中文版 | English
题名

微塑料对深圳潮滩土壤中雌激素赋存特征及迁移的影响

其他题名
The Influence of Microplastics on the Characteristics and Migration of Estrogens in the Tidal Flat Soils in Shenzhen
姓名
姓名拼音
SUN Shuhan
学号
12232281
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
史江红
导师单位
党委组织统战部
论文答辩日期
2024-05-13
论文提交日期
2024-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着社会经济的高速发展,微塑料和雌激素这两类新污染物在环境中检出频繁。研究表明,微塑料和雌激素对生态环境和人类健康具有潜在的威胁,并且微塑料能够改变雌激素在土壤中原有的环境行为,导致两类污染物对生态环境和人类健康的影响更加复杂。沿岸河口潮滩连接陆上和海洋,是重要的物质交换媒介,也是污染物的汇集场所。微塑料和雌激素在沿岸河口潮滩汇集,会影响沿岸生态环境,同时微塑料的存在会影响雌激素从潮滩向海洋的迁移过程。因此本研究选取深圳典型的16个沿岸河口潮滩为研究对象,分析土壤中微塑料的丰度、粒径和形状的赋存情况及空间分布特征,并使用污染负荷指数对河口潮滩中的微塑料进行了风险评估;揭示了雌酮(E1)、17β-雌二醇(E2)和17α-乙炔基雌二醇(EE2)三种典型雌激素在沿岸潮滩土壤中的赋存情况和空间分布特征,并以雌激素活性当量为指标进行了污染评估;利用土柱淋溶实验装置,选取聚乙烯(PE)和聚苯乙烯(PS)两种典型的微塑料作为土壤中的共存污染物,探究这两种微塑料对E2和EE2迁移的影响。主要结论如下:

微塑料在深圳沿岸河口潮滩中普遍存在,丰度范围为1200 – 4700 n/kg,平均值为4588 n/kg。微塑料形状主要分为纤维、碎片、薄膜和颗粒类,其中纤维类的占比最高为44.61%,其次是碎片类为41.75%,二者总占比达到了80%以上。微塑料以小尺寸为主(粒径 < 0.5 mm),占比为54.63%。深圳东部和西部沿岸河口潮滩中微塑料在丰度、形状和粒径这些指标上不存在显著性差异,但微塑料在各采样点存在严重的分布不均,这可能是由各采样点的人为活动、地理地势以及周边环境的不同所导致的。此外,污染负荷指数结果表明,深圳潮滩微塑料呈重度污染。

三种雌激素E1、E2和EE2在深圳沿岸河口潮滩中均被检出,E1、E2和EE2的浓度范围分别为0.05 – 1.34ng/g、N.D. – 5.10 ng/g和0.10 – 3.74 ng/g,其平均浓度分别为0.55 ng/g、0.74 ng/g和1.31 ng/g。各采样点雌激素的分布呈现差异性。西部沿岸潮滩土壤中E1浓度显著高于东部,而E2和EE2则不存在显著性差异。雌激素活性当量结果显示,EEQ范围为0.08 – 5.43 ng/g,深圳近岸河口潮滩中E2和EE2共同贡献了超过95%的总雌激素活性,具有一定的风险。

室内土柱淋溶实验显示,E2土柱淋溶过程中,淋出液中检出了E1,而EE2在淋溶过程中则较为稳定,淋出液中并未检出其它几种雌激素。添加PE微塑料的E2土柱,与未添加PE微塑料的E2土柱相比较,E2淋溶滤出曲线出峰较提前,转化生成的E1和E2的淋出总量分别提高24.34%和57.67%;二者总淋出总量显著提高32.65%。添加PS微塑料的E2土柱淋溶滤出液中,E2低于检测限,仅检测到了少量E1,且E2转化生成E1的淋溶滤出曲线出峰延后;与未添加PE微塑料的E2土柱相比较,淋出总量显著降低581.25%。

PE和PS微塑料会对EE2在土壤中的迁移产生影响。分别添加PE或者PS微塑料的EE2土柱淋溶结果表明,其淋出总量没有显著性差异;但与未添加的土柱相比,EE2淋溶滤出曲线出峰均延后,EE2淋出总量分别显著提高64.08%和83.72%。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] Ding R, Ouyang F, Peng D, et al. A case study of distribution and characteristics of microplastics in surface water and sediments of the seas around Shenzhen, southern coastal area of China[J]. Science of The Total Environment, 2022, 838: 156063.
[2] Lee Y C, Wang L M, Xue Y H, et al. Natural Estrogens in the Surface Water of Shenzhen and the Sewage Discharge of Hong Kong[J]. Human and Ecological Risk Assessment: An International Journal, 2006, 12(2): 301-312.
[3] Diamanti-Kandarakis E, Bourguignon J-P, Giudice L C, et al. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement[J]. Endocrine Reviews, 2009, 30(4): 293-342.
[4] Adeel M, Song X, Wang Y, et al. Environmental impact of estrogens on human, animal and plant life: A critical review[J]. Environment International, 2017, 99: 107-119.
[5] Zhong R, Zou H, Gao J, et al. A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China[J]. Science of The Total Environment, 2021, 786: 147452.
[6] Thompson R C, Olson Y, Mitchell R P, et al. Lost at Sea: Where Is All the Plastic?[J]. Science, 2004, 304(5672): 838.
[7] Jiang L, Ye Y, Han Y, et al. Microplastics dampen the self-renewal of hematopoietic stem cells by disrupting the gut microbiota-hypoxanthine-Wnt axis[J]. Cell Discovery, 2024, 10(1): 35.
