中文版 | English
题名

锂离子电池负极材料卤硫化铋的电化学性能及机理探究

其他题名
MECHANISM AND PERFORMANCE STUDY OF LITHIUM-ION ON BATTERY BISMUTH HALIDE SULFIDE ANODE MATERIALS
姓名
姓名拼音
HUANG Zhiyuan
学号
12132041
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
冯军
导师单位
材料科学与工程系
论文答辩日期
2024-05-08
论文提交日期
2024-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

社会的迅速发展伴随着对能源需求量的高速增长,全球在光能、电能 等绿色新能源的应用占比越来越大。但新能源存在时空分布不均的问题, 储能为“削峰填谷”提供了较为理想的解决方案。锂离子电池的高能量密 度、低自放电率等优点被认为是理想的储能解决方案。近年来,锂离子电 池已被广泛运用在诸多领域中。其中无人机、手机等领域有小巧、轻便的 空间限制,但对续航能力也有较高的需求,因此需要寻找一种高体积比容 量的电极材料。卤代铋硫化物(BiSX,X=Cl、Br、I)超高的体积比容量满足 了这一需求,因此本论文采用较为简易的方法制备了BiSX材料,并对他们 的电化学性能和机理做了探究,论文的主要内容和结论为: (1) 采用一步水热合成法成功制备了棒状形貌的 BiSCl 材料,其作为锂 离子电池负极材料有着优于 Bi2S3电池的电化学性能。PPy膜包覆改性后展 现出了超高的循环稳定性,且具有较高的离子扩散速率和较低的电阻特性。 同时对其做机理分析,发现 BiSCl 材料反应过程包含一步转化反应和两步 合金化反应,Cl元素主要通过形成LiCl来参与储锂。 (2) 采用两步水热合成法制备了棒状形貌的 BiSBr 材料,作为锂离子电 池负极材料,无包覆的 BiSBr 材料展现出了超高的初始比容量和倍率性能, 通过动力学特性分析和反应机理分析解释了 BiSBr 性能好的原因。同时通 过PPy膜包覆改性也获得了超高的循环稳定性。 (3) 采用水热合成法制备了 BiSI 材料,将其装配成电池后循环性能较 差。而PPy包覆改性探究过程中发现PPy膜与BiSI材料表面的相容性差, 通过表面酸洗改变 BiSI 的表面能能够增强 PPy膜的附着力,成功包覆上较 厚的PPy层,然而循环稳定性基本无改善。通过对比BiSCl、BiSBr系列材 料,发现较大原子半径的I元素是导致电池性能差的主要原因。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] KURZWEIL P. Gaston Plante and His Invention of the Lead-Acid Battery-The Genesis of the First Practical Rechargeable Battery[J]. Journal of Power Sources, 2010, 195, 4424-4434.
[2] WHITTINGHAM M S. The Role of Ternary Phases in Cathode Reactions[J]. Journal of The Electrochemical Society, 1976, 123(3), 315-320.
[3] YOSHINO A. The Birth of the Lithium—Ion Battery[J]. Angewandte Chemie International Edition, 2012, 51(24), 5798-5800.
[4] MISHRA A, MEHTA A, BASY S, et al. Electrode Materials for Lithium-Ion Batteries[J]. Materials Science for Energy Technologies, 2018, 182-187.
[5] LI D, WANG H Q, ZHOU T F, et al. Unique Structural Design and Strategies for Germanium-Based Anode Materials Toward Enhanced Lithium Storage[J]. Advanced Energy Materials, 2017, 7(23), 1-16.
[6] LU Y X, RONG X H, HU Y S, et al. Research and Development of Advanced Battery Materials in China[J]. Energy Storage Materials, 2019, 23, 144-153.
[7] WHITTINGHAM M S. Lithium Batteries and Cathode Materials[J]. Chemical Reviews, 2004, 104, 4271-4301.
[8] ARMAND M, TARASCON J M. Building Better Batteries[J]. Nature. 2008, 451, 652657.
[9] ZHOU L, ZHANG K, HU Z, et al. Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium‐ Ion Batteries[J]. Advanced Energy Materials, 2018, 8, 1-23.
