中文版 | English
题名

全钒液流电池电解液价态失衡机理及容量恢复策略研究

其他题名
STUDIES ON THE MECHANNISM OF ELECTROLYTE VALENCE IMBALANCE AND CAPACITY RECOVERY STRATEGY OF VANADIUM REDOX FLOW BATTERY
姓名
姓名拼音
WEI Dongbo
学号
12132301
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
赵天寿
导师单位
机械与能源工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

全钒液流电池作为一种新型大规模储能技术,因安全性高,具有容量和功率独立性等优势备受关注。然而,该电池的长期循环稳定性受到了容量衰减的影响电池的容量衰减与正负极电解液价态失衡密切相关,目前人们对于价态失衡的机理尚未明晰,并且缺少有效的容量恢复策略。为了解决这一问题,本论文针对全钒液流电池电解液价态失衡机理以及容量恢复策略开展了系统性研究,使得电池长期运行的稳定性得到了有效提升。具体研究内容如下:

首先,通过建立正负极电解液的体积、浓度和价态失衡与电池容量衰减的数学模型,明确了电解液价态失衡对不可逆容量衰减的影响。结果表明,由电解液体积和浓度不平衡引起的容量衰减,可以通过混液方案进行修复。然而,对于电解液的价态偏离导致的容量衰减,仅依靠混液方案难以得到恢复。通过对电池在运行过程中的行为进行实验分析,揭示了充电过程中负极析氢反应是导致电池电解液价态失衡的主要原因。而电流密度、充放电截止电压、电解液流速、电极活性及工作温度对析氢引起的电解液价态失衡有显著影响。

进一步,针对电解液价态失衡引起的容量衰减开发了一套修复装置。该装置由全液态甲酸燃料电池构成不但可以在常温下恢复全钒液流电池的容量,并且可以输出电能通过对催化剂进行优化和构建,使得该装置的功率密度可以达到282.5 mW cm-2,为当前甲酸燃料电池的最高性能之一另外,本论文基于流体力学与电化学耦合模型、密度泛函理论等揭示了装置的性能提升机理。最后基于该装置提出了容量恢复策略并对电池的容量进行了修复。结果表明,电池在400圈后容量仍能恢复到初始最高值97.6%,有效提升了全钒液流电池的循环寿命。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] Gür T M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11: 2696-2767.
[2] Javed M S, Ma T, Jurasz J, et al. Solar and wind power generation systems with pumped hydro storage: Review and future perspectives[J]. Renewable Energy, 2020, 148: 176-192.
[3] Lei J, Gong Q. Optimal allocation of a hybrid energy storage system considering its dynamic operation characteristics for wind power applications in active distribution networks[J]. International Journal of Energy Research, 2018, 42: 4184-4196.
[4] HUANG Z, MU A. Research and analysis of performance improvement of vanadium redox flow battery in microgrid: A technology review [J]. International Journal of Energy Research, 2021, 45: 14170-93.
[5] Yao Y, Lei J, Shi Y, et al. Assessment methods and performance metrics for redox flow batteries[J]. Nature Energy, 2021, 6: 582-588.
[6] Zhang C, Zhao T S, Xu Q, et al. Effects of operating temperature on the performance of vanadium redox flow batteries[J]. Applied Energy, 2015, 155: 349-353.
[7] Jiang H R, Sun J, Wei L, et al. A high power density and long cycle life vanadium redox flow battery[J]. Energy Storage Materials, 2020, 24: 529-540.
[8] Bengui Z, Zhao M, Liu Q, et al. High performance positively charged membranes with selective swelling-induced ion transport channels for vanadium flow battery application[J]. Journal of Power Sources, 2022, 526: 231140.
[9] An L, Zhao T S, Zhou X L, et al. A low-cost, high-performance zinc–hydrogen peroxide fuel cell[J]. Journal of Power Sources, 2015, 275: 831-834.
[10] Bai E, Zhu H, Sun C, et al. A comparative study of nafion 212 and sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation on the performance of iron-chromium redox flow battery[J]. Membranes, 2023, 13: 820.
[11] Liu B, Zheng M, Sun J, et al. No-mixing design of vanadium redox flow battery for enhanced effective energy capacity[J]. Journal of Energy Storage, 2019, 23: 278-291.
[12] Müller M, Viernstein L, Truong C N, et al. Evaluation of grid-level adaptability for stationary battery energy storage system applications in Europe[J]. Journal of Energy Storage, 2017, 9: 1-11.
