[1] KURZWEIL P. Gaston Plante and His Invention of the Lead-Acid Battery-The Genesis of the First Practical Rechargeable Battery[J]. Journal of Power Sources, 2010, 195, 4424-4434.
[2] WHITTINGHAM M S. The Role of Ternary Phases in Cathode Reactions[J]. Journal of The Electrochemical Society, 1976, 123(3), 315-320.
[3] YOSHINO A. The Birth of the Lithium—Ion Battery[J]. Angewandte Chemie International Edition, 2012, 51(24), 5798-5800.
[4] MISHRA A, MEHTA A, BASY S, et al. Electrode Materials for Lithium-Ion Batteries[J]. Materials Science for Energy Technologies, 2018, 182-187.
[5] LI D, WANG H Q, ZHOU T F, et al. Unique Structural Design and Strategies for Germanium-Based Anode Materials Toward Enhanced Lithium Storage[J]. Advanced Energy Materials, 2017, 7(23), 1-16.
[6] LU Y X, RONG X H, HU Y S, et al. Research and Development of Advanced Battery Materials in China[J]. Energy Storage Materials, 2019, 23, 144-153.
[7] WHITTINGHAM M S. Lithium Batteries and Cathode Materials[J]. Chemical Reviews, 2004, 104, 4271-4301.
[8] ARMAND M, TARASCON J M. Building Better Batteries[J]. Nature. 2008, 451, 652657.
[9] ZHOU L, ZHANG K, HU Z, et al. Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium‐ Ion Batteries[J]. Advanced Energy Materials, 2018, 8, 1-23.
[10] LIN C, LI J Y, YIN Z W, et al. Structural Understanding for High-Voltage Stabilization of Lithium Cobalt Oxide[J]. Advanced Materials, 2024, 36, 1-23.
[11] JAEPHIL C. Dependence of AlPO4 Coating Thickness on Overcharge Behaviour of LiCoO2 Cathode Material at 1 and 2 C Rates[J]. Journal of Power Sources, 2004, 126, 186-189.
[12] MOHAMED H, YIM C H, et al. On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review[J]. Batteries, 2022, 8(70), 1-19.
[13] 张文林,刘雪娇,马青查,等. 高镍锂离子电池三元材料 NCM 电解质的应用[J]. 化工进展, 2021, 40(4), 2175-2187.
[14] SHEN X, LIU H, CHENG H B, et al. Beyond Lithium-ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes[J]. Energy Storage Materias. 2018, 12, 161-175.
[15] ARAVINDAN V, LEE Y S, MADHAVI S. Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes[J]. Advanced Energy Materials. 2015, 5, 1-43.
[16] FONG R, SACKEN U Y, DAHN J R. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells[J]. Journal of The Electrochemical Society, 1990, 137, 2009-2013.
[17] MA Y F, CHANG H C, ZHANG M, et al. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors[J]. Advanced Materials. 2015, 27, 5296-5308.
[18] ROSA PALACIN M. Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective[J]. Chemical Society Reviews, 2009, 38, 2565-2575.
[19] HU J, LI H, HUANG X J. Influence of Micropore Structure on Li-Storage Capacity in Hard Carbon Spherules[J]. Solid State Ionics, 2005, 176, 1151-1159.
[20] PURWANTO A, MUZAYANHA S U, YUDHA C S, et al. High Performance of Salt Modified–LTO Anode in LiFePO4 Battery[J]. Applied Sciences. 2020, 10(7135), 1-15.
[21] CABANA J, MONCONDUIT L, LARCHER D, et al. Beyond Intercalation-Based Li Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions[J]. Advanced Materials. 2010, 22, E170-E192.
[22] HU J, LI H, HUANG X J. Cr2O3-Based Anode Materials for Li-Ion Batteries[J]. Electrochemical and Solid-State Letters. 2005, 8(1), A66-A69.
[23] MADDIPATLA R, LOKA C, LEE K S. Exploring the Potential of Carbonized Nano Si within G@C@SiAnodes for Lithium-Ion Rechargeable Batteries[J]. ACS Applied Materials & Interfaces. 2023, 15, 58437-58450
[24] CEN Y J, SISSON R D, QIN Q, et al. Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries[J]. C — Journal of Carbon Research, 2018, 4(18), 1-14.
[25] KIM J W, RYU J H, LEE K T, et al. Improvement of Silicon Powder Negative Electrodes by Copper Electroless Deposition for Lithium Secondary Batteries[J]. Journal of Power Sources. 2005, 147, 227-233.