[10] LIN C, LI J Y, YIN Z W, et al. Structural Understanding for High-Voltage Stabilization of Lithium Cobalt Oxide[J]. Advanced Materials, 2024, 36, 1-23.
[11] JAEPHIL C. Dependence of AlPO4 Coating Thickness on Overcharge Behaviour of LiCoO2 Cathode Material at 1 and 2 C Rates[J]. Journal of Power Sources, 2004, 126, 186-189.
[12] MOHAMED H, YIM C H, et al. On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review[J]. Batteries, 2022, 8(70), 1-19.
[13] 张文林,刘雪娇,马青查,等. 高镍锂离子电池三元材料 NCM 电解质的应用[J]. 化工进展, 2021, 40(4), 2175-2187.
[14] SHEN X, LIU H, CHENG H B, et al. Beyond Lithium-ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes[J]. Energy Storage Materias. 2018, 12, 161-175.
[15] ARAVINDAN V, LEE Y S, MADHAVI S. Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes[J]. Advanced Energy Materials. 2015, 5, 1-43.
[16] FONG R, SACKEN U Y, DAHN J R. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells[J]. Journal of The Electrochemical Society, 1990, 137, 2009-2013.
[17] MA Y F, CHANG H C, ZHANG M, et al. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors[J]. Advanced Materials. 2015, 27, 5296-5308.
[18] ROSA PALACIN M. Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective[J]. Chemical Society Reviews, 2009, 38, 2565-2575.
[19] HU J, LI H, HUANG X J. Influence of Micropore Structure on Li-Storage Capacity in Hard Carbon Spherules[J]. Solid State Ionics, 2005, 176, 1151-1159.
[20] PURWANTO A, MUZAYANHA S U, YUDHA C S, et al. High Performance of Salt Modified–LTO Anode in LiFePO4 Battery[J]. Applied Sciences. 2020, 10(7135), 1-15.
[21] CABANA J, MONCONDUIT L, LARCHER D, et al. Beyond Intercalation-Based Li Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions[J]. Advanced Materials. 2010, 22, E170-E192.
[22] HU J, LI H, HUANG X J. Cr2O3-Based Anode Materials for Li-Ion Batteries[J]. Electrochemical and Solid-State Letters. 2005, 8(1), A66-A69.
[23] MADDIPATLA R, LOKA C, LEE K S. Exploring the Potential of Carbonized Nano Si within G@C@SiAnodes for Lithium-Ion Rechargeable Batteries[J]. ACS Applied Materials & Interfaces. 2023, 15, 58437-58450
[24] CEN Y J, SISSON R D, QIN Q, et al. Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries[J]. C — Journal of Carbon Research, 2018, 4(18), 1-14.
[25] KIM J W, RYU J H, LEE K T, et al. Improvement of Silicon Powder Negative Electrodes by Copper Electroless Deposition for Lithium Secondary Batteries[J]. Journal of Power Sources. 2005, 147, 227-233.
[26] ZHANG W J. A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries[J]. Journal of Power Sources. 2011, 196, 13-24.
[27] YANG J, WACHTLER M, WINTER M, et al. Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium StorageMaterials for Lithium-Ion Batteries[J]. Electrochemical and Solid-State Letters. 1999, 2(4), 161-163.
[28] GAO Y, FAN L, ZHOU R, et al. High‑Performance Silicon‑Rich Microparticle Anodes for Lithium‑Ion Batteries Enabled by Internal Stress Mitigation[J]. Nano-Micro Letters. 2023, 15(222), 2-16.
[29] PARK C M. Enhanced Electrochemical Properties of Nanostructured Bismuth-Based Composites for Rechargeable Lithium Batteries[J]. Journal of Power Sources, 2009, 186, 206-210.
[30] LIU Z, JIN S M, CUI K X, et al. Cavity Containing Core-shell Bi@C Nanowires toward High Performance Lithium Ion Batteries[J]. Journal of Alloys and Compounds, 2020, 842, 1-8.
