[1] YEGANEH B, KHUZESTANI R B, TAHERI A, et al.Temporal trends in the spatial-scale contributions to black carbon in a Middle Eastern megacity[J].The Science of the total environment, 2021, 792:148364.DOI:10.1016/j.scitotenv.2021.148364.
[2] 秦世广,汤洁,温玉璞.黑碳气溶胶及其在气候变化研究中的意义[J].气象, 2001, 27(11):3-7.DOI:10.7519/j.issn.1000-0526.2001.11.001.
[3] 许黎,王亚强,陈振林,等.黑碳气溶胶研究进展Ⅰ:排放,清除和浓度[J].地球科学进展, 2006, 21(4):9.DOI:CNKI:SUN:DXJZ.0.2006-04-003.
[4] BELLOUIN N, Quaas J, Gryspeerdt E, et al.Bounding Global Aerosol Radiative Forcing of Climate Change[J].Reviews of Geophysics, 2020, 58(1).DOI:10.1029/2019RG000660.
[5] 蒋磊,汤莉莉,潘良宝,等.南京冬季重污染过程中黑碳气溶胶的混合态及粒径分布[J].环境科学, 2017.DOI:10.13227/j.hjkx.201605167.
[6] XING Y F, Xu Y H, Shi M H, et al.The impact of PM2.5 on the human respiratory system[J].Journal of Thoracic Disease, 2016, 8(1):E69-E74.DOI:10.3978/j.issn.2072-1439.2016.01.19.
[7] LIN Y, ZOU J, YANG W, et al. A review of recent advances in research on PM2. 5 in China[J]. International journal of environmental research and public health, 2018, 15(3): 438.
[8] YUAN Q, SHEN H, LI T, et al. Deep learning in environmental remote sensing: Achievements and challenges[J]. Remote Sensing of Environment, 2020, 241: 111716.
[9] POPE C A , Bates D V , Raizenne M E .Health effects of particulate air pollution: time for reassessment?[J].National Institute of Environmental Health Science, 1995(5).DOI:10.1289/EHP.95103472.
[10] PAN B. Application of XGBoost algorithm in hourly PM2. 5 concentration prediction[C]//IOP conference series: earth and environmental science. IOP publishing, 2018, 113: 012127.
[11] LI Y, LIU S, BASHIRI KHUZESTANI R, et al. Emission-Based Machine Learning Approach for Large-Scale Estimates of Black Carbon in China[J]. Remote Sensing, 2024, 16(5): 837.
[12] FUNG P L, ZAIDAN M A, TIMONEN H, et al. Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon concentration[J]. Journal of aerosol science, 2021, 152: 105694.
[13] WEI J, LI Z, CRIBB M, et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees[J/OL]. Atmospheric Chemistry and Physics, 2020: 3273-3289. http://dx.doi.org/10.5194/acp-20-3273-2020. DOI:10.5194/acp-20-3273-2020.
[14] PARK S, LEE J, IM J, et al. Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models[J]. Science of the total environment, 2020, 713: 136516.
[15] SUN Y, ZENG Q, GENG B, et al. Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1343-1347.
[16] DE HOOGH K, HÉRITIER H, STAFOGGIA M, et al. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland[J]. Environmental Pollution, 2018, 233: 1147-1154.
[17] WEI J, HUANG W, LI Z, et al. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach[J]. Remote Sensing of Environment, 2019, 231: 111221.
[18] CHEN Z Y, ZHANG T H, ZHANG R, et al. Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China[J]. Atmospheric Environment, 2019, 202: 180-189.
[19] BAO F, LI Y, CHENG T, et al. Estimating the Columnar Concentrations of Black Carbon Aerosols in China Using MODIS Products[J/OL]. Environmental Science & Technology, 2020: 11025-11036. http://dx.doi.org/10.1021/acs.est.0c00816. DOI:10.1021/acs.est.0c00816.
[20] AWAD Y A, KOUTRAKIS P, COULL B A, et al. A spatio-temporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States[J]. Environmental research, 2017, 159: 427-434.