[26] ZHANG W J. A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries[J]. Journal of Power Sources. 2011, 196, 13-24.
[27] YANG J, WACHTLER M, WINTER M, et al. Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium StorageMaterials for Lithium-Ion Batteries[J]. Electrochemical and Solid-State Letters. 1999, 2(4), 161-163.
[28] GAO Y, FAN L, ZHOU R, et al. High‑Performance Silicon‑Rich Microparticle Anodes for Lithium‑Ion Batteries Enabled by Internal Stress Mitigation[J]. Nano-Micro Letters. 2023, 15(222), 2-16.
[29] PARK C M. Enhanced Electrochemical Properties of Nanostructured Bismuth-Based Composites for Rechargeable Lithium Batteries[J]. Journal of Power Sources, 2009, 186, 206-210.
[30] LIU Z, JIN S M, CUI K X, et al. Cavity Containing Core-shell Bi@C Nanowires toward High Performance Lithium Ion Batteries[J]. Journal of Alloys and Compounds, 2020, 842, 1-8.
[31] KIM H, KI D, LEE Y, et al. Synthesis of Bi2S3/C Yolk-shell Composite Based on Sulfur Impregnation for Efficient Sodium Storage[J]. Chemical Engineering Journal. 2020, 383, 1-11.
[32] SHARMA S, KHARE N. Sensitization of Narrow Band Gap Bi2S3 Hierarchical Nanostructures with Polyaniline for Its Enhanced Visible-Light Photocatalytic Performance[J]. Colloid and Polymer Science. 2018, 296, 1479-1489.
[33] ZHAO L Z, WU H H, YANG C H, et al. Mechanistic Origin of the High Performance of Yolk@Shell Bi2S3@N-Doped Carbon Nanowire Electrodes[J]. ACS Nano, 2018, 12, 12597-12611.
[34] BAI J, CHEN X, OLSSON E, et al. Synthesis of Bi2S3/Carbon Nanocomposites as Anode Materials For Lithium-Ion Batteries[J]. Journal of Materials Science & Technology. 2020, 50, 92-102.
[35] LIANG H C, NI J F, LI L. Bio-Inspired Engineering of Bi2S3-PPy Yolk-shell Composite for Highly Durable Lithium and Sodium Storage[J]. Nano Energy, 2017, 33, 213-220.
[36] JEONG J M, CHOI B G, LEE S C, et al. Hierarchical Hollow Spheres of Fe2O3@Polyaniline for Lithium Ion Battery Anodes[J]. Advanced Materials, 2013, 25, 6250-6255.
[37] ZENG X Y, TANG Y K, LIU Y, et al. Carbon Nanotube-Encapsulated Bi2S3 Nanorods as Electrodes For Lithium-Ion Batteries and Lithium−Sulfur Batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9, 15830-15838.
[38] YUE H W, CHEN S J, LI P J, et al. Lemongrass-Like Bi2S3 as a High-Performance Anode Material for Lithium-Ion Batteries[J]. Ionics, 2019, 25, 3587-3592.
[39] WANG F, ROBERT R, CHERNOVA N A, et al. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes[J]. Journal of the American Chemical Society, 2011, 133, 18828-18836.
[40] FANG L B, BAHLAWANE N, SUN W P, et al. Conversion-Alloying Anode Materials for Sodium Ion Batteries[J]. Small. 2021, 17, 1-38.
[41] BRESSER D, PASSERINI S, SCROSATI B. Leveraging Valuable Synergies by Combining Alloying and Conversion for Lithium-Ion Anodes[J]. Energy & Environmental Science, 2016, 9, 3348-3367.
[42] BADWAY F, MANSOUR A N , PEREIRA N, et al. Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices[J]. Chemistry of Materials, 2007, 19, 4129-4141.
[43] NITSCHE R, MERZ W J. Photoconduction in Ternary V-VI-VII Compounds[J]. Journal of Physics and Chemistry of Solids, 1960, 13(1-2), 154-155.
[44] RAN Z, WANG X J, LI Y W, et al. Bismuth and Antimony-Based Oxyhalides and Chalcohalides as Potential Optoelectronic Materials[J]. npj Computational Materials, 2018, 4 (14), 1-7.
[45] AUDZIJONIS A, ZIGAS L, GAIGALAS G, et al. Density Functional Calculation of the Photoelectron Emission Spectra of BiSCl Crystal and Molecular Clusters[J]. Journal of Cluster Science, 2010, 21(4), 577-589.