[13] Su D, Lam Z, Wang Y, et al. Ultralong durability of ethanol oxidation reaction via morphological design[J]. Joule, 2023, 7: 2568-2582.
[14] Lin L, He X, Zhang X G, et al. A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate[J]. Angewandte Chemie, 2023, 135: e202214959.
[15] Zhu W, Zhang X, Yao F, et al. A Hydrazine‐Nitrate Flow Battery Catalyzed by a Bimetallic RuCo Precatalyst for Wastewater Purification along with Simultaneous Generation of Ammonia and Electricity[J]. Angewandte Chemie, 2023, 135: e202300390.
[16] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334: 928-935.
[17] Borri E, Zsembinszki G, Cabeza L F. Recent developments of thermal energy storage applications in the built environment: A bibliometric analysis and systematic review[J]. Applied Thermal Engineering, 2021, 189: 116666.
[18] Rodby K E, Perry M L, Brushett F R. Assessing capacity loss remediation methods for asymmetric redox flow battery chemistries using levelized cost of storage[J]. Journal of Power Sources, 2021, 506: 230085.
[19] Zeng Y K, Zhao T S, Zhou X L, et al. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries[J]. Journal of Power Sources, 2017, 352: 77-82.
[20] Watanabe R, Yamauchi M, Sadakiyo M, et al. CO 2-free electric power circulation via direct charge and discharge using the glycolic acid/oxalic acid redox couple[J]. Energy & Environmental Science, 2015, 8: 1456-1462.
[21] Zhang D, Xin L, Xia Y, et al. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2021, 624: 119047.
[22] Murugesan V, Nie Z, Zhang X, et al. Accelerated design of vanadium redox flow battery electrolytes through tunable solvation chemistry[J]. Cell Reports Physical Science, 2021, 2.
[23] Ghasemiestahbanati E, Shaibani M, Konstas K, et al. Charge carrier molecular sieve (CCMS) membranes with anti-aging effect for long-life vanadium redox flow batteries[J]. ACS Applied Energy Materials, 2022, 5: 1505-1515.
[24] Long J, Xu W, Xu S, et al. A novel double branched sulfonated polyimide membrane with ultra-high proton selectivity for vanadium redox flow battery[J]. Journal of Membrane Science, 2021, 628: 119259.
[25] Ali E, Kwon H, Choi J, et al. A numerical study of electrode thickness and porosity effects in all vanadium redox flow batteries[J]. Journal of Energy Storage, 2020, 28: 101208.
[26] Wei L, Xiong C, Jiang H R, et al. Highly catalytic hollow Ti3C2Tx MXene spheres decorated graphite felt electrode for vanadium redox flow batteries[J]. Energy Storage Materials, 2020, 25: 885-892.
[27] He Z, Lv Y, Zhang T, et al. Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst[J]. Chemical Engineering Journal, 2022, 427: 131680.
[28] Huang Z, Mu A, Wu L, et al. Vanadium redox flow batteries: Flow field design and flow rate optimization[J]. Journal of Energy Storage, 2022, 45: 103526.
[29] Heo J, Han J Y, Kim S, et al. Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries[J]. Nature communications, 2019, 10: 4412.
[30] Huang Z, Mu A, Wu L, et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery[J]. ACS Sustainable Chemistry & Engineering, 2022, 10: 7786-7810.
[31] Lou X, Yuan D, Yu Y, et al. A Cost‐effective Nafion Composite Membrane as an Effective Vanadium‐Ion Barrier for Vanadium Redox Flow Batteries[J]. Chemistry–An Asian Journal, 2020, 15: 2357-2363.
[32] Kim M, Ha D, Choi J. Nanocellulose‐modified Nafion 212 Membrane for Improving Performance of Vanadium Redox Flow Batteries[J]. Bulletin of the Korean Chemical Society, 2019, 40: 533-538.
[33] Bui T T, Shin M, Rahimi M, et al. Highly efficient vanadium redox flow batteries enabled by a trilayer polybenzimidazole membrane assembly[J]. Carbon Energy, 2024: e473.
[34] Zhang B, Yang Z, Liu Q, et al. Swelling-Induced Cross-Linked Pyridine-Containing Membranes with High Stability and Conductivity for Vanadium Redox Flow Batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11: 11601-11612.
