHER L, et al. High-temperature Geochronol-ogy Constraints on the Tectonic History and Architecture of the Ultrahigh-pressure Dabie-Sulu Orogen[J/OL]. Tectonics, 2006, 25(5): 2005TC001937. DOI: 10.1029/2005TC001937.
[95] FAURE M, LIN W, SCHÄRER U, et al. Continental Subduction and Exhumation of UHP Rocks. Structural and Geochronological Insights from the Dabieshan (East China)[J/OL]. Lithos, 2003, 70(3-4): 213-241. DOI: 10.1016/S0024-4937(03)00100-2.
[96] XU P, LIU F, WANG Q, et al. Slab-like High Velocity Anomaly in the Uppermost Mantle beneath the Dabie-Sulu Orogen[J/OL]. Geophysical Research Letters, 2001, 28(9): 1847-1850. DOI: 10.1029/2000GL012187.
[97] XU P, LIU F, YE K, et al. Flake Tectonics in the Sulu Orogen in Eastern China as Revealed by Seismic Tomography[J/OL]. Geophysical Research Letters, 2002, 29(10). DOI: 10.1029/2001 GL014185.
[98] 朱光, 刘程, 顾承串, 等. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示[J]. 中国科学: 地球科学, 2018, 48(4): 415-435.
[99] YANG T, MORESI L, ZHAO D, et al. Cenozoic Lithospheric Deformation in Northeast Asia and the Rapidly-Aging Pacific Plate[J/OL]. Earth and Planetary Science Letters, 2018, 492: 1-11. DOI: 10.1016/j.epsl.2018.03.057.
[100] 徐师文. 大地电磁测深在下扬子及邻区的应用[J]. 海相油气地质, 1997(4): 43-52+5.
[101] OKAY A I, CELAL ŞENGÖR A M. Evidence for Intracontinental Thrust-Related Exhumation of the Ultra-High-Pressure Rocks in China[J/OL]. Geology, 1992, 20(5): 411. DOI: 10.1130/ 0091-7613(1992)020<0411:EFITRE>2.3.CO;2.
[102] ZHU G, LIU G S, NIU M L, et al. Syn-Collisional Transform Faulting of the Tan-Lu Fault Zone, East China[J/OL]. International Journal of Earth Sciences, 2009, 98(1): 135-155. DOI: 10.1007/s00531-007-0225-8.
[103] YIN A, NIE S. An Indentation Model for the North and South China Collision and the Development of the Tan-Lu and Honam Fault Systems, Eastern Asia[J/OL]. Tectonics, 1993, 12(4): 801-813. DOI: 10.1029/93TC00313.
[104] LI Z X. Collision between the North and South China Blocks: A Crustal-Detachment Modelfor Suturing in the Region East of the Tanlu Fault[J/OL]. Geology, 1994, 22(8): 739. DOI: 10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2.
[105] WANG Y. The Onset of the Tan?Lu Fault Movement in Eastern China: Constraints from Zircon(SHRIMP) and 40 Ar/ 39 Ar Dating[J/OL]. Terra Nova, 2006, 18(6): 423-431. DOI: 10.1111/j. 1365-3121.2006.00708.x.
[106] ZHAO T, ZHU G, LIN S, et al. Indentation-Induced Tearing of a Subducting Continent: Evidence from the Tan–Lu Fault Zone, East China[J/OL]. Earth-Science Reviews, 2016, 152: 14-36. DOI: 10.1016/j.earscirev.2015.11.003.
[107] 白志明, 王椿镛. 下扬子地壳 P 波速度结构: 符离集-奉贤地震测深剖面再解释[J]. 科学通报, 2006(21): 2534-2541.
[108] 郑晔, 滕吉文. 随县—马鞍山地带地壳与上地幔结构及郯庐构造带南段的某些特征[J]. 地球物理学报, 1989(6): 648-659.
[109] 张昆, 严加永, 吕庆田, 等. 宁芜火山岩盆地及邻区上地壳电性结构研究[J]. 地球物理学报, 2015, 58(12): 4505-4521.
[110] YAN J, LÜ Q, LUO F, et al. A Gravity and Magnetic Study of Lithospheric Architecture and Structures of South China with Implications for the Distribution of Plutons and Mineral Systems of the Main Metallogenic Belts[J/OL]. Journal of Asian Earth Sciences, 2021, 221: 104938. DOI: 10.1016/j.jseaes.2021.104938.
[111] MAO J, LIU P, GOLDFARB R J, et al. Cretaceous Large-Scale Metal Accumulation Triggered by Post-Subductional Large-Scale Extension, East Asia[J/OL]. Ore Geology Reviews, 2021, 136: 104270. DOI: 10.1016/j.oregeorev.2021.104270.