[31] KIM H, KI D, LEE Y, et al. Synthesis of Bi2S3/C Yolk-shell Composite Based on Sulfur Impregnation for Efficient Sodium Storage[J]. Chemical Engineering Journal. 2020, 383, 1-11.
[32] SHARMA S, KHARE N. Sensitization of Narrow Band Gap Bi2S3 Hierarchical Nanostructures with Polyaniline for Its Enhanced Visible-Light Photocatalytic Performance[J]. Colloid and Polymer Science. 2018, 296, 1479-1489.
[33] ZHAO L Z, WU H H, YANG C H, et al. Mechanistic Origin of the High Performance of Yolk@Shell Bi2S3@N-Doped Carbon Nanowire Electrodes[J]. ACS Nano, 2018, 12, 12597-12611.
[34] BAI J, CHEN X, OLSSON E, et al. Synthesis of Bi2S3/Carbon Nanocomposites as Anode Materials For Lithium-Ion Batteries[J]. Journal of Materials Science & Technology. 2020, 50, 92-102.
[35] LIANG H C, NI J F, LI L. Bio-Inspired Engineering of Bi2S3-PPy Yolk-shell Composite for Highly Durable Lithium and Sodium Storage[J]. Nano Energy, 2017, 33, 213-220.
[36] JEONG J M, CHOI B G, LEE S C, et al. Hierarchical Hollow Spheres of Fe2O3@Polyaniline for Lithium Ion Battery Anodes[J]. Advanced Materials, 2013, 25, 6250-6255.
[37] ZENG X Y, TANG Y K, LIU Y, et al. Carbon Nanotube-Encapsulated Bi2S3 Nanorods as Electrodes For Lithium-Ion Batteries and Lithium−Sulfur Batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9, 15830-15838.
[38] YUE H W, CHEN S J, LI P J, et al. Lemongrass-Like Bi2S3 as a High-Performance Anode Material for Lithium-Ion Batteries[J]. Ionics, 2019, 25, 3587-3592.
[39] WANG F, ROBERT R, CHERNOVA N A, et al. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes[J]. Journal of the American Chemical Society, 2011, 133, 18828-18836.
[40] FANG L B, BAHLAWANE N, SUN W P, et al. Conversion-Alloying Anode Materials for Sodium Ion Batteries[J]. Small. 2021, 17, 1-38.
[41] BRESSER D, PASSERINI S, SCROSATI B. Leveraging Valuable Synergies by Combining Alloying and Conversion for Lithium-Ion Anodes[J]. Energy & Environmental Science, 2016, 9, 3348-3367.
[42] BADWAY F, MANSOUR A N , PEREIRA N, et al. Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices[J]. Chemistry of Materials, 2007, 19, 4129-4141.
[43] NITSCHE R, MERZ W J. Photoconduction in Ternary V-VI-VII Compounds[J]. Journal of Physics and Chemistry of Solids, 1960, 13(1-2), 154-155.
[44] RAN Z, WANG X J, LI Y W, et al. Bismuth and Antimony-Based Oxyhalides and Chalcohalides as Potential Optoelectronic Materials[J]. npj Computational Materials, 2018, 4 (14), 1-7.
[45] AUDZIJONIS A, ZIGAS L, GAIGALAS G, et al. Density Functional Calculation of the Photoelectron Emission Spectra of BiSCl Crystal and Molecular Clusters[J]. Journal of Cluster Science, 2010, 21(4), 577-589.
[46] LEE D W, WOO H Y, CHOI Y, et al. Tailoring Sizes and Compositions of Heavy Pnictogen Bismuth Thiohalide Nanorods and Nanowires Via Heat-Up Method[J]. CrystEngComm. 2023, 25(12), 1755-1762.
[47] QUARTA D, TOS S, GIANNUZZI R, et al. Colloidal Bismuth Chalcohalide Nanocrystals[J]. Angewandte Chemie International Edition, 2022, 61, 1-8.
[48] LI S, XU L F, KONG X G, et al. Enhanced Photovoltaic Performance of BiSCl Solar Cells Through Nanorod Array[J]. Chemsuschem. 2021, 14(16), 3351-3358.
