中文版 | English
题名

基于 n 型聚合物电子传输材料的钙钛矿 太阳能电池研究

其他题名
STUDY OF PEROVSKITE SOLAR CELLS BASED ON N-TYPE POLYMER ELECTRON TRANSPORT MATERIALS
姓名
姓名拼音
ZHANG Ying
学号
12232072
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
郭旭岗
导师单位
材料科学与工程系
论文答辩日期
2024-05-09
论文提交日期
2024-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

钙钛矿太阳能电池的能量转化效率在短短 15 年内从 3.8%提升至 26.21%。与正式太阳能电池器件相比, 反式器件因其低温可加工性和可制备柔性器件而受到广泛关注。 在反式器件中, 电子传输层对器件性能起重要作用,但常用的电子层 PCBM 价格高, 从而增加了器件成本,且稳定性差。为解决该问题, 本文通过研究杂原子效应, 将两组成本低廉、 化学合成简单的 n型聚合物替代传统的 PCBM 用于反式器件,并详细探究了这些聚合物的性质及其在器件中的性能。

结果表明, 聚合物 Y5-TVTCN 与 Y5-SVSCN 由于结构相近,具有相似的前线轨道能级和吸光性。基于 Y5-SVSCN 电子层的器件展现了更高的能量转化效率,更少的非辐射复合及良好的长期稳定性。 与 PCBM 相比,基于聚合物电子层的器件效率更低, 这主要是因为 Y5-TVTCN 和 Y5-SVSCN中载流子非辐射复合严重, 降低了短路电流密度。

聚合物 DCNBT-IDT 与 DCNSe-IDT 相比,前者与钙钛矿吸光层能级匹配更好, 后者则因为能级不匹配存在严重的载流子复合。 应用于反式器件后, 与 PCBM 相比, 基于 DCNBT-IDT 电子层的器件取得了 21.83%的效率,性能提升主要受益于载流子的非辐射复合的更少。此外,基于 DCNBT-IDT的器件在 500 h 的稳定性测试中仍然保持 89%的初始效率。 这一研究结果为钙钛矿太阳能电池中 n 型聚合物电子传输材料的发展提供了重要参考。
 