[35] Heidarian A, Wehner M, Padligur M, et al. A microfluidic proton flow reactor system: In-situ visualisation of hydrogen evolution and storage in carbon-based slurry electrodes[J]. Journal of Power Sources, 2023, 569: 233026.
[36] Ali E, Kim J, Park H. Numerical analysis of modified channel widths of serpentine and interdigitated channels for the discharge performance of vanadium redox flow batteries[J]. Journal of Energy Storage, 2022, 53: 105099.
[37] He Y, Zhao Z, Cui Y, et al. Boosting gaseous oxygen transport in a Zn-air battery for high-rate charging by a bubble diode-inspired air electrode[J]. Energy Storage Materials, 2023, 57: 360-370.
[38] Pan L, Sun J, Qi H, et al. Dead-zone-compensated design as general method of flow field optimization for redox flow batteries[J]. Proceedings of the National Academy of Sciences, 2023, 120: e2305572120.
[39] Xu J, Zhang Y, Huang Z, et al. Surface modification of carbon-based electrodes for vanadium redox flow batteries[J]. Energy & Fuels, 2021, 35: 8617-8633.
[40] Yao Y, Xu Z, Cheng F, et al. Unlocking the potential of graphene for water oxidation using an orbital hybridization strategy[J]. Energy & Environmental Science, 2018, 11: 407-416.
[41] Guo J, Pan L, Sun J, et al. Metal‐free Fabrication of Nitrogen‐doped Vertical Graphene on Graphite Felt Electrodes with Enhanced Reaction Kinetics and Mass Transport for High‐performance Redox Flow Batteries[J]. Advanced Energy Materials, 2024, 14: 2302521.
[42] Wei X, Liu S, Wang J, et al. Boosting the performance of positive electrolyte for VRFB by employing zwitterion molecule containing sulfonic and pyridine groups as the additive[J]. Ionics, 2020, 26: 3147-3159.
[43] Cheng D, Li Y, Zhang J, et al. Recent advances in electrospun carbon fiber electrode for vanadium redox flow battery: properties, structures, and perspectives[J]. Carbon, 2020, 170: 527-542.
[44] Zhang Z H, Wei L, Wu M C, et al. Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries[J]. Applied Energy, 2021, 289: 116690.
[45] He Z, Lv Y, Zhang T, et al. Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst[J]. Chemical Engineering Journal, 2022, 427: 131680.
[46] Ma K, Zhang Y, Liu L, et al. In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries[J]. Nature communications, 2019, 10: 5286.
[47] Li D, Zhang Y, Li Z, et al. A low-cost average valence detector for mixed electrolytes in vanadium flow batteries[J]. RSC advances, 2018, 8: 20773-20780.
[48] SUKKAR T, SKYLLAS-KAZACOS M. Water transfer behaviour across cation exchange membranes in the vanadium redox battery [J]. Journal of Membrane Science, 2003, 222: 235-47.
[49] Zou W J, Kim Y B, Jung S. Capacity fade prediction for vanadium redox flow batteries during long-term operations[J]. Applied Energy, 2024, 356: 122329.
[50] Sun C, Chen J, Zhang H, et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery[J]. Journal of Power Sources, 2010, 195: 890-897.
[51] Badrinarayanan R, Zhao J, Tseng K J, et al. Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer[J]. Journal of Power Sources, 2014, 270: 576-586.
[52] Sun J, Shi D, Zhong H, et al. Investigations on the self-discharge process in vanadium flow battery[J]. Journal of Power Sources, 2015, 294: 562-568.
[53] Wang Z, Guo Z, Ren J, et al. An electrolyte with elevated average valence for suppressing the capacity decay of vanadium redox flow batteries[J]. ACS Central Science, 2022, 9: 56-63.
[54] Cruz-Martínez H, Rojas-Chávez H, Matadamas-Ortiz P T, et al. Current progress of Pt-based ORR electrocatalysts for PEMFCs: An integrated view combining theory and experiment[J]. Materials Today Physics, 2021, 19: 100406.
[55] Puleston T, Serra M, Costa-Castelló R. Vanadium redox flow battery capacity loss mitigation strategy based on a comprehensive analysis of electrolyte imbalance effects[J]. Applied Energy, 2024, 355: 122271.
[56] Wei L, Fan X Z, Jiang H R, et al. Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method[J]. Journal of Power Sources, 2020, 478: 228725.