[49] YANG X M, ZHU Y M, WU D J, et al. Yolk–Shell Antimony/Carbon: Scalable Synthesis and Structural Stability Study in Sodium Ion Batteries[J]. Advanced Functional Materials, 2022, 32, 1-9.
[50] DEMIREL S, CIMLEK E I . Synthesis and Characterization of Ppy and Ppy/Zeolite and Their Use as Adsorbents in Removal of Diclofenac Sodium[J]. Polymer Bulletin, 2023, 80, 2585-2615.
[51] CHEUNG K M, B. SMITH J E, BATCHELDER D N, et al. Raman Spectroscopy of Conductive Polypyrroles[J]. Synthetic Metals, 1987, 21, 249-253.
[52] LIU Y C, HWANG J B. Identification of Oxidized Polypyrrole on Raman Spectrum[J]. Synthetic Metals, 2000, 113(1-2), 203-207.
[53] LIU Z H, SUN J Y, SONG H J, et al. High Performance Polypyrrole/SWCNTs Composite Film as A Promising Organic Thermoelectric Material[J]. RSC Advances, 2021, 11(29), 17704-17709.
[54] QIU Y L, LIU Z Q, SUN Y S, et al. Construction of Cu7KS4@NixCo1−x(OH)2 NanoCore−Shell Structures with High Conductivity and Multi-Metal Synergistic Effect for Superior Hybrid Supercapacitors[J]. ACS Applied Materials & Interfaces, 2022, 14, 34770-34780.
[55] ZHAO J P, WANG Y H, QIAN Y D, et al. Hierarchical Design of Cross-Linked NiCo2S4 Nanowires Bridged NiCo-Hydrocarbonate Polyhedrons for High Performance Asymmetric Supercapacitor[J]. Advanced Functional Materials, 2023, 33, 1-14.
[56] LU F X, JI Y J, SHI D, et al. Electrochemically Activated 3D Mn Doped NiCo Hydroxide Electrode Materials Toward High-Performance Supercapacitors[J]. Journal of Colloid and Interface Science. 2023, 641, 510-520.
[57] KOVAC M, GABERSCEK M, PEJOVNIK S. A Study of the Delay Effect in SOCI2 Batteries[J]. Journal of Applied Electrochemistry, 1994, 24, 1001-1008.
[58] BOWDEN W L, DEY A N. Primary Li/SOCl Cells XI. SOCl Reduction Mechanism in a Supporting Electrolyte[J]. Journal of The Electrochemical Society, 1980, 127, 1419-1426.
[59] DONGES Y E. Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. I. Über Thiohalogenide des dreiwertigen Antimons und Wismuts[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1950, 263, 112-132.
[60] VOUTSAS G P, RENTZEPERIS P J. The Crystal Structure of Bismuth Sulfide Bromide, BiSBr[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1984, 166, 153-158.
[61] JIN M S, PARK K H, KIM H G, et al. Optical Properties of Undoped and Co-Doped SbSBr and BiSBr Single Crystals[J]. Semiconductor Science and Technology, 1995, 10, 1167-1171.
[62] NISHIMURA N, SUZUKI H, MASANOBU H, et al. A Pressure-Assisted Low Temperature Sintering of Particulate Bismuth Chalcohalides BiSX (X = Br, I) for Fabricating Efficient Photoelectrodes with Porous Structures[J]. Journal of Photochemistry & Photobiology, A: Chemistry. 2021, 413, 1-8.
[63] GROOM R, JACOBS A, CEPEDA M, et al. Bi13S18I2: (Re)discovery of a Subvalent Bismuth Compound Featuring [Bi2]4+ Dimers Grown in Sulfur/Iodine Flux Mixtures[J]. Chemistry of Materials, 2017, 29, 7, 3314-3323.

所在学位评定分委会
化学
国内图书分类号
TM912
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778405
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
黄志远. 锂离子电池负极材料卤硫化铋的电化学性能及机理探究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132041-黄志远-材料科学与工程(5575KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄志远]的文章
百度学术
百度学术中相似的文章
[黄志远]的文章
必应学术
必应学术中相似的文章
[黄志远]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。