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-05
参考文献列表

[1] 杜效鹄, 周兴波, 周建平. 碳中和背景下我国电力碳排放水平分析[J]. 水力发电学报: 1-11.
[2] 中国 10 大水电站排行榜[J]. 云南水力发电, 2014, 30(S1): 24.
[3] 宋智勇. 风力发电系统中储能技术的应用分析[J]. 电气时代, 2023, (08): 44-46.
[4] 葛稚新, 王善宇. 潮汐及其能量利用[J]. 石油知识, 2022, (01): 46-47.
[5] 杨琪. 光伏电站太阳辐射量及输出功率预测研究[D]; 新疆大学, 2021.
[6] 马艺娜, 马宝华. 太阳能电池板光热能量的利用[J]. 石化技术, 2020, 27(02): 147-148.
[7] 余焕焕, 陈发云. 可见光催化水裂解制氢研究;中国化学会第三届中国能源材料化学研讨会, 中国北京, F, 2018[C].
[8] 任东. 光照对腐殖酸生物可利用性的增效作用的研究[J]. 四川环境, 2019, 38(02):15-19.
[9] COPELAND A W, BLACK O D, GARRETT A. The photovoltaic effect[J]. Chemical reviews, 1942, 31(1): 177-226.
[10] DOBRZAŃSKI L, DRYGAŁA A, GIEDROĆ M, et al. Monocrystalline silicon solar cells applied in photovoltaic system[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2012, 53(1): 7-13.
[11] BECKER C, AMKREUTZ D, SONTHEIMER T, et al. Polycrystalline silicon thin-film solar cells: Status and perspectives[J]. Solar Energy Materials and Solar Cells, 2013,119: 112-123.
[12] RECH B, WAGNER H. Potential of amorphous silicon for solar cells[J]. Applied Physics A, 1999, 69(2): 155-167.
[13] LIN H, YANG M, RU X, et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers[J]. Nature Energy, 2023, 8(8): 789-799.
[14] LEE T D, EBONG A U. A review of thin film solar cell technologies and challenge[J].Renewable and Sustainable Energy Reviews, 2017, 70: 1286-1297.
[15] RAHMAN S, HALEEM A, SIDDIQ M, et al. Research on dye sensitized solar cells:Recent advancement toward the various constituents of dye sensitized solar cells forefficiency enhancement and future prospects[J]. RSC Advances, 2023, 13(28): 19508 -19529.
[16] JIANG Q, TONG J, XIAN Y, et al. Surface reaction for efficient and stable inverted perovskite solar cells[J]. Nature, 2022, 611(7935): 278-283.
[17] HAN C, WANG J, ZHANG S, et al. Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions[J]. Advanced Materials, 2023,35(10): 2208986.
[18] LI X, YU H, LIU Z, et al. Progress and challenges toward effective flexible perovskite solar cells[J]. Nano-Micro Letters, 2023, 15(1): 206.
[19] 陈辉. 高效钙钛矿太阳能电池的制备与性能研究[D]; 电子科技大学, 2021.
[20] CHEN J, PARK N-G. Causes and solutions of recombination in perovskite solar cells[J]. Advanced Materials, 2019, 31(47): 1803019.
[21] 谢剑. 钙钛矿太阳能电池电荷传输层设计与器件性能的研究[D]; 湖北大学, 2022.
[22] XIAO M, HUANG F, HUANG W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angewandte ChemieInternational Edition, 2014, 53(37): 9898-9903.
[23] IM J-H, KIM H-S, PARK N-G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3[J]. APL Materials, 2014, 2(8).
[24] BURSCHKA J, PELLET N, MOON S-J, et al. Sequential deposition as a route to high performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319.
[25] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.
[26] ZHONG J-X, WU W-Q, DING L, et al. Blade-coating perovskite films with diverse compositions for efficient photovoltaics[J]. ENERGY & ENVIRONMENTAL MATERIALS, 2021, 4(3): 277-283.
[27] HE M, LI B, CUI X, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells[J]. Nature Communications, 2017, 8(1):16045.
[28] HONG S C, LEE G, HA K, et al. Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system[J]. ACS Applied Materials & Interfaces, 2017, 9(9): 7879-7884.
[29] BISHOP J E, SMITH J A, LIDZEY D G. Development of spray-coated perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48237-48245.
[30] CASSELLA E J, SPOONER E L K, THORNBER T, et al. Gas-assisted spray coating of perovskite solar cells incorporating sprayed self-assembled monolayers [J]. Advanced Science, 2022, 9(14): 2104848.
[31] DAS S, YANG B, GU G, et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photoniccuring[J]. ACS Photonics, 2015, 2(6): 680-686.
[32] MAHMOOD K, SARWAR S, MEHRAN M T. Current status of electron transport layers in perovskite solar cells: Materials and properties[J]. RSC Advances, 2017,7(28): 17044-17062.
[33] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visiblelight sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009, 131(17): 6050-6051.
[34] HAN G S, CHUNG H S, KIM B J, et al. Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films[J]. Journal ofMaterials Chemistry A, 2015, 3(17): 9160-9164.
[35] MAHMOOD K, SWAIN B S, KIRMANI A R, et al. Highly efficient perovskite solarcells based on a nanostructured WO3-TiO2 core-shell electron transporting material[J].Journal of Materials Chemistry A, 2015, 3(17): 9051-9057.
[36] KE W, FANG G, LIU Q, et al. Low-temperature solution-processed tin oxide as analternative electron transporting layer for efficient perovskite solar cells[J]. Journal ofthe American Chemical Society, 2015, 137(21): 6730-6733.
[37] YANG D, ZHANG X, WANG K, et al. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized pcbm electron-transport layers[J].Nano Letters, 2019, 19(5): 3313-3320.
[38] RANI R, MONGA K, CHAUDHARY S. Recent development in electron transportlayers for efficient tin-based perovskite solar cells[J]. IOP Conference Series:Materials Science and Engineering, 2022, 1258(1): 012015.
[39] LUO Z, WU F, ZHANG T, et al. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability[J]. Angewandte Chemie International Edition, 2019,58(25): 8520-8525.
[40] SHUI Q-J, SHAN S, ZHAI Y-C, et al. Evaporable fullerene indanones with controlled amorphous morphology as electron transport layers for inverted perovskite solarcells[J]. Journal of the American Chemical Society, 2023, 145(50): 27307-27315.
[41] ZHAO D, ZHU Z, KUO M-Y, et al. Hexaazatrinaphthylene derivatives: Efficient electron-transporting materials with tunable energy levels for inverted perovskite solarcells[J]. Angewandte Chemie, 2016, 128(31): 9145-9149.