[8] Revell L E, Kuma P, Le Ru E C, et al. Direct radiative effects of airborne microplastics[J]. Nature, 2021, 598(7881): 462-467.
[9] Frias J P G L, Nash R. Microplastics: Finding a consensus on the definition[J]. Marine Pollution Bulletin, 2019, 138: 145-147.
[10] Saud S, Yang A, Jiang Z, et al. New insights in to the environmental behavior and ecological toxicity of microplastics[J]. Journal of Hazardous Materials Advances, 2023, 10: 100298.
[11] Du H, Wang J. Characterization and environmental impacts of microplastics[J]. Gondwana Research, 2021, 98: 63-75.
[12] Leng Y, Wang W, Cai H, et al. Sorption kinetics, isotherms and molecular dynamics simulation of 17β-estradiol onto microplastics[J]. Science of The Total Environment, 2023, 858: 159803.
[13] Wei J, Chen M, Wang J. Insight into combined pollution of antibiotics and microplastics in aquatic and soil environment: Environmental behavior, interaction mechanism and associated impact of resistant genes[J]. TrAC Trends in Analytical Chemistry, 2023, 166: 117214.
[14] Hu B, Li Y, Jiang L, et al. Influence of microplastics occurrence on the adsorption of 17β-estradiol in soil[J]. Journal of Hazardous Materials, 2020, 400: 123325.
[15] Wang J, Li X, Gao M, et al. Polystyrene microplastics increase estrogenic effects of 17α-ethynylestradiol on male marine medaka (Oryzias melastigma)[J]. Chemosphere, 2022, 287: 132312.
[16] Borja A, Bricker S B, Dauer D M, et al. Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide[J]. Marine Pollution Bulletin, 2008, 56(9): 1519-1537.
[17] Boyes S, Elliott M. Organic matter and nutrient inputs to the Humber Estuary, England[J]. Marine Pollution Bulletin, 2006, 53(1): 136-143.
[18] Birch G F, Hutson P. Use of Sediment Risk and Ecological/Conservation Value for Strategic Management of Estuarine Environments: Sydney Estuary, Australia[J]. Environmental Management, 2009, 44(4): 836-850.
[19] Facts P. An analysis of European plastics production, demand and waste data[R], 2019.
[20] Sutherland W J, Clout M, Côté I M, et al. A horizon scan of global conservation issues for 2010[J]. Trends in Ecology & Evolution, 2010, 25(1): 1-7.
[21] Thompson R C, Moore C J, vom Saal F S, Swan S H. Plastics, the environment and human health: current consensus and future trends[J]. Philosophical transactions of the Royal Society of London Series B Biological sciences, 2009, 364(1526): 2153-2166.
[22] Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605.
[23] Auta H S, Emenike C U, Fauziah S H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions[J]. Environment International, 2017, 102: 165-176.
[24] Browne M A, Crump P, Niven S J, et al. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks[J]. Environmental Science & Technology, 2011, 45(21): 9175-9179.
[25] Wang F, Wang Q, Adams C A, et al. Effects of microplastics on soil properties: Current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2022, 424: 127531.
[26] Scheurer M, Bigalke M. Microplastics in Swiss Floodplain Soils[J]. Environmental Science and Technology, 2018, 52(6): 3591-3598.
[27] Maximenko N, Hafner J, Niiler P. Pathways of marine debris derived from trajectories of Lagrangian drifters[J]. Marine Pollution Bulletin, 2012, 65(1): 51-62.
[28] Martin C, Young C A, Valluzzi L, Duarte C M. Ocean sediments as the global sink for marine micro- and mesoplastics[J]. Limnology and Oceanography Letters, 2022, 7(3): 235-243.
[29] Xiong X, Wu C, Elser J J, et al. Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River – From inland to the sea[J]. Science of The Total Environment, 2019, 659: 66-73.
[30] Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141.
[31] Lusher A, Hollman P, Mendoza-Hill J. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety[M]. FAO, 2017.
[32] Fok L, Cheung P K. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution[J]. Marine Pollution Bulletin, 2015, 99(1): 112-118.
[33] Rafa N, Ahmed B, Zohora F, et al. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects[J]. Environmental Pollution, 2024, 343: 123190.
[34] Vitali C, Peters R J B, Janssen H-G, Nielen M W F. Microplastics and nanoplastics in food, water, and beverages; part I. occurrence[J]. TrAC Trends in Analytical Chemistry, 2023, 159: 116670.
[35] Jenner L C, Rotchell J M, Bennett R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of The Total Environment, 2022, 831: 154907.
[36] Desforges J-P W, Galbraith M, Dangerfield N, Ross P S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean[J]. Marine Pollution Bulletin, 2014, 79(1): 94-99.
[37] Zheng Y, Li J, Cao W, et al. Distribution characteristics of microplastics in the seawater and sediment: A case study in Jiaozhou Bay, China[J]. Science of The Total Environment, 2019, 674: 27-35.
[38] Gao F, Li J, Hu J, et al. The seasonal distribution characteristics of microplastics on bathing beaches along the coast of Qingdao, China[J]. Science of The Total Environment, 2021, 783: 146969.
[39] Dou P-C, Mai L, Bao L-J, Zeng E Y. Microplastics on beaches and mangrove sediments along the coast of South China[J]. Marine Pollution Bulletin, 2021, 172: 112806.