[46] LEE D W, WOO H Y, CHOI Y, et al. Tailoring Sizes and Compositions of Heavy Pnictogen Bismuth Thiohalide Nanorods and Nanowires Via Heat-Up Method[J]. CrystEngComm. 2023, 25(12), 1755-1762.
[47] QUARTA D, TOS S, GIANNUZZI R, et al. Colloidal Bismuth Chalcohalide Nanocrystals[J]. Angewandte Chemie International Edition, 2022, 61, 1-8.
[48] LI S, XU L F, KONG X G, et al. Enhanced Photovoltaic Performance of BiSCl Solar Cells Through Nanorod Array[J]. Chemsuschem. 2021, 14(16), 3351-3358.
[49] YANG X M, ZHU Y M, WU D J, et al. Yolk–Shell Antimony/Carbon: Scalable Synthesis and Structural Stability Study in Sodium Ion Batteries[J]. Advanced Functional Materials, 2022, 32, 1-9.
[50] DEMIREL S, CIMLEK E I . Synthesis and Characterization of Ppy and Ppy/Zeolite and Their Use as Adsorbents in Removal of Diclofenac Sodium[J]. Polymer Bulletin, 2023, 80, 2585-2615.
[51] CHEUNG K M, B. SMITH J E, BATCHELDER D N, et al. Raman Spectroscopy of Conductive Polypyrroles[J]. Synthetic Metals, 1987, 21, 249-253.
[52] LIU Y C, HWANG J B. Identification of Oxidized Polypyrrole on Raman Spectrum[J]. Synthetic Metals, 2000, 113(1-2), 203-207.
[53] LIU Z H, SUN J Y, SONG H J, et al. High Performance Polypyrrole/SWCNTs Composite Film as A Promising Organic Thermoelectric Material[J]. RSC Advances, 2021, 11(29), 17704-17709.
[54] QIU Y L, LIU Z Q, SUN Y S, et al. Construction of Cu7KS4@NixCo1−x(OH)2 NanoCore−Shell Structures with High Conductivity and Multi-Metal Synergistic Effect for Superior Hybrid Supercapacitors[J]. ACS Applied Materials & Interfaces, 2022, 14, 34770-34780.
[55] ZHAO J P, WANG Y H, QIAN Y D, et al. Hierarchical Design of Cross-Linked NiCo2S4 Nanowires Bridged NiCo-Hydrocarbonate Polyhedrons for High Performance Asymmetric Supercapacitor[J]. Advanced Functional Materials, 2023, 33, 1-14.
[56] LU F X, JI Y J, SHI D, et al. Electrochemically Activated 3D Mn Doped NiCo Hydroxide Electrode Materials Toward High-Performance Supercapacitors[J]. Journal of Colloid and Interface Science. 2023, 641, 510-520.
[57] KOVAC M, GABERSCEK M, PEJOVNIK S. A Study of the Delay Effect in SOCI2 Batteries[J]. Journal of Applied Electrochemistry, 1994, 24, 1001-1008.
[58] BOWDEN W L, DEY A N. Primary Li/SOCl Cells XI. SOCl Reduction Mechanism in a Supporting Electrolyte[J]. Journal of The Electrochemical Society, 1980, 127, 1419-1426.
[59] DONGES Y E. Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. I. Über Thiohalogenide des dreiwertigen Antimons und Wismuts[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1950, 263, 112-132.
[60] VOUTSAS G P, RENTZEPERIS P J. The Crystal Structure of Bismuth Sulfide Bromide, BiSBr[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1984, 166, 153-158.
[61] JIN M S, PARK K H, KIM H G, et al. Optical Properties of Undoped and Co-Doped SbSBr and BiSBr Single Crystals[J]. Semiconductor Science and Technology, 1995, 10, 1167-1171.
[62] NISHIMURA N, SUZUKI H, MASANOBU H, et al. A Pressure-Assisted Low Temperature Sintering of Particulate Bismuth Chalcohalides BiSX (X = Br, I) for Fabricating Efficient Photoelectrodes with Porous Structures[J]. Journal of Photochemistry & Photobiology, A: Chemistry. 2021, 413, 1-8.
[63] GROOM R, JACOBS A, CEPEDA M, et al. Bi13S18I2: (Re)discovery of a Subvalent Bismuth Compound Featuring [Bi2]4+ Dimers Grown in Sulfur/Iodine Flux Mixtures[J]. Chemistry of Materials, 2017, 29, 7, 3314-3323.
修改评论