[112] ZHOU J, JIN C, SUO Y, et al. The Yanshanian (Mesozoic) Metallogenesis in China Linked to Crust-Mantle Interaction in the Western Pacific Margin: An Overview from the Zhejiang Province[J/OL]. Gondwana Research, 2022, 102: 95-132. DOI: 10.1016/j.gr.2020.11.003.
[113] 毛景文, 谢桂青, 郭春丽, 等. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 2008, 14(4): 510-526.
[114] HOU Z, WANG Q, ZHANG H, et al. Lithosphere Architecture Characterized by Crust–Mantle Decoupling Controls the Formation of Orogenic Gold Deposits[J/OL]. National Science Re-view, 2023, 10(3): nwac257. DOI: 10.1093/nsr/nwac257.
[115] 严加永, 吕庆田, 孟贵祥, 等. 基于重磁多尺度边缘检测的长江中下游成矿带构造格架研究[J]. 地质学报, 2011, 85(5): 900-914.
[116] DEFANT M J, DRUMMOND M S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere[J/OL]. Nature, 1990, 347(6294): 662-665. DOI: 10.1038/3476 62a0.
[117] YANG Y Z, LONG Q, SIEBEL W, et al. Paleo-Pacific Subduction in the Interior of Eastern China: Evidence from Adakitic Rocks in the Edong-Jiurui District[J/OL]. The Journal of Geology, 2014, 122(1): 77-97. DOI: 10.1086/674423.
[118] ZHOU X, LI W. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas[J/OL]. Tectonophysics, 2000, 326(3-4): 269-287. DOI: 10.1016/S0040-1951(00)00120-7.
[119] GUTSCHER M A, MAURY R, EISSEN J P, et al. Can Slab Melting Be Caused by Flat Subduction?[J/OL]. Geology, 2000, 28(6): 535-538. DOI: 10.1130/0091-7613(2000)28<535: CSMBCB>2.0.CO;2.
[120] LI J W, ZHAO X F, ZHOU M F, et al. Origin of the Tongshankou Porphyry–Skarn Cu–Mo Deposit, Eastern Yangtze Craton, Eastern China: Geochronological, Geochemical, and Sr–Nd– Hf Isotopic Constraints[J/OL]. Mineralium Deposita, 2008, 43(3): 315-336. DOI: 10.1007/s0 0126-007-0161-3.
[121] 李三忠, 臧艺博, 王鹏程, 等. 华南中生代构造转换和古太平洋俯冲启动[J/OL]. 地学前缘, 2017, 24(4): 213-225. DOI: 10.13745/j.esf.yx.2017-4-13.
[122] 王金星. 下扬子地区地幔流应力场和大陆裂谷的探讨[J]. 石油物探, 1986(1): 98-105.
[123] 王良书. 下扬子江苏地区 P_n 残差与上地幔波速各向异性[J]. 地球物理学报, 1990(2): 174-185.
[124] LI H, SONG X, LÜ Q, et al. Seismic Imaging of Lithosphere Structure and Upper Mantle Deformation Beneath East-Central China and Their Tectonic Implications[J/OL]. Journal of Geophysical Research: Solid Earth, 2018, 123(4): 2856-2870. DOI: 10.1002/2017JB014992.
[125] SODOUDI F, YUAN X, LIU Q, et al. Lithospheric Thickness beneath the Dabie Shan, Central Eastern China from S Receiver Functions[J/OL]. Geophysical Journal International, 2006, 166 (3): 1363-1367. DOI: 10.1111/j.1365-246X.2006.03080.x.
[126] 王俊菲. 用远震接收函数研究下扬子地区地壳结构[J]. 国际地震动态, 2012(6): 74.
[127] CHEN J, PAN L, LI Z, et al. Continental Reworking in the Eastern South China Block and Its Adjacent Areas Revealed by F-J Multimodal Ambient Noise Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2022, 127(11): e2022JB024776. DOI: 10.1029/2022JB02 4776.
[128] SHAN B, XIONG X, ZHAO K F, et al. Crustal and Upper Mantle Structure of South China from Rayleigh Wave Tomography[J/OL]. Geophysical Journal International, 2016: ggw477. DOI: 10.1093/gji/ggw477.
[129] HE C, SANTOSH M. Crustal Evolution and Metallogeny in Relation to Mantle Dynamics: A Perspective from P-Wave Tomography of the South China Block[J/OL]. Lithos, 2016, 263: 3-14. DOI: 10.1016/j.lithos.2016.06.021.