[40] Frère L, Paul-Pont I, Rinnert E, et al. Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest (Brittany, France)[J]. Environmental Pollution, 2017, 225: 211-222.
[41] Castillo A B, El-Azhary M, Sorino C, LeVay L. Potential ecological risk assessment of microplastics in coastal sediments: Their metal accumulation and interaction with sedimentary metal concentration[J]. Science of The Total Environment, 2024, 906: 167473.
[42] Nguyen Q A T, Nguyen H N Y, Strady E, et al. Characteristics of microplastics in shoreline sediments from a tropical and urbanized beach (Da Nang, Vietnam)[J]. Marine Pollution Bulletin, 2020, 161: 111768.
[43] Sun X, Wang T, Chen B, et al. Factors influencing the occurrence and distribution of microplastics in coastal sediments: From source to sink[J]. Journal of Hazardous Materials, 2021, 410: 124982.
[44] Yu X, Peng J, Wang J, et al. Occurrence of microplastics in the beach sand of the Chinese inner sea: the Bohai Sea[J]. Environmental Pollution, 2016, 214: 722-730.
[45] Qiu Q, Peng J, Yu X, et al. Occurrence of microplastics in the coastal marine environment: First observation on sediment of China[J]. Marine Pollution Bulletin, 2015, 98(1): 274-280.
[46] Lo H-S, Xu X, Wong C-Y, Cheung S-G. Comparisons of microplastic pollution between mudflats and sandy beaches in Hong Kong[J]. Environmental Pollution, 2018, 236: 208-217.
[47] Zhang L, Zhang S, Guo J, et al. Dynamic distribution of microplastics in mangrove sediments in Beibu Gulf, South China: Implications of tidal current velocity and tidal range[J]. Journal of Hazardous Materials, 2020, 399: 122849.
[48] Wang D, Su L, Ruan H D, et al. Quantitative and qualitative determination of microplastics in oyster, seawater and sediment from the coastal areas in Zhuhai, China[J]. Marine Pollution Bulletin, 2021, 164: 112000.
[49] Huang L, Li Q P, Li H, Yuan X. Microplastic pollution and regulating factors in the surface sediment of the Xuande Atolls in the South China Sea[J]. Marine Pollution Bulletin, 2023, 196: 115562.
[50] Liebezeit G, Dubaish F. Microplastics in Beaches of the East Frisian Islands Spiekeroog and Kachelotplate[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(1): 213-217.
[51] Park J, Hong S, Shim W J, et al. Distribution, compositional characteristics, and historical pollution records of microplastics in tidal flats of South Korea[J]. Marine Pollution Bulletin, 2023, 189: 114741.
[52] Chouchene K, Prata J C, da Costa J, et al. Microplastics on Barra beach sediments in Aveiro, Portugal[J]. Marine Pollution Bulletin, 2021, 167: 112264.
[53] Urban-Malinga B, Zalewski M, Jakubowska A, et al. Microplastics on sandy beaches of the southern Baltic Sea[J]. Marine Pollution Bulletin, 2020, 155: 111170.
[54] Expósito N, Rovira J, Sierra J, et al. Microplastics levels, size, morphology and composition in marine water, sediments and sand beaches. Case study of Tarragona coast (western Mediterranean)[J]. Science of The Total Environment, 2021, 786: 147453.
[55] Villanova-Solano C, Díaz-Peña F J, Hernández-Sánchez C, et al. Beneath the water column: Uncovering microplastic pollution in the sublittoral coastal sediments of the Canary Islands, Spain[J]. Journal of Hazardous Materials, 2024, 465: 133128.
[56] Santucci L, Fernández-Severini M D, Rimondino G N, et al. Assessment of meso- and microplastics distribution in coastal sediments and waters at the middle estuary of the Rio De La Plata, Argentina (SW Atlantic Ocean)[J]. Science of The Total Environment, 2024, 914: 170026.
[57] Liu X, Xu J, Zhao Y, et al. Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics[J]. Chemosphere, 2019, 226: 726-735.
[58] Ramos L, Berenstein G, Hughes E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina[J]. Science of the Total Environment, 2015, 523: 74-81.
[59] Chen X, Gu X, Bao L, et al. Comparison of adsorption and desorption of triclosan between microplastics and soil particles[J]. Chemosphere, 2021, 263: 127947.
[60] Hodson M E, Duffus-Hodson C A, Clark A, et al. Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial Invertebrates[J]. Environmental Science & Technology, 2017, 51(8): 4714-4721.
[61] Hüffer T, Metzelder F, Sigmund G, et al. Polyethylene microplastics influence the transport of organic contaminants in soil[J]. Science of The Total Environment, 2019, 657: 242-247.
[62] Rillig M C. Microplastic in Terrestrial Ecosystems and the Soil?[J]. Environmental science & technology, 2012, 46(12): 6453-6454.
[63] Velzeboer I, Kwadijk C J A F, Koelmans A A. Strong Sorption of PCBs to Nanoplastics, Microplastics, Carbon Nanotubes, and Fullerenes[J]. Environmental science & technology, 2014, 48(9): 4869-4876.
[64] Guo X, Wang X, Zhou X, et al. Sorption of Four Hydrophobic Organic Compounds by Three Chemically Distinct Polymers: Role of Chemical and Physical Composition[J]. Environmental science & technology, 2012, 46(13): 7252-7259.
[65] Shore E A, deMayo J A, Pespeni M H. Microplastics reduce net population growth and fecal pellet sinking rates for the marine copepod, Acartia tonsa[J]. Environmental Pollution, 2021, 284: 117379.