[21] ZHAO J, LIU Y, SHAN M, et al. Characteristics, potential regional sources and health risk of black carbon based on ground observation and MERRA-2 reanalysis data in a coastal city, China[J/OL]. Atmospheric Research, 2021: 105563. http://dx.doi.org/10.1016/j.atmosres.2021.105563. DOI:10.1016/j.atmosres.2021.105563.
[22] BREIMAN L. Random forests[J]. Machine learning, 2001, 45: 5-32.
[23] GAO M , Saide P E , Xin J ,et al.Estimates of Health Impacts and Radiative Forcing in Winter Haze in Eastern China through Constraints of Surface PM2.5 Predictions[J].Environmental Science & Technology, 2017, 51(4):2178-2185.DOI:10.1021/acs.est.6b03745.
[24] ZHONG J, ZHANG X, GUI K, et al. Reconstructing 6-hourly PM2.5 datasets from 1960 to 2020 in China[J]. Earth System Science Data Discussions, 2022, 2022: 1-21.
[25] DI Q, KOUTRAKIS P, SCHWARTZ J. A hybrid prediction model for PM2. 5 mass and components using a chemical transport model and land use regression[J]. Atmospheric environment, 2016, 131: 390-399.
[26] BAO F, CHENG T, LI Y, et al. Retrieval of black carbon aerosol surface concentration using satellite remote sensing observations[J].Remote Sensing of Environment, 2019, 226:93-108.DOI:10.1016/j.rse.2019.03.036.
[27] SHEN J , VALAGOLAM D , MCCALLA S .Prophet forecasting model: a machine learning approach to predict the concentration of air pollutants (PM2.5, PM10, O3, NO2, SO2, CO) in Seoul, South Korea[J].PeerJ, 2020, 8(3):e9961.DOI:10.7717/peerj.9961.
[28] SCHUSTER G L, DUBOVIK O, HOLBEN B N, et al. Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10).
[29] SCHUSTER G L , DUBOVIK O , HOLBEN B N ,et al.Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals[M]. 2005.
[30] WANG L , LI Z , TIAN Q ,et al.Estimate of aerosol absorbing components of black carbon, brown carbon, and dust from ground-based remote sensing data of sun-sky radiometers[J].Journal of Geophysical Research Atmospheres, 2013, 118(12):6534-6543.DOI:10.1002/jgrd.50356.
[31] 包方闻.大气气溶胶光学特性及黑碳浓度卫星遥感反演研究[D].中国科学院大学(中国科学院遥感与数字地球研究所),2018.
[32] 冯进. PM2.5监测技术的发展及测量数据准确性的保障[J]. 计量与测试技术,2014,41(2):52-54,57. DOI:10.3969/j.issn.1004-6941.2014.02.027.
[33] MA S, SHAO M, ZHANG Y, ET AL. Evaluating the performance of chemical transport models for PM2. 5 source apportionment: An integrated application of spectral analysis and grey incidence analysis[J]. Science of The Total Environment, 2022, 837: 155781.
[34] CHEN Q X, HUANG C L, YUAN Y ,et al.Assessment of aerosol types on improving the estimation of surface PM2.5 concentrations by using ground-based aerosol optical depth dataset[J].Atmospheric pollution research, 2019(6).DOI:10.1016/j.apr.2019.07.016.
[35] 沈惠中,王戎,陶澍.近五十年全球大气多环芳烃排放清单[C]//第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集.2011.
[36] GUO J, XIA F, ZHANG Y,et al.Impact of diurnal variability and meteorological factors on the PM2.5 - AOD relationship: Implications for PM2.5 remote sensing[J].Environmental Pollution, 2017, 221:94.DOI:10.1016/j.envpol.2016.11.043.
[37] GUI K, CHE H, WANG Y, et al. Satellite-derived PM2. 5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters[J]. Environmental pollution, 2019, 247: 1125-1133.
[38] CAO J J, ZHU C S, CHOW J C,et al.Black carbon relationships with emissions and meteorology in Xi'an, China[J].Atmospheric Research, 2009, 94(2):194-202.DOI:10.1016/j.atmosres.2009.05.009.