[57] Whitehead A H, Harrer M. Investigation of a method to hinder charge imbalance in the vanadium redox flow battery[J]. Journal of power Sources, 2013, 230: 271-276.
[58] Li Z, Liu L, Zhao Y, et al. The indefinite cycle life via a method of mixing and online electrolysis for vanadium redox flow batteries[J]. Journal of Power Sources, 2019, 438: 226990.
[59] Zhang Y, Liu L, Xi J, et al. The benefits and limitations of electrolyte mixing in vanadium flow batteries[J]. Applied Energy, 2017, 204: 373-381.
[60] Sun S, Fang L, Guo H, et al. A Bifunctional Liquid Fuel Cell Coupling Power Generation and V3.5+ Electrolytes Production for All Vanadium Flow Batteries[J]. Advanced Science, 2023: 2207728.
[61] Kanega R, Ishida E, Sakai T, et al. An Aqueous Redox Flow Battery Using CO2 as an Active Material with a Homogeneous Ir Catalyst[J]. Angewandte Chemie, 2023, 135: e202310976.
[62] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of chemical physics, 2010, 132.
[63] Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of computational chemistry, 2011, 32: 1456-1465.
[64] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational materials science, 1996, 6: 15-50.
[65] Togo A. First-principles phonon calculations with phonopy and phono3py[J]. Journal of the Physical Society of Japan, 2023, 92: 012001.
[66] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical review b, 1999, 59: 1758.
[67] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical review letters, 1996, 77: 3865.
[68] FU X, LI H, XU A, et al. Phase Engineering of Intermetallic PtBi2 Nanoplates for Formic Acid Electrochemical Oxidation[J]. Nano Letters, 2023, 23: 5467-5474.
[69] HU X, XIAO Z, WANG W, et al. Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis[J]. J Am Chem Soc, 2023, 145: 15109-15117.
[70] Sun C, Zhang H. Review of the development of first‐generation redox flow batteries: iron‐chromium system[J]. ChemSusChem, 2022, 15: e202101798.
[71] Sun Y, Chen W, Zhang W, et al. Trimetallic Porous PtIrBi Nanoplates with Robust CO Tolerance for Enhanced Formic Acid Oxidation Catalysis[J]. Advanced Functional Materials, 2023: 2303299.
[72] Luo S, Chen W, Cheng Y, et al. Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation[J]. Advanced Materials, 2019, 31: 1903683.
[73] Kim B J, Kwon K, Rhee C K, et al. Modification of Pt nanoelectrodes dispersed on carbon support using irreversible adsorption of Bi to enhance formic acid oxidation[J]. Electrochimica Acta, 2008, 53: 7744-7750.
[74] Choi M, Ahn C Y, Lee H, et al. Bi-modified Pt supported on carbon black as electro-oxidation catalyst for 300 W formic acid fuel cell stack[J]. Applied Catalysis B: Environmental, 2019, 253: 187-195.
[75] Rice C, Ha S, Masel R I, et al. Direct formic acid fuel cells[J]. Journal of Power Sources, 2002, 111: 83-89.
[76] Ha S, Rice C A, Masel R I, et al. Methanol conditioning for improved performance of formic acid fuel cells[J]. Journal of power sources, 2002, 112: 655-659.
[77] Fang B, Kim M, Yu J S. Hollow core/mesoporous shell carbon as a highly efficient catalyst support in direct formic acid fuel cell[J]. Applied Catalysis B: Environmental, 2008, 84: 100-105.
[78] Jałowiecka M, Bojarska Z, Małolepszy A, et al. Mass transport enhancement in direct formic acid fuel cell with a novel channel design[J]. Chemical Engineering Journal, 2023, 451: 138474.
[79] Herlambang Y D, Shyu J C, Lee S C. Numerical simulation of the performance of air‐breathing direct formic acid microfluidic fuel cells[J]. Micro & Nano Letters, 2017, 12: 860-865.
[80] Pan L, Sun J, Qi H, et al. Along-flow-path gradient flow field enabling uniform distributions of reactants for redox flow batteries[J]. Journal of Power Sources, 2023, 570: 233012.

所在学位评定分委会
力学
国内图书分类号
O646.21
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778426
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
韦东波. 全钒液流电池电解液价态失衡机理及容量恢复策略研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132301-韦东波-机械与能源工程(5420KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[韦东波]的文章
百度学术
百度学术中相似的文章
[韦东波]的文章
必应学术
必应学术中相似的文章
[韦东波]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。