[66] Sussarellu R, Suquet M, Thomas Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences, 2016, 113(9): 2430-2435.
[67] Tang J, Ni X, Zhou Z, et al. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis[J]. Environmental Pollution, 2018, 243: 66-74.
[68] Qiao R, Sheng C, Lu Y, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. Science of The Total Environment, 2019, 662: 246-253.
[69] Lei L, Wu S, Lu S, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of The Total Environment, 2018, 619-620: 1-8.
[70] Hahladakis J N, Velis C A, Weber R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199.
[71] Gunaalan K, Fabbri E, Capolupo M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms[J]. Water Research, 2020, 184: 116170.
[72] Yu Y, Kumar M, Bolan S, et al. Various additive release from microplastics and their toxicity in aquatic environments[J]. Environmental Pollution, 2024, 343: 123219.
[73] Zhang M, Zhao F, Zhang J, et al. Toxicity and accumulation of 6-OH-BDE-47 and newly synthesized 6,6′-diOH-BDE-47 in early life-stages of Zebrafish (Danio rerio)[J]. Science of The Total Environment, 2021, 763: 143036.
[74] Li P, Gao H, Dong L, et al. Perinatal low-dose PBDE-47 exposure hampered thyroglobulin turnover and induced thyroid cell apoptosis by triggering ER stress and lysosomal destabilization contributing to thyroid toxicity in adult female rats[J]. Journal of Hazardous Materials, 2020, 392: 122265.
[75] Wang X, Yang J, Li H, et al. Chronic toxicity of hexabromocyclododecane(HBCD) induced by oxidative stress and cell apoptosis on nematode Caenorhabditis elegans[J]. Chemosphere, 2018, 208: 31-39.
[76] Sun S, Shi W, Tang Y, et al. The toxic impacts of microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) on haematic parameters in a marine bivalve species and their potential mechanisms of action[J]. Science of The Total Environment, 2021, 783: 147003.
[77] Han Y, Zhou W, Tang Y, et al. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel Mytilus coruscus and induce synergistic immunotoxic effects[J]. Science of The Total Environment, 2021, 770: 145273.
[78] Wen B, Jin S-R, Chen Z-Z, et al. Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus)[J]. Environmental Pollution, 2018, 243: 462-471.
[79] Beiras R, Tato T. Microplastics do not increase toxicity of a hydrophobic organic chemical to marine plankton[J]. Marine Pollution Bulletin, 2019, 138: 58-62.
[80] Wang D, Feng Y, He J, et al. The presence of microplastics (MPs) reduces the toxicity of cadmium (Cd) to Cirrhinus mrigala larva[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109483.
[81] Yang W, Gao X, Wu Y, et al. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110484.
[82] Kuo C-H, Yang S-N, Kuo P-L, Hung C-H. Immunomodulatory effects of environmental endocrine disrupting chemicals[J]. The Kaohsiung Journal of Medical Sciences, 2012, 28: S37-S42.
[83] Macedo S, Teixeira E, Gaspar T B, et al. Endocrine-disrupting chemicals and endocrine neoplasia: A forty-year systematic review[J]. Environmental Research, 2023, 218: 114869.
[84] Du B, Fan G, Yu W, et al. Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective[J]. Environmental Pollution, 2020, 267: 115405.
[85] Liu S, Ying G G, Liu Y S, et al. Degradation of norgestrel by bacteria from activated sludge: Comparison to progesterone[J]. Environmental Science and Technology, 2013, 47(18): 10266-10276.
[86] Kuster M, José López De Alda M, Barceló D. Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments[J]. TrAC - Trends in Analytical Chemistry, 2004, 23(10-11): 790-798.
[87] Zhang H, Shi J, Liu X, et al. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J]. Water Research, 2014, 58: 248-257.
[88] Tao H-y, Zhang J, Shi J, et al. Occurrence and emission of phthalates, bisphenol A, and oestrogenic compounds in concentrated animal feeding operations in Southern China[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111521.
[89] Tremblay L A, Gadd J B, Northcott G L. Steroid estrogens and estrogenic activity are ubiquitous in dairy farm watersheds regardless of effluent management practices[J]. Agriculture, Ecosystems & Environment, 2018, 253: 48-54.
[90] Guo W, Li J, Luo M, et al. Estrogenic activity and ecological risk of steroids, bisphenol A and phthalates after secondary and tertiary sewage treatment processes[J]. Water Research, 2022, 214: 118189.
[91] Odinga E S, Zhou X, Mbao E O, et al. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices[J]. Chemosphere, 2022, 308: 136370.
[92] Shi J, Liu X, Chen Q, Zhang H. Spatial and seasonal distributions of estrogens and bisphenol A in the Yangtze River Estuary and the adjacent East China Sea[J]. Chemosphere, 2014, 111: 336-343.
[93] Deich C, Kanwischer M, Zhang R, Waniek J J. Natural and synthetic estrogenic compounds in the Pearl River Estuary and northern shelf of the South China Sea[J]. Oceanologia, 2023, 65(1): 30-43.
[94] Wang Z, Li R, Wu F, et al. Estrogenic compound profiles in an urbanized industry-impacted coastal bay and potential risk assessment by pollution indices and multivariative statistical methods[J]. Marine Pollution Bulletin, 2017, 114(1): 397-407.