[42] MUMYATOV A V, LESHANSKAYA L I, ANOKHIN D V, et al. Organic field-effect transistors based on disubstituted perylene diimides: Effect of alkyl chains on the device performance[J]. Mendeleev Communications, 2014, 24(5): 306-307.
[43] AKBULATOV A F, FROLOVA L A, GRIFFIN M P, et al. Effect of electron-transport material on light-induced degradation of inverted planar junction perovskite solar cells[J]. Advanced Energy Materials, 2017, 7(19): 1700476.
[44] GU P-Y, WANG N, WANG C, et al. Pushing up the efficiency of planar perovskitesolar cells to 18.2% with organic small molecules as the electron transport layer[J].Journal of Materials Chemistry A, 2017, 5(16): 7339-7344.
[45] WANG N, ZHAO K, DING T, et al. Improving interfacial charge recombination inplanar heterojunction perovskite photovoltaics with small molecule as electron transport layer[J]. Advanced Energy Materials, 2017, 7(18): 1700522.
[46] JUNG S-K, HEO J H, LEE D W, et al. Nonfullerene electron transporting materialbased on naphthalene diimide small molecule for highly stable perovskite solar cellswith efficiency exceeding 20%[J]. Advanced Functional Materials, 2018, 28(20):1800346.
[47] CASTRO E, SISTO T J, ROMERO E L, et al. Cove-edge nanoribbon materials for efficient inverted halide perovskite solar cells[J]. Angewandte Chemie International Edition, 2017, 56(46): 14648-14652.
[48] ZHU L, GAO W, WU F, et al. Regulating the electron transporting properties of indacenodithiophene derivatives for perovskite solar cells with PCEs up to 19.51%[J]. Journal of Materials Chemistry A, 2018, 6(37): 18044-18049.
[49] GAO W, WU F, LIU T, et al. Multifunctional asymmetrical molecules for high performance perovskite and organic solar cells[J]. Journal of Materials Chemistry A,2019, 7(5): 2412-2420.
[50] LIU X, LI X, ZOU Y, et al. Energy level-modulated non-fullerene small molecule acceptors for improved voc and efficiency of inverted perovskite solar cells[J]. Journal of Materials Chemistry A, 2019, 7(7): 3336-3343.
[51] CHEN C, LI H, DING X, et al. Molecular engineering of triphenylamine-based on fullerene electron-transport materials for efficient rigid and flexible perovskite solarcells[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38970-38977.
[52] SHI Y, CHEN W, WU Z, et al. Imide-functionalized acceptor-acceptor copolymers as efficient electron transport layers for high-performance perovskite solar cells[J].Journal of Materials Chemistry A, 2020, 8(27): 13754-13762.
[53] CHEN W, SHI Y, WANG Y, et al. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%[J]. Nano Energy, 2020, 68.
[54] SUN C, WU Z, YIP H-L, et al. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells[J]. Advanced Energy Materials, 2016, 6(5): 1501534.
[55] ZHU Z, CHUEH C-C, ZHANG G, et al. Improved ambient-stable perovskite solar cells enabled by a hybrid polymeric electron-transporting layer[J]. ChemSusChem, 2016,9(18): 2586-2591.
[56] JIANG K, WU F, ZHU L, et al. Naphthodiperylenetetraimide-based polymer as electron-transporting material for efficient inverted perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36549-36555.
[57] KIM H I, KIM M-J, CHOI K, et al. Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI-based polymer as the electron transport layer[J]. Advanced Energy Materials, 2018, 8(16): 1702872.
[58] SAID A A, XIE J, WANG Y, et al. Efficient inverted perovskite solar cells by employing n-type (D-A1-D-A2) polymers as electron transporting layer[J]. Small, 2019,15(29): 1803339.
[59] JENG J-Y, CHIANG Y-F, LEE M-H, et al. CH3NH3PbI3 perovskite/fullerene planarheterojunction hybrid solar cells[J]. Advanced Materials, 2013, 25(27): 3727-3732.
[60] XIAO Z, DONG Q, BI C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement[J]. Advanced Materials, 2014, 26(37):6503-6509.
[61] CHEN W, WU Y, YUE Y, et al. Efficient and stable large-area perovskite solar cellswith inorganic charge extraction layers[J]. Science, 2015, 350(6263): 944-948.
[62] SHAO Y, YUAN Y, HUANG J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells[J]. Nature Energy, 2016, 1(1): 15001.
[63] ZHENG X, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cellsusing quaternary ammonium halide anions and cations[J]. Nature Energy, 2017, 2(7):17102.
[64] LUO D, YANG W, WANG Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J]. Science, 2018, 360(6396): 1442-1446.
[65] ZHENG X, HOU Y, BAO C, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells[J]. Nature Energy, 2020, 5(2):131-140.
[66] LI Z, LI B, WU X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells[J]. Science, 2022, 376(6591): 416-420.
[67] CHEN R, WANG J, LIU Z, et al. Reduction of bulk and surface defects in invertedmethylammonium-and bromide-free formamidinium perovskite solar cells[J]. NatureEnergy, 2023.
[68] LI B, GAO D, SHEPPARD S A, et al. Highly efficient and scalable p-i-n perovskitesolar cells enabled by poly-metallocene interfaces[J]. Journal of the American Chemical Society, 2024.
[69] LIANG J, HU X, WANG C, et al. Origins and influences of metallic lead in perovskite solar cells[J]. Joule, 2022, 6(4): 816-833.
[70] REZAEE E, KUTSAROV D I, ZHANG J, et al. Green solvent ethanol-based inks forindustrially applicable deposition of high-quality perovskite films for optoelectronicdevice applications[J]. Small Methods, 2024, 8(2): 2300564.

所在学位评定分委会
材料科学与工程
国内图书分类号
TM914.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778427
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
张莹. 基于 n 型聚合物电子传输材料的钙钛矿 太阳能电池研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232072-张莹-材料科学与工程系(5578KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张莹]的文章
百度学术
百度学术中相似的文章
[张莹]的文章
必应学术
必应学术中相似的文章
[张莹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。