[130] 曲平, 陈永顺, 于勇, 等. 华南地区上地幔 P 波三维速度结构和动力学意义: 来自有限频层析成像的证据[J]. 地球物理学报, 2020, 63(08): 2954-2969.
[131] 朱介寿, 曹家敏, 蔡学林, 等. 东亚及西太平洋边缘海高分辨率面波层析成像[J]. 地球物理学报, 2002(5): 646-664+756-757.
[132] 朱介寿, 宣瑞卿, 刘魁, 等. 用瑞利面波研究东亚及西太平洋地壳上地幔三维结构[J]. 物探化探计算技术, 2005(3): 185-193+179.
[133] HE C, DONG S, SANTOSH M, et al. Seismic Evidence for a Geosuture between the Yangtze and Cathaysia Blocks, South China[J/OL]. Scientific Reports, 2013, 3(1): 2200. DOI: 10.103 8/srep02200.
[134] SANTOSH M. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction[J/OL]. Precambrian Research, 2010, 178(1-4): 149-167. DOI: 10.1016/j.precamres.2010.02.003.
[135] 郑洪伟, 李廷栋. 长江中下游成矿带岩石圈深部结构的远震 P 波层析成像[J]. 地球物理学进展, 2013, 28(5): 2283-2293.
[136] SUN W, KENNETT B. Uppermost Mantle P Wavespeed Structure beneath Eastern China and Its Surroundings[J/OL]. Tectonophysics, 2016, 683: 12-26. DOI: 10.1016/j.tecto.2016.06.011.
[137] LI C, VAN DER HILST R D, TOKSÖZ M N. Constraining P-Wave Velocity Variations in the Upper Mantle beneath Southeast Asia[J/OL]. Physics of the Earth and Planetary Interiors, 2006, 154(2): 180-195. DOI: 10.1016/j.pepi.2005.09.008.
[138] ZHAO D, HASEGAWA A, KANAMORI H. Deep Structure of Japan Subduction Zone as Derived from Local, Regional, and Teleseismic Events[J/OL]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 22313-22329. DOI: 10.1029/94JB01149.
[139] 江国明, 张贵宾, 吕庆田, 等. 长江中下游地区成矿深部动力学机制: 远震层析成像证据[J].岩石学报, 2014, 30(4): 907-917.
[140] XU X, O’REILLY S Y, GRIFFIN W, et al. Genesis of Young Lithospheric Mantle in South-eastern China: An LAM–ICPMS Trace Element Study[J/OL]. Journal of Petrology, 2000, 41 (1): 111-148. DOI: 10.1093/petrology/41.1.111.
[141] LIU C Z, WU F Y, SUN J, et al. The Xinchang Peridotite Xenoliths Reveal Mantle Replacement and Accretion in Southeastern China[J/OL]. Lithos, 2012, 150: 171-187. DOI: 10.1016/j.lith os.2012.03.019.
[142] ZHANG A, GUO Z, DAI H, et al. Thermochemical Structure and Melting Distribution of the Upper Mantle Beneath Intraplate Volcanic Areas in Eastern South China Block[J/OL]. Journal of Geophysical Research: Solid Earth, 2023, 128(12): e2023JB027320. DOI: 10.1029/2023JB 027320.
[143] YANG X, LI H, LI Y, et al. Seismic Anisotropy beneath Eastern China from Shear Wave Splitting[J/OL]. Geophysical Journal International, 2019, 218(3): 1642-1651. DOI: 10.1093/ gji/ggz242.
[144] TANG Q, SUN W, YOSHIZAWA K, et al. Anomalous Radial Anisotropy and Its Implications for Upper Mantle Dynamics Beneath South China From Multimode Surface Wave Tomography [J/OL]. Journal of Geophysical Research: Solid Earth, 2022, 127(8). DOI: 10.1029/2021JB02 3485.
[145] SHI D, LÜ Q, XU W, et al. Crustal Structure beneath the Middle–Lower Yangtze Metallogenic Belt in East China: Constraints from Passive Source Seismic Experiment on the Mesozoic Intra-Continental Mineralization[J/OL]. Tectonophysics, 2013, 606: 48-59. DOI: 10.1016/j.tecto.20 13.01.012.
[146] 陈毓川, 王登红, 徐志刚, 等. 华南区域成矿和中生代岩浆成矿规律概要[J/OL]. 大地构造与成矿学, 2014, 38(2): 219-229. DOI: 10.16539/j.ddgzyckx.2014.02.002.
[147] 朱光, 刘国生, 牛漫兰, 等. 郯庐断裂带的平移运动与成因[J]. 地质通报, 2003(3): 200-207.
[148] 黄耘, 李清河, 孙业君, 等. 江苏及邻区地壳上地幔结构研究[J]. 西北地震学报, 2006(4): 369-376.
[149] WIELANDT E. Propagation and Structural Interpretation of Non-Plane Waves[J/OL]. Geophysical Journal International, 1993, 113(1): 45-53. DOI: 10.1111/j.1365-246X.1993.tb02527 .x.
[150] LASKE G. Global Observation of Off-Great-Circle Propagation of Long-Period Surface Waves [J/OL]. Geophysical Journal International, 1995, 123(1): 245-259. DOI: 10.1111/j.1365-246 X.1995.tb06673.x.
[151] FRIEDERICH W, WIELANDT E. Interpretation of Seismic Surface Waves in Regional Networks: Joint Estimation of Wavefield Geometry and Local Phase Velocity. Method and Numerical Tests[J/OL]. Geophysical Journal International, 1995, 120(3): 731-744. DOI: 10.1111/j.1365-246X.1995.tb01849.x.
[152] 徐小明, 史大年, 李信富. 有限频层析成像方法研究进展[J]. 地球物理学进展, 2009, 24(2): 432-438.
[153] JORDI C, SCHMELZBACH C, GREENHALGH S. Frequency-Dependent Traveltime Tomography Using Fat Rays: Application to near-Surface Seismic Imaging[J/OL]. Journal of Applied Geophysics, 2016, 131: 202-213. DOI: 10.1016/j.jappgeo.2016.06.002.
[154] MARQUERING H, DAHLEN F A, NOLET G. Three-Dimensional Sensitivity Kernels for Finite-Frequency Traveltimes: The Banana-doughnut Paradox[Z]. 1999.
[155] DAHLEN F A, HUNG S H, NOLET G. Fréchet Kernels for Finite-Frequency Traveltimes—I. Theory[J/OL]. Geophysical Journal International, 2000, 141(1): 157-174. DOI: 10.1046/j.13 65-246X.2000.00070.x.
[156] ZHOU Y, DAHLEN F A, NOLET G. Three-Dimensional Sensitivity Kernels for Surface Wave Observables[J/OL]. Geophysical Journal International, 2004, 158(1): 142-168. DOI: 10.1111/ j.1365-246X.2004.02324.x.
[157] YANG Y, FORSYTH D W. Regional Tomographic Inversion of the Amplitude and Phase of Rayleigh Waves with 2-D Sensitivity Kernels[J/OL]. Geophysical Journal International, 2006, 166(3): 1148-1160. DOI: 10.1111/j.1365-246X.2006.02972.x.
[158] LI A. Shear Wave Model of Southern Africa from Regional Rayleigh Wave Tomography with 2-D Sensitivity Kernels: Shear Wave Model of Southern Africa[J/OL]. Geophysical Journal International, 2011, 185(2): 832-844. DOI: 10.1111/j.1365-246X.2011.04971.x.
[159] RAMEY C. Bash Reference Manual[J]. Network Theory Limited, 1998, 15.
[160] DAVIS I J, WEXLER M, Cheng Zhang, et al. Bash2py: A Bash to Python Translator[C/OL]// 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER). Montreal, QC, Canada: IEEE, 2015: 508-511. DOI: 10.1109/SANER.2015.70818 66.
[161] AYER V M, MIGUEZ S, TOBY B H. Why Scientists Should Learn to Program in Python[J/OL]. Powder Diffraction, 2014, 29(S2): S48-S64. DOI: 10.1017/S0885715614000931.
[162] PERKEL J M. Why Scientists Are Turning to Rust[J/OL]. Nature, 2020, 588(7836): 185-186. DOI: 10.1038/d41586-020-03382-2.
[163] YANG Y. Application of Teleseismic Long-Period Surface Waves from Ambient Noise in Regional Surface Wave Tomography: A Case Study in Western USA[J/OL]. Geophysical Journal International, 2014, 198(3): 1644-1652. DOI: 10.1093/gji/ggu234.
[164] EKSTRÖM G. A Global Model of Love and Rayleigh Surface Wave Dispersion and Anisotropy, 25-250 s: Global Dispersion Model GDM52[J/OL]. Geophysical Journal International, 2011, 187(3): 1668-1686. DOI: 10.1111/j.1365-246X.2011.05225.x.
[165] TARANTOLA A, VALETTE B. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion[J/OL]. Reviews of Geophysics, 1982, 20(2): 219. DOI: 10.1029/RG 020i002p00219.
[166] YANG Y, FORSYTH D W. Rayleigh Wave Phase Velocities, Small-Scale Convection, and Azimuthal Anisotropy beneath Southern California[J/OL]. Journal of Geophysical Research, 2006, 111(B7): B07306. DOI: 10.1029/2005JB004180.
[167] YANG Y, LI A, RITZWOLLER M H. Crustal and Uppermost Mantle Structure in Southern Africa Revealed from Ambient Noise and Teleseismic Tomography[J/OL]. Geophysical Journal International, 2008, 174(1): 235-248. DOI: 10.1111/j.1365-246X.2008.03779.x.
[168] AFONSO J C, FULLEA J, GRIFFIN W L, et al. 3-D Multiobservable Probabilistic Inversion for the Compositional and Thermal Structure of the Lithosphere and Upper Mantle. I: A Priori Petrological Information and Geophysical Observables[J/OL]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2586-2617. DOI: 10.1002/jgrb.50124.
[169] MOSEGAARD K, TARANTOLA A. Monte Carlo Sampling of Solutions to Inverse Problems [J/OL]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12431-12447. DOI: 10.1029/94JB03097.
[170] SHEN W, RITZWOLLER M H, Schulte-Pelkum V, et al. Joint Inversion of Surface Wave Dispersion and Receiver Functions: A Bayesian Monte-Carlo Approach[J/OL]. Geophysical Journal International, 2013, 192(2): 807-836. DOI: 10.1093/gji/ggs050.
[171] XIE J, RITZWOLLER M H, SHEN W, et al. Crustal Radial Anisotropy across Eastern Tibet and the Western Yangtze Craton[J/OL]. Journal of Geophysical Research: Solid Earth, 2013, 118(8): 4226-4252. DOI: 10.1002/jgrb.50296.
[172] KANAMORI H, ANDERSON D L. Importance of Physical Dispersion in Surface Wave and Free Oscillation Problems: Review[J/OL]. Reviews of Geophysics, 1977, 15(1): 105-112. DOI: 10.1029/RG015i001p00105.
[173] DZIEWONSKI A M. Preliminary Reference Earth Model[J/OL]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356. DOI: 10.1016/0031-9201(81)90046-7.
[174] 刘昊岚. 接收函数和背景噪声联合反演下扬子地区精细岩石圈结构[D]. 南方科技大学, 2023.
[175] BROCHER T M. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust[J/OL]. Bulletin of the Seismological Society of America, 2005, 95(6): 2081-2092. DOI: 10.1785/0120050077.
[176] CHRISTENSEN N I, MOONEY W D. Seismic Velocity Structure and Composition of the Continental Crust: A Global View[J/OL]. Journal of Geophysical Research: Solid Earth, 1995, 100(B6): 9761-9788. DOI: 10.1029/95JB00259.
[177] SHEN W, RITZWOLLER M H, Schulte-Pelkum V. A 3-D Model of the Crust and Upper-most Mantle beneath the Central and Western US by Joint Inversion of Receiver Functions and Surface Wave Dispersion: A 3-D MODEL OF WESTERN/CENTRAL US[J/OL]. Journal of Geophysical Research: Solid Earth, 2013, 118(1): 262-276. DOI: 10.1029/2012JB009602.
[178] GUO Z, GAO X. Azimuthally Anisotropic Seismic Ambient Noise Tomography of South China Block[J/OL]. Tectonophysics, 2022, 823: 229187. DOI: 10.1016/j.tecto.2021.229187.
[179] HE C, SANTOSH M. Mantle Upwelling Beneath the Cathaysia Block, South China[J/OL]. Tectonics, 2021, 40(4): e2020TC006447. DOI: 10.1029/2020TC006447.
[180] WANG Y, FAN W, ZHANG G, et al. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies[J/OL]. Gondwana Research, 2013, 23(4): 1273-1305. DOI: 10.1016/j.gr.2012.02.019.
[181] ZHANG H, ZHENG J, LU J, et al. Composition and Evolution of the Lithospheric Mantle beneath the Interior of the South China Block: Insights from Trace Elements and Water Contents of Peridotite Xenoliths[J/OL]. Contributions to Mineralogy and Petrology, 2018, 173(7): 53. DOI: 10.1007/s00410-018-1476-z.
[182] ZHAO Z F, GAO P, ZHENG Y F. The Source of Mesozoic Granitoids in South China: Integrated Geochemical Constraints from the Taoshan Batholith in the Nanling Range[J/OL]. Chemical Geology, 2015, 395: 11-26. DOI: 10.1016/j.chemgeo.2014.11.028.
[183] WANG M, SHEN Z K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. DOI: 10.1029/2019JB018774.
[184] 许忠淮. 东亚地区现今构造应力图的编制[J]. 地震学报, 2001(5): 492-501.
[185] LI T, JIANG M, ZHAO L, et al. Continental Fragments in the South China Block: Constraints From Crustal Radial Anisotropy[J/OL]. Journal of Geophysical Research: Solid Earth, 2023, 128(10): e2023JB026998. DOI: 10.1029/2023JB026998.
[186] LI T, JIANG M, ZHAO L, et al. Wedge Tectonics in South China: Constraints from New Seismic Data[J/OL]. Science Bulletin, 2022, 67(14): 1496-1507. DOI: 10.1016/j.scib.2022.05 .007.
[187] SONG P, ZHANG X, LIU Y, et al. Moho Imaging Based on Receiver Function Analysis with Teleseismic Wavefield Reconstruction: Application to South China[J/OL]. Tectonophysics, 2017, 718: 118-131. DOI: 10.1016/j.tecto.2017.05.031.
[188] GUO L, GAO R, SHI L, et al. Crustal Thickness and Poisson’s Ratios of South China Revealed from Joint Inversion of Receiver Function and Gravity Data[J/OL]. Earth and Planetary Science Letters, 2019, 510: 142-152. DOI: 10.1016/j.epsl.2018.12.039.
[189] YANG X, LUO Y, ZHAO K. 3D Crustal and Upper Mantle Model of East-Central China From a Joint Inversion of Surface and Body Waves and Its Tectonic Implications[J/OL]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022667. DOI: 10.1029/2021JB02 2667.
[190] LI J, DONG S, CAWOOD P A, et al. An Andean-Type Retro-Arc Foreland System beneath Northwest South China Revealed by SINOPROBE Profiling[J/OL]. Earth and Planetary Sci-ence Letters, 2018, 490: 170-179. DOI: 10.1016/j.epsl.2018.03.008.
[191] RYCHERT C A, SHEARER P M. A Global View of the Lithosphere-Asthenosphere Boundary [J/OL]. Science, 2009, 324(5926): 495-498. DOI: 10.1126/science.1169754.
[192] EATON D W, DARBYSHIRE F, EVANS R L, et al. The Elusive Lithosphere–Asthenosphere Boundary (LAB) beneath Cratons[J/OL]. Lithos, 2009, 109(1-2): 1-22. DOI: 10.1016/j.lithos .2008.05.009.
[193] HU S, WANG J. Heat Flow, Deep Temperature and Thermal Structure across the Orogenic Belts in Southeast China[J]. Journal of Geodynamics, 2000.
[194] ZHOU L, XIE J, SHEN W, et al. The Structure of the Crust and Uppermost Mantle beneath South China from Ambient Noise and Earthquake Tomography: Crust and Uppermost Mantle beneath S China[J/OL]. Geophysical Journal International, 2012, 189(3): 1565-1583. DOI: 10.1111/j.1365-246X.2012.05423.x.
[195] LI Q, GAO R, WU F T, et al. Seismic Structure in the Southeastern China Using Teleseismic Receiver Functions[J/OL]. Tectonophysics, 2013, 606: 24-35. DOI: 10.1016/j.tecto.2013.06. 033.
[196] PRIESTLEY K, DEBAYLE E, MCKENZIE D, et al. Upper Mantle Structure of Eastern Asia from Multimode Surface Waveform Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2006, 111(B10): 2005JB004082. DOI: 10.1029/2005JB004082.
[197] 张耀阳, 陈凌, 艾印双, 等. 利用 S 波接收函数研究华南块体的岩石圈结构[J]. 地球物理学报, 2018, 61(1): 138-149.
[198] DENG Y, LI J, PENG T, et al. Lithospheric Structure in the Cathaysia Block (South China) and Its Implication for the Late Mesozoic Magmatism[J/OL]. Physics of the Earth and Planetary Interiors, 2019, 291: 24-34. DOI: 10.1016/j.pepi.2019.04.003.
[199] CHEN L, CHENG C, WEI Z. Seismic Evidence for Significant Lateral Variations in Lithospheric Thickness beneath the Central and Western North China Craton[J/OL]. Earth and Plan-etary Science Letters, 2009, 286(1-2): 171-183. DOI: 10.1016/j.epsl.2009.06.022.
[200] HUANG H, TOSI N, CHANG S J, et al. Receiver Function Imaging of the Mantle Transition Zone beneath the S Outh C Hina B Lock[J/OL]. Geochemistry, Geophysics, Geosystems, 2015, 16(10): 3666-3678. DOI: 10.1002/2015GC005978.
[201] ZHENG T Y, ZHAO L, HE Y M, et al. Seismic Imaging of Crustal Reworking and Lithospheric Modification in Eastern China[J/OL]. Geophysical Journal International, 2014, 196(2): 656-670. DOI: 10.1093/gji/ggt420.
[202] ROSENBAUM G, WEINBERG R F, Regenauer-Lieb K. The Geodynamics of Lithospheric Extension[J/OL]. Tectonophysics, 2008, 458(1-4): 1-8. DOI: 10.1016/j.tecto.2008.07.016.
[203] KOPTEV A, CALAIS E, BUROV E, et al. Dual Continental Rift Systems Generated by Plume–Lithosphere Interaction[J/OL]. Nature Geoscience, 2015, 8(5): 388-392. DOI: 10.1038/ngeo 2401.
[204] WERNICKE B, BURCHFIEL B. Modes of Extensional Tectonics[J/OL]. Journal of Structural Geology, 1982, 4(2): 105-115. DOI: 10.1016/0191-8141(82)90021-9.
[205] CORTI G, BONINI M, CONTICELLI S, et al. Analogue Modelling of Continental Extension: A Review Focused on the Relations between the Patterns of Deformation and the Presence of Magma[J/OL]. Earth-Science Reviews, 2003, 63(3-4): 169-247. DOI: 10.1016/S0012-825 2(03)00035-7.
[206] ZIEGLER P A, CLOETINGH S. Dynamic Processes Controlling Evolution of Rifted Basins [J/OL]. Earth-Science Reviews, 2004, 64(1-2): 1-50. DOI: 10.1016/S0012-8252(03)00041-2.
[207] CLOETINGH S, BUROV E, MATENCO L, et al. The Moho in Extensional Tectonic Settings: Insights from Thermo-Mechanical Models[J/OL]. Tectonophysics, 2013, 609: 558-604. DOI: 10.1016/j.tecto.2013.06.010.
[208] LI C, WANG Z, LÜ Q, et al. Mesozoic Tectonic Evolution of the Eastern South China Block: A Review on the Synthesis of the Regional Deformation and Magmatism[J/OL]. Ore Geology Reviews, 2021, 131: 104028. DOI: 10.1016/j.oregeorev.2021.104028.
[209] LI J, DONG S, CAWOOD P A, et al. Cretaceous Long-Distance Lithospheric Extension and Surface Response in South China[J/OL]. Earth-Science Reviews, 2023, 243: 104496. DOI: 10.1016/j.earscirev.2023.104496.
[210] LI C, VAN DER HILST R D. Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2010, 115(B7): 2009JB006882. DOI: 10.1029/2009JB006882.
[211] GUO F, WU Y, ZHANG B, et al. Magmatic Responses to Cretaceous Subduction and Tearing of the Paleo-Pacific Plate in SE China: An Overview[J/OL]. Earth-Science Reviews, 2021, 212: 103448. DOI: 10.1016/j.earscirev.2020.103448.
[212] ZHANG H, LÜ Q T, WANG X L, et al. Seismically Imaged Lithospheric Delamination and Its Controls on the Mesozoic Magmatic Province in South China[J/OL]. Nature Communications, 2023, 14(1): 2718. DOI: 10.1038/s41467-023-37855-5.
[213] REN J, TAMAKI K, LI S, et al. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas[J/OL]. Tectonophysics, 2002, 344(3-4): 175-205. DOI: 10.1016/S0040-1951(01)00271-2.
[214] SUO Y, LI S, CAO X, et al. Mesozoic-Cenozoic Basin Inversion and Geodynamics in East China: A Review[J/OL]. Earth-Science Reviews, 2020, 210: 103357. DOI: 10.1016/j.earscire v.2020.103357.
[215] 徐嘉炜, 朱光. 中国东部郯庐断裂带构造模式讨论[J]. 华北地质矿产杂志, 1995(2): 121-134.
[216] GILDER S A, KELLER G R, LUO M, et al. Eastern Asia and the Western Pacific Timing and Spatial Distribution of Rifting in China[J/OL]. Tectonophysics, 1991, 197(2): 225-243. DOI: 10.1016/0040-1951(91)90043-R.
[217] LIU L, PENG D, LIU L, et al. East Asian Lithospheric Evolution Dictated by Multistage Mesozoic Flat-Slab Subduction[J/OL]. Earth-Science Reviews, 2021, 217: 103621. DOI: 10.1016/j.earscirev.2021.103621.
[218] ZOU H, ZINDLER A, XU X, et al. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance [J/OL]. Chemical Geology, 2000, 171(1-2): 33-47. DOI: 10.1016/S0009-2541(00)00243-6.
[219] SUN P, NIU Y, GUO P, et al. Elemental and Sr–Nd–Pb Isotope Geochemistry of the Cenozoic Basalts in Southeast China: Insights into Their Mantle Sources and Melting Processes[J/OL]. Lithos, 2017, 272–273: 16-30. DOI: 10.1016/j.lithos.2016.12.005.
[220] ZHANG Y, YAO H, XU M, et al. Upper Mantle Shear Wave Velocity Structure of Southeastern China: Seismic Evidence for Magma Activities in the Late Mesozoic to the Cenozoic[J/OL]. Geochemistry, Geophysics, Geosystems, 2020, 21(8). DOI: 10.1029/2020GC009103.
[221] BURKE K, TORSVIK T H. Derivation of Large Igneous Provinces of the Past 200 Million Years from Long-Term Heterogeneities in the Deep Mantle[J/OL]. Earth and Planetary Science Letters, 2004, 227(3-4): 531-538. DOI: 10.1016/j.epsl.2004.09.015.
[222] PHILLIPS E H, SIMS K W, Blichert-Toft J, et al. The Nature and Evolution of Mantle Up-welling at Ross Island, Antarctica, with Implications for the Source of HIMU Lavas[J/OL]. Earth and Planetary Science Letters, 2018, 498: 38-53. DOI: 10.1016/j.epsl.2018.05.049.
[223] PILIDOU S, PRIESTLEY K, DEBAYLE E, et al. Rayleigh Wave Tomography in the North Atlantic: High Resolution Images of the Iceland, Azores and Eifel Mantle Plumes[J/OL]. Lithos, 2005, 79(3-4): 453-474. DOI: 10.1016/j.lithos.2004.09.012.
[224] SHAW A M, HAURI E H, BEHN M D, et al. Long-Term Preservation of Slab Signatures in the Mantle Inferred from Hydrogen Isotopes[J/OL]. Nature Geoscience, 2012, 5(3): 224-228. DOI: 10.1038/ngeo1406.
[225] CHEN Y J, PEI S. Tomographic Structure of East Asia: II. Stagnant Slab above 660 Km Discontinuity and Its Geodynamic Implications[J/OL]. Earthquake Science, 2010, 23(6): 613-626. DOI: 10.1007/s11589-010-0760-4.
[226] UYEDA S, KANAMORI H. Back-arc Opening and the Mode of Subduction[J/OL]. Journal of Geophysical Research: Solid Earth, 1979, 84(B3): 1049-1061. DOI: 10.1029/JB084iB03p01 049.
[227] STERNAI P, JOLIVET L, MENANT A, et al. Driving the Upper Plate Surface Deformation by Slab Rollback and Mantle Flow[J/OL]. Earth and Planetary Science Letters, 2014, 405: 110-118. DOI: 10.1016/j.epsl.2014.08.023.
[228] MAGNI V. The Effects of Back-Arc Spreading on Arc Magmatism[J/OL]. Earth and Planetary Science Letters, 2019, 519: 141-151. DOI: 10.1016/j.epsl.2019.05.009.
[229] CURRIE C. The Thermal Effects of Steady-State Slab-Driven Mantle Flow above a Subducting Plate: The Cascadia Subduction Zone and Backarc[J/OL]. Earth and Planetary Science Letters, 2004, 223(1-2): 35-48. DOI: 10.1016/j.epsl.2004.04.020.
[230] GREEN D H, FALLOON T J. Mantle-Derived Magmas: Intraplate, Hot-Spots and Mid-Ocean Ridges[J/OL]. Science Bulletin, 2015, 60(22): 1873-1900. DOI: 10.1007/s11434-015-0920-y.
[231] NIU Y. Geological Understanding of Plate Tectonics: Basic Concepts, Illustrations, Examples and New Perspectives[J/OL]. Global Tectonics and Metallogeny, 2018, 10(1): 23-46. DOI: 10.1127/gtm/2014/0009.
[232] 张昌榕. 中国中东部非均匀网格远震层析成像方法及应用研究[D]. 中国地质大学 (北京), 2017.
[233] 吕庆田, 董树文, 史大年, 等. 长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测 (SinoProbe) 综述[J]. 岩石学报, 2014, 30(4): 889-906.
[234] ZHAO L, ZHENG T, LU G. Distinct Upper Mantle Deformation of Cratons in Response to Subduction: Constraints from SKS Wave Splitting Measurements in Eastern China[J/OL]. Gond-wana Research, 2013, 23(1): 39-53. DOI: 10.1016/j.gr.2012.04.007.

所在学位评定分委会
力学
国内图书分类号
P315.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778403
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
吴子璇. 下扬子及邻区三维高分辨率岩石圈结构双平面波成像研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132179-吴子璇-海洋科学与工程(37484KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴子璇]的文章
百度学术
百度学术中相似的文章
[吴子璇]的文章
必应学术
必应学术中相似的文章
[吴子璇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。