[95] Pusceddu F H, Sugauara L E, de Marchi M R, et al. Estrogen levels in surface sediments from a multi-impacted Brazilian estuarine system[J]. Marine Pollution Bulletin, 2019, 142: 576-580.
[96] Froehner S, Machado K S, Stefan E, et al. Occurrence of selected estrogens in mangrove sediments[J]. Marine Pollution Bulletin, 2012, 64(1): 75-79.
[97] Bertin A, Inostroza P A, Quiñones R A. Estrogen pollution in a highly productive ecosystem off central-south Chile[J]. Marine Pollution Bulletin, 2011, 62(7): 1530-1537.
[98] Labadie P, Cundy A B, Stone K, et al. Evidence for the Migration of Steroidal Estrogens through River Bed Sediments[J]. Environmental Science & Technology, 2007, 41(12): 4299-4304.
[99] Arnon S, Dahan O, Elhanany S, et al. Transport of Testosterone and Estrogen from Dairy-Farm Waste Lagoons to Groundwater[J]. Environmental Science & Technology, 2008, 42(15): 5521-5526.
[100]Casey F X M, Simunek J, Lee J, et al. Sorption, mobility, and transformation of estrogenic hormones in natural soil[J]. Journal of environmental quality, 2005, 34(4): 1372-1379.
[101]Fan Z S, Casey F X M, Hakk H, Larsen G L. Modeling coupled degradation, sorption, and transport of 17β-estradiol in undisturbed soil[J]. Water Resources Research, 2008, 44(8).
[102]Chen Q, Shi J, Liu X, et al. Simulation of estrogen transport and behavior in laboratory soil columns using a cellular automata model[J]. Journal of Contaminant Hydrology, 2013, 146: 51-62.
[103]D'Alessio M, Vasudevan D, Lichwa J, et al. Fate and transport of selected estrogen compounds in Hawaii soils: Effect of soil type and macropores[J]. Journal of Contaminant Hydrology, 2014, 166: 1-10.
[104]Stanford B D, Amoozegar A, Weinberg H S. The impact of co-contaminants and septic system effluent quality on the transport of estrogens and nonylphenols through soil[J]. Water Research, 2010, 44(5): 1598-1606.
[105]Steiner L D, Bidwell V J, Di H J, et al. Transport and Modeling of Estrogenic Hormones in a Dairy Farm Effluent through Undisturbed Soil Lysimeters[J]. Environmental Science & Technology, 2010, 44(7): 2341-2347.
[106]Tao H-y, Ge H, Shi J, et al. The characteristics of oestrone mobility in water and soil by the addition of Ca-biochar and Fe–Mn-biochar derived from Litchi chinensis Sonn[J]. Environmental Geochemistry and Health, 2020, 42(6): 1601-1615.
[107]Guo W, Lu S, Shi J, Zhao X. Effect of corn straw biochar application to sediments on the adsorption of 17α-ethinyl estradiol and perfluorooctane sulfonate at sediment-water interface[J]. Ecotoxicology and Environmental Safety, 2019, 174: 363-369.
[108]Tarchitzky J, Lerner O, Shani U, et al. Water distribution pattern in treated wastewater irrigated soils: Hydrophobicity effect[J]. European Journal of Soil Science, 2007, 58(3): 573-588.
[109]Ternes T A, Stüber J, Herrmann N, et al. Ozonation: A tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater?[J]. Water Research, 2003, 37(8): 1976-1982.
[110]Bonin J L, Simpson M J. Sorption of steroid estrogens to soil and soil constituents in single- and multi-sorbate systems[J]. Environmental Toxicology and Chemistry, 2007, 26(12): 2604-2610.
[111]Duong C N, Ra J S, Schlenk D, et al. Sorption of estrogens onto different fractions of sediment and its effect on vitellogenin expression in Male Japanese medaka[J]. Archives of Environmental Contamination and Toxicology, 2010, 59(1): 147-156.
[112]Zhang C, Li Y, Wang C, et al. Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: A review[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(1): 1-59.
[113]Durán-Álvarez J C, Prado B, Ferroud A, et al. Sorption, desorption and displacement of ibuprofen, estrone, and 17β estradiol in wastewater irrigated and rainfed agricultural soils[J]. Science of the Total Environment, 2014, 473-474: 189-198.
[114]Stumpe B, Marschner B. Organic waste effects on the behavior of 17β-estradiol, estrone, and 17α-ethinylestradiol in agricultural soils in long- and short-term setups[J]. Journal of Environmental Quality, 2010, 39(3): 907-916.
[115]Lai K M, Johnson K L, Scrimshaw M D, Lester J N. Binding of Waterborne Steroid Estrogens to Solid Phases in River and Estuarine Systems[J]. Environmental science & technology, 2000, 34(18): 3890-3894.
[116]Lei B, Wen Y, Wang X, et al. Effects of estrone on the early life stages and expression of vitellogenin and estrogen receptor genes of Japanese medaka (Oryzias latipes)[J]. Chemosphere, 2013, 93(6): 1104-1110.
[117]Ribeiro Y M, Moreira D P, Weber A A, et al. Chronic estrone exposure affects spermatogenesis and sperm quality in zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2023, 98: 104058.
[118]Lei D-Q, Huang G-Y, Qiu S-Q, et al. Exposure to estrone disrupts the endocrine system of western mosquitofish (Gambusia affinis)[J]. Aquatic Toxicology, 2023, 257: 106457.
[119]Osachoff H L, Brown L L Y, Tirrul L, et al. Time course of hepatic gene expression and plasma vitellogenin protein concentrations in estrone-exposed juvenile rainbow trout (Oncorhynchus mykiss)[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2016, 19: 112-119.
[120]Prossnitz E R, Barton M. Estrogen biology: New insights into GPER function and clinical opportunities[J]. Molecular and Cellular Endocrinology, 2014, 389(1): 71-83.
[121]Hansen P D, Dizer H, Hock B, et al. Vitellogenin – a biomarker for endocrine disruptors[J]. TrAC Trends in Analytical Chemistry, 1998, 17(7): 448-451.
[122]Metcalfe C D, Metcalfe T L, Kiparissis Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2001, 20(2): 297-308.
[123]Zheng Y, Yuan J, Gu Z, et al. Transcriptome alterations in female Daphnia (Daphnia magna) exposed to 17β-estradiol[J]. Environmental Pollution, 2020, 261: 114208.
[124]Windle S, McMurry S, Brain R, et al. Atrazine and estradiol effects on development of Acris blanchardi (Blanchard's cricket frog) exposed in outdoor enclosures[J]. Pest Management Science, 2022, 78(11): 4963-4974.
[125]Zhang Y, Jiang Y, Sun Q, et al. Full sexual maturity-cycle exposure to environmentally relevant concentrations of 17β-estradiol decreases reproductive capacity of zebrafish[J]. Journal of Environmental Sciences, 2024, 137: 580-592.
[126]Liu Y, Tam N F Y, Guan Y, Gao B. Influence of a Marine Diatom on the Embryonic Toxicity of 17α-Ethynylestradiol to the Abalone Haliotis diversicolor supertexta[J]. Water, Air, & Soil Pollution, 2012, 223(7): 4383-4395.
[127]Aydin E, Talinli I. Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey[J]. Chemosphere, 2013, 90(6): 2004-2012.
[128]Hallgren P, Sorita Z, Berglund O, Persson A. Effects of 17α-ethinylestradiol on individual life-history parameters and estimated population growth rates of the freshwater gastropods Radix balthica and Bithynia tentaculata[J]. Ecotoxicology, 2012, 21(3): 803-810.
[129]Rehberger K, Wernicke von Siebenthal E, Bailey C, et al. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss[J]. Environment International, 2020, 142: 105836.
[130]Zhang Y, Chen Z, Tao Y, et al. Transcriptomic and Physiological Responses of Chlorella pyrenoidosa during Exposure to 17α-Ethinylestradiol[J]. International Journal of Molecular Sciences, 2022, 23(7): 3583.
[131]Qin X, Lin H, Cao Y, et al. Embryo developmental toxicity in marine medaka (Oryzias melastigma) due to parental and embryonic 17α-ethinylestradiol exposure[J]. Science of The Total Environment, 2023, 861: 160594.
[132]Nasri A, Mezni A, Lafon P-A, et al. Ethinylestradiol (EE2) residues from birth control pills impair nervous system development and swimming behavior of zebrafish larvae[J]. Science of The Total Environment, 2021, 770: 145272.
[133]Kidd K A, Blanchfield P J, Mills K H, et al. Collapse of a fish population after exposure to a synthetic estrogen[J]. Proceedings of the National Academy of Sciences, 2007, 104(21): 8897-8901.
[134]Tomlinson D L, Wilson J G, Harris C R, Jeffrey D W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgoländer Meeresuntersuchungen, 1980, 33(1): 566-575.
[135]王志超, 窦雅娇, 周鑫, 等. 岱海冰封期微塑料与环境因子的关系及风险评价[J]. 中国环境科学, 2022, 42(02): 889-896.
[136]Everaert G, Van Cauwenberghe L, De Rijcke M, et al. Risk assessment of microplastics in the ocean: Modelling approach and first conclusions[J]. Environmental Pollution, 2018, 242: 1930-1938.
[137]Chen Q, Shi J, Wu W, et al. A new pretreatment and improved method for determination of selected estrogens in high matrix solid sewage samples by liquid chromatography mass spectrometry[J]. Microchemical Journal, 2012, 104: 49-55.
[138]Luo J, Lei B, Ma M, et al. Identification of estrogen receptor agonists in sediments from Wenyu River, Beijing, China[J]. Water Research, 2011, 45(13): 3908-3914.
[139]Jeong C-B, Won E-J, Kang H-M, et al. Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p‑JNK and p‑p38 Activation in the Monogonont Rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16): 8849-8857.
[140]Iwasaki S, Isobe A, Kako S i, et al. Fate of microplastics and mesoplastics carried by surface currents and wind waves: A numerical model approach in the Sea of Japan[J]. Marine Pollution Bulletin, 2017, 121(1): 85-96.
[141]Browne M A, Galloway T S, Thompson R C. Spatial Patterns of Plastic Debris along Estuarine Shorelines[J]. Environmental Science & Technology, 2010, 44(9): 3404-3409.
[142]Liu Q-M, Liang H-T, Xi G-L, et al. Microplastic Pollution of the Beaches in Xiamen Bay, China[J]. Huanjing Kexue, 2019, 40(3): 1217-1221.
[143]Wang W, Yuan W, Chen Y, Wang J. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. The Science of the Total Environment, 2018, 633: 539-545.
[144]Xu N, Zhu Z, Gao W, et al. Effects of waves, burial depth and material density on microplastic retention in coastal sediments[J]. Science of The Total Environment, 2023, 864: 161093.
[145]Allen S, Allen D, Moss K, et al. Examination of the ocean as a source for atmospheric microplastics[J]. PLOS ONE, 2020, 15(5): 0232746.
[146]深圳市2022年国民经济和社会发展统计公报[J]. 深圳市人民政府公报, 2023, (25): 18-36.
[147]Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771.
[148]Lebreton L C M, van der Zwet J, Damsteeg J-W, et al. River plastic emissions to the world’s oceans[J]. Nature Communications, 2017, 8(1): 15611.
[149]Mani T, Hauk A, Walter U, Burkhardt-Holm P. Microplastics profile along the Rhine River[J]. Scientific Reports, 2015, 5(1): 17988.
[150]Ren S-Y, Sun Q, Xia S-Y, et al. Microplastics in wastewater treatment plants and their contributions to surface water and farmland pollution in China[J]. Chemosphere, 2023, 343: 140239.
[151]Schernewski G, Radtke H, Hauk R, et al. Urban Microplastics Emissions: Effectiveness of Retention Measures and Consequences for the Baltic Sea[J]. Frontiers in Marine Science, 2021, 08: 594415.
[152]Gül M R. Short-term tourism alters abundance, size, and composition of microplastics on sandy beaches[J]. Environmental Pollution, 2023, 316: 120561.
[153]Hanachi P, Karbalaei S, Walker T R, et al. Abundance and properties of microplastics found in commercial fish meal and cultured common carp (Cyprinus carpio)[J]. Environmental Science and Pollution Research, 2019, 26(23): 23777-23787.
[154]Zhang K, Gong W, Lv J, et al. Accumulation of floating microplastics behind the Three Gorges Dam[J]. Environmental Pollution, 2015, 204: 117-123.
[155]Lambert S, Wagner M. Characterisation of nanoplastics during the degradation of polystyrene[J]. Chemosphere, 2016, 145: 265-268.
[156]Zhang M, Liu L, Xu D, et al. Small-sized microplastics (< 500 μm) in roadside soils of Beijing, China: Accumulation, stability, and human exposure risk[J]. Environmental Pollution, 2022, 304: 119121.
[157]Bullard J E, Ockelford A, O'Brien P, McKenna Neuman C. Preferential transport of microplastics by wind[J]. Atmospheric Environment, 2021, 245: 118038.
[158]Wang Z, Su B, Xu X, et al. Preferential accumulation of small (<300 μm) microplastics in the sediments of a coastal plain river network in eastern China[J]. Water Research, 2018, 144: 393-401.
[159]Alavian Petroody S S, Hashemi S H, van Gestel C A M. Factors affecting microplastic retention and emission by a wastewater treatment plant on the southern coast of Caspian Sea[J]. Chemosphere, 2020, 261: 128179.
[160]Napper I E, Thompson R C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions[J]. Marine Pollution Bulletin, 2016, 112(1): 39-45.
[161]Higgins C, Turner A. Microplastics in surface coastal waters around Plymouth, UK, and the contribution of boating and shipping activities[J]. Science of The Total Environment, 2023, 893: 164695.
[162]Froehner S, Maceno M. Assessment of bioaccumulation of biphenyls in the trophic chain of a coastal area of Parana, Brazil[J]. Environmental Monitoring and Assessment, 2010, 164(1): 189-198.
[163]Holthaus K I E, Johnson A C, Jürgens M D, et al. The potential for estradiol and ethinylestradiol to sorb to suspended and bed sediments in some English rivers[J]. Environmental Toxicology and Chemistry, 2002, 21(12): 2526-2535.
[164]Holbrook R D, Love N G, Novak J T. Sorption of 17β-estradiol and 17α-ethinylestradiol by colloidal organic carbon derived from biological wastewater treatment systems[J]. Environmental Science and Technology, 2004, 38(12): 3322-3329.
[165]Lai K M, Scrimshaw M D, Lester J N. Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems[J]. Science of the Total Environment, 2002, 289(1-3): 159-168.
[166]Lai K M, Johnson K L, Scrimshaw M D, Lester J N. Binding of waterborne steroid estrogens to solid phases in river and estuarine systems[J]. Environmental Science and Technology, 2000, 34(18): 3890-3894.
[167]Moreira I S, Lebel A, Peng X, et al. Sediments in the mangrove areas contribute to the removal of endocrine disrupting chemicals in coastal sediments of Macau SAR, China, and harbour microbial communities capable of degrading E2, EE2, BPA and BPS[J]. Biodegradation, 2021, 32(5): 511-529.
[168]Zuo Y, Zhang K, Zhou S. Determination of estrogenic steroids and microbial and photochemical degradation of 17α-ethinylestradiol (EE2) in lake surface water, a case study[J]. Environmental Sciences: Processes and Impacts, 2013, 15(8): 1529-1535.
[169]Barel-Cohen K, Shore L S, Shemesh M, et al. Monitoring of natural and synthetic hormones in a polluted river[J]. Journal of Environmental Management, 2006, 78(1): 16-23.
[170]Nie M, Yan C, Dong W, et al. Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze Estuary[J]. Chemosphere, 2015, 127: 109-116.
[171]Hu Y, Yan X, Shen Y, et al. Occurrence, behavior and risk assessment of estrogens in surface water and sediments from Hanjiang River, Central China[J]. Ecotoxicology, 2019, 28(2): 143-153.
[172]Huang B, Wang B, Ren D, et al. Occurrence, removal and bioaccumulation of steroid estrogens in Dianchi Lake catchment, China[J]. Environment International, 2013, 59: 262-273.
[173]Wang Y, Wang Q, Hu L, et al. Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China[J]. Environmental Geochemistry and Health, 2015, 37(1): 147-156.
[174]Pimentel M F, Damasceno É P, Jimenez P C, et al. Endocrine disruption in Sphoeroides testudineus tissues and sediments highlights contamination in a northeastern Brazilian estuary[J]. Environmental Monitoring and Assessment, 2016, 188(5): 298.
[175]Braga O, Smythe G A, Schäfer A I, Feitz A J. Steroid estrogens in ocean sediments[J]. Chemosphere, 2005, 61(6): 827-833.
[176]Tiwari M, Sahu S K, Pandit G G. Distribution and estrogenic potential of endocrine disrupting chemicals (EDCs) in estuarine sediments from Mumbai, India[J]. Environmental Science and Pollution Research, 2016, 23(18): 18789-18799.
[177]Wang L, Ying G-G, Zhao J-L, et al. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools[J]. Environmental Pollution, 2011, 159(1): 148-156.
[178]李文华, 简敏菲, 刘淑丽, 等. 鄱阳湖湖口-长江段沉积物中微塑料与重金属污染物的赋存关系[J]. 环境科学, 2020, 41(01): 242-252.
[179]Zhang X, Li Y, Liu B, et al. The effects of estrone and 17β-estradiol on microbial activity and bacterial diversity in an agricultural soil: Sulfamethoxazole as a co-pollutant[J]. Ecotoxicology and Environmental Safety, 2014, 107: 313-320.
[180]Stumpe B, Marschner B. Factors controlling the biodegradation of 17β-estradiol, estrone and 17α-ethinylestradiol in different natural soils[J]. Chemosphere, 2009, 74(4): 556-562.
[181]Colucci M S, Bork H, Topp E. Persistence of Estrogenic Hormones in Agricultural Soils: I. 17β-Estradiol and Estrone[J]. Journal of Environmental Quality, 2001, 30(6): 2070-2076.
[182]Layton A C, Gregory B W, Seward J R, et al. Mineralization of Steroidal Hormones by Biosolids in Wastewater Treatment Systems in Tennessee U.S.A[J]. Environmental Science & Technology, 2000, 34(18): 3925-3931.
[183]Kumar V, Nakada N, Yasojima M, et al. The arrival and discharge of conjugated estrogens from a range of different sewage treatment plants in the UK[J]. Chemosphere, 2011, 82(8): 1124-1128.
[184]Daniel Sheng G, Xu C, Xu L, et al. Abiotic oxidation of 17β-estradiol by soil manganese oxides[J]. Environmental Pollution, 2009, 157(10): 2710-2715.
[185]Marfil-Vega R, Suidan M T, Mills M A. Assessment of the abiotic transformation of 17β-estradiol in the presence of vegetable matter – II: The role of molecular oxygen[J]. Chemosphere, 2012, 87(5): 521-526.
[186]Yang L, Su W, He Y, et al. Dark transformation from 17β-estradiol to estrone initiated by hydroxyl radical in dissolved organic matter[J]. Water Research, 2023, 230: 119570.
[187]Li J, Guo K, Cao Y, et al. Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics[J]. Environmental Pollution, 2021, 269: 116151.
[188]Xu B, Huang D, Liu F, et al. Contrasting effects of microplastics on sorption of diazepam and phenanthrene in soil[J]. Journal of Hazardous Materials, 2021, 406: 124312.
[189]Jiang L, Liu Y, Zeng G, et al. Adsorption of 17β-estradiol by graphene oxide: Effect of heteroaggregation with inorganic nanoparticles[J]. Chemical Engineering Journal, 2018, 343: 371-378.
[190]Velez J F M, Shashoua Y, Syberg K, Khan F R. Considerations on the use of equilibrium models for the characterisation of HOC-microplastic interactions in vector studies[J]. Chemosphere, 2018, 210: 359-365.
[191]Yu W, Du B, Fan G, et al. Spatio-temporal distribution and transformation of 17α- and 17β-estradiol in sterilized soil: A column experiment[J]. Journal of Hazardous Materials, 2020, 389: 122092.
[192]Hou J, Xu X, Lan L, et al. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors[J]. Environmental Pollution, 2020, 263: 114499.
[193]Zhang S, Han B, Sun Y, Wang F. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil[J]. Journal of Hazardous Materials, 2020, 388: 121775.
[194]Takada H. Call for pellets! International Pellet Watch Global Monitoring of POPs using beached plastic resin pellets[J]. Marine Pollution Bulletin, 2006, 52(12): 1547-1548.
[195]Zhao L, Rong L, Xu J, et al. Sorption of five organic compounds by polar and nonpolar microplastics[J]. Chemosphere, 2020, 257: 127206.
[196]蒋晖, 刘欣, 孙姣霞, 等. 17α-乙炔基雌二醇在微塑料上的吸附和解吸行为[J]. 中国环境科学, 2021, 41(05): 2258-2267.
[197]Luo Y, Zhang Y, Xu Y, et al. Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties[J]. Science of The Total Environment, 2020, 726: 138389.

所在学位评定分委会
材料与化工
国内图书分类号
X53
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778408
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
孙姝晗. 微塑料对深圳潮滩土壤中雌激素赋存特征及迁移的影响[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232281-孙姝晗-环境科学与工程(3561KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孙姝晗]的文章
百度学术
百度学术中相似的文章
[孙姝晗]的文章
必应学术
必应学术中相似的文章
[孙姝晗]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。