[39] CUI F, PEI S, CHEN M,et al.Absorption enhancement of black carbon and the contribution of brown carbon to light absorption in the summer of Nanjing, China[J].Atmospheric Pollution Research, 2020, 12(2).DOI:10.1016/j.apr.2020.12.008.
[40] JIMENEZ J L, JAYNE J T, SHI Q, et al. Ambient aerosol sampling using the aerodyne aerosol mass spectrometer[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D7).
[41] EBERT M, INERLE-HOF M, WEINBRUCH S.Environmental scanning electron microscopy as a new technique to determine the hygroscopic behaviour of individual aerosol particles[J].Atmospheric Environment, 2002, 36(39/40):5909-5916.DOI:10.1016/S1352-2310(02)00774-4.
[42] DECARLO P F, KIMMEL J R, TRIMBORN A,et al.Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer.[J].Analytical Chemistry, 2006, 78(24):8281-9.DOI:10.1021/ac061249n.
[43] KHLYSTOV A, WYERS G P, SLANINA J. The steam-jet aerosol collector[J]. Atmospheric Environment, 1995, 29(17): 2229-2234.
[44] NG N L, HERNDON S C, TRIMBORN A, et al. An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol[J]. Aerosol Science and Technology, 2011, 45(7): 780-794.
[45] SUN Y, WANG Z, DONG H,et al.Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor[J].Atmospheric Environment, 2012, 51(none):250-259.DOI:10.1016/j.atmosenv.2012.01.013.
[46] KOCH D, SCHULZ M, KINNE S, et al. Evaluation of black carbon estimations in global aerosol models[J]. Atmospheric Chemistry and Physics, 2009, 9(22): 9001-9026.
[47] ZHANG Y , FU R , YU H ,et al.A regional climate model study of how biomass burning aerosol impacts land‐atmosphere interactions over the Amazon[J].Journal of Geophysical Research Atmospheres, 2008, 113(D14).DOI:10.1029/2007JD009449.
[48] REDDINGTON C L, MORGAN W T, DARBYSHIRE E,et al.Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model[J].Atmospheric Chemistry and Physics, 2018:1-32.DOI:10.5194/acp-2018-849.
[49] GOGOI M M, BABU S S, IMASU R, et al. Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of aerosol black carbon over India[J]. Atmospheric Chemistry and Physics, 2023, 23(14): 8059-8079.
[50] BI J, KNOWLAND K E, KELLER C A,et al.Combining Machine Learning and Numerical Simulation for High-Resolution PM[J].Environmental science & technology, 2022, 56(3):1544-1556.DOI:10.1021/acs.est.1c05578.
[51] STEKHOVEN D J. missForest: Nonparametric missing value imputation using random forest[J]. Astrophysics Source Code Library, 2015: ascl: 1505.011.
[52] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016: 785-794.
[53] FRIEDMAN J H.Stochastic gradient boosting[J].Computational Statistics & Data Analysis, 2002.DOI:10.1016/S0167-9473(01)00065-2.
[54] SCHAPIRE R E.The strength of weak learnability[J].Proceedings of the Second Annual Workshop on Computational Learning Theory, 1989, 5(2):197-227.DOI:10.1007/BF00116037.
[55] NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in neurorobotics, 2013, 7: 21.
[56] FISHER A, RUDIN C, DOMINICI F.All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously[J]. 2018.DOI:10.48550/arXiv.1801.01489.
[57] 黄锴. 基于排放源的中国黑碳气溶胶浓度机器学习空间预测方法[D]. 深圳. 南方科技大学,2022.
[58] WANG R, TAO S, CIAIS P, et al. High-resolution mapping of combustion processes and implications for CO 2 emissions[J]. Atmospheric Chemistry and Physics, 2013, 13(10): 5189-5203.
[59] MENG W, ZHONG Q, YUN X, et al. Improvement of a global high-resolution ammonia emission inventory for combustion and industrial sources with new data from the residential and transportation sectors[J]. Environmental science & technology, 2017, 51(5): 2821-2829.
[60] 贾小龙, 陈丽娟, 高辉, 等. 我国短期气候预测技术进展[J]. 应用气象学报, 2013, 24(6): 641-655.
[61] 孙淑清,高守亭.现代天气学概论[M].气象出版社,2005